# **GEOLOGI FOR SAMFUNNET**

SIDEN 1858



Norges geologiske undersøkelse Postboks 6315 Sluppen 7491 TRONDHEIM Tlf. 73 90 40 00

# NGU RAPPORT 2021.028

Miljøgeokjemiske data og dateringsresultater fra Norskehavet – MAREANO

# RAPPORT

| Rapport nr.: 2021.028                               | ISSN: 0800-3416 (trykt)<br>ISSN: 2387-3515 (online) |                                 | Gradering: Åpen |                                         |
|-----------------------------------------------------|-----------------------------------------------------|---------------------------------|-----------------|-----------------------------------------|
| Tittel:<br>Miljøgeokjemiske data og                 | lorskehavet - N                                     | IAREANO                         |                 |                                         |
| Forfatter:<br>Henning K.B. Jensen og Valerie Bellec |                                                     | Oppdragsgiver:<br>MAREANO       |                 |                                         |
| Fylke:                                              |                                                     | Kommune:                        |                 |                                         |
| Kartblad (M=1:250.000)                              |                                                     | Kartbladnr. og                  | -navn (M=1      | 50.000)                                 |
| Forekomstens navn og koordinater:                   |                                                     | Sidetall: 70 si<br>Kartbilag: 0 | der             | <b>Pris:</b> 205 kr.                    |
| Feltarbeid utført:<br>April og juli-august 2020     | Rapportdato:<br>21.01.2022                          | Prosjektnr.: 3 <sup>-</sup>     | 11730           | Ansvarlig:<br>Reiduu Bec<br>Reidulv Bøe |

#### Sammendrag:

På MAREANO-toktene 2020104 og 2020110 med FF G.O. Sars i 2020 ble det tatt sedimentprøver for miljøundersøkelser på totalt 16 prøvetakingsstasjoner i Norskehavet; Frøyabanken, Sulatrekanten, Haltenbanken, Sklinnadjupet, Sklinnadjupet vest, Norskehavet øst-vest transekt, Trænabanken og Trænadjupet. Det er lave konsentrasjoner av halvmetallet arsen (As) og tungmetallene bly (Pb), kadmium (Cd), kobber (Cu), krom (Cr), kvikksølv (Hg), og sink (Zn), tilsvarende tilstandsklasse I i overflatesedimenter (bakgrunn), mens Ni er i tilstandsklasse II (god) for flere av stasjonene. Barium (Ba) er analysert for å sjekke om mulige spor av utslipp fra olje-/gassinstallasjoner i dette havområdet. <sup>137</sup>Cs er til stede i 4 av 5 analyserte sedimentkjerner; Haltenbanken, Sklinnadjupet vest, Trænabanken og Trænadjupet. Prøven fra Frøyabanken hadde ikke <sup>137</sup>Cs.

Åtte sedimentkjerner fra Frøyabanken, Sulatrekanten, Haltenbanken, Trænadjupet, Trænabanken, Sklinnadjupet, Sklinnadjupet vest og Norskehavet øst-vest transektene e og d ble valgt ut for kjemisk analyse i flere nåvåer. Fem av kjernene ble datert med bruk av <sup>210</sup>Pb og analysert for innhold av <sup>137</sup>Cs. <sup>210</sup>Pb-dateringsanalysene er av middels til god kvalitet. Lineære sedimentasjonsrater basert på <sup>210</sup>Pb-dataene gir sedimentasjonsrater fra 0,8 mm (Trænabanken) til 2,0 mm/år (Sklinnadjupet vest).

Samtlige tungmetaller er til stede i lave konsentrasjoner i de åtte sedimentkjernene. Hg og Pb øker i de øverste 10 cm, fra et lavere bakgrunnsnivå dypere i kjernene. De høyere verdiene av Hg og Pb mot toppen av kjernene tilskrives langtransportert forurensning primært knyttet til havstrømmer og atmosfærisk transport. Økningen knyttes primært til forbrenning av kull (Hg) og blyholdig bensin (Pb). For alle øvrige metaller og As er det relativt stabile og lave konsentrasjoner gjennom kjernene. Disse metallene vurderes å være på naturlig bakgrunnsnivå. Ba øker noe i de øverste centimeterne i flere av kjernene. Det gjelder spesielt en kjerne fra Frøyabanken (R2139) og en fra Norskehavet øst-vest transekt e (R2363). Økningen i Ba i den daterte sedimentkjernen R2139 fra Frøyabanken skjedde på 1980-tallet, trolig som resultat av utslipp av barytt fra boreslam og/eller Ba fra formasjonsvann fra olje-/gassboringer.

Mikroplast (MP) er analysert i overflatesediment på samtlige 11 prøvetakingsstasjoner tatt med multicorer, og i dypere lag i kjerner på 3 av de 11 stasjonene. Det er stor variasjon i antall MP-partikler/kg sediment, varierende fra 51 til 2187 partikler/kg sediment i overflateprøvene (0-2 cm). Mikroplast dypere i sedimentkjernene er til stede i alle tre analyserte kjerner. I de to daterte kjernene fra Sklinnadjupet vest og Trænabanken er det registrert mikroplast i sedimentlag som daterer tilbake til 1930-tallet. Årsak til at mikroplast er funnet så dypt er ikke avklart, men bioturbasjon kan være medvirkende til å dra mikroplast ned til dypere lag i sedimentene.

| Emneord: Maringeologi | Sediment    | Forurensning |
|-----------------------|-------------|--------------|
| Tungmetall            | Prøvetaking | MAREANO      |
| Geokjemi              | Datering    | Mikroplast   |

# INNHOLD

| 1. INNLEDNING                                                                                        | 5  |
|------------------------------------------------------------------------------------------------------|----|
| 2. TOKT OG PRØVETAKING                                                                               | 5  |
| 3. DATA OG METODIKK                                                                                  | 10 |
| 4. KVALITETSKONTROLL                                                                                 | 10 |
| 5. RESULTATER                                                                                        | 11 |
| 5.1 Sedimentklassifikasjon og beregning av vektprosent karbonat                                      | 11 |
| 5.2 Overflateprøver (0-1 cm)                                                                         | 13 |
| 5.2.1 Kornstørrelsesfordeling, organisk karbon, karbonat og svovel                                   | 13 |
| 5.2.2 Innhold av tungmetaller, arsen, barium, cesium-137 og mikroplast                               | 18 |
| 5.3 Analyser av sedimentkjerner                                                                      | 30 |
| 5.3.1 Visuell bedømmelse og XRI-analyser                                                             | 30 |
| 5.3.2 Kornstørrelsesfordeling i sedimentkjerner                                                      | 39 |
| 5.3.3 Total organisk karbon, karbonat og svovel                                                      | 41 |
| 5.3.4 Blyisotop 210 ( <sup>210</sup> Pb) -datering, <sup>137</sup> Cs-målinger og akkumulasjonsrater | 43 |
| 5.4 Tungmetaller, arsen og barium i fem <sup>210</sup> Pb-daterte sedimentkjerner og 3 udaterte      |    |
| sedimentkjerner                                                                                      | 50 |
| 5.5 Mikroplast i 3 sedimentkjerner.                                                                  | 66 |
| 6. OPPSUMMERING                                                                                      | 67 |
| 7. REFERANSER                                                                                        | 69 |

# **VEDLEGG (Vedlegg 1-5 tilgjengelig digitalt ved nedlasting fra www.mareano.no/resultater/geokjemirapporter)**

Vedlegg 1. Prøveliste og analyseresultater. Kornstørrelsesfordeling (Coulter), Leco (total S, total C og organisk C), HNO<sub>3</sub>-ekstrahert og analysert med AAS (Hg) og ICP-OES (As, Ba, Cd, Cr, Cu, Ni, Pb og Zn). Naturlige standarder Hynne i Trondheimsfjorden og Nordkyn og Tana i Finnmark er inkludert i prøvelistene.

Vedlegg 2. Cd, Cr, Cu og Zn kart i prøvene 0-1 cm dyp og sedimentasjonsrater basert på <sup>210</sup>Pb-data

Vedlegg 3. XRI-bilder av sedimentkjerner.

Vedlegg 4. <sup>210</sup>Pb- og <sup>137</sup>Cs-analyserapporter fra fem sedimentkjerner. Leverandør av rapporter: Gamma Dating Center, Københavns Universitet, Danmark.

Vedlegg 5. Mikroplastrapport: Microplastics in sediment from the Norwegian Sea (NGI rapport 20210378-01-R), 135 sider.

#### 1. INNLEDNING

MAREANO er et nasjonalt program for kartlegging av havbunnen. De første sedimentprøvene ble samlet inn i 2006. Resultater av målinger av uorganiske miljøgifter fra prøver innsamlet i 2006 - 2019 er rapportert tidligere (rapporter og kart er tilgjengelige på <u>www.mareano.no</u>). I tillegg er det rapportert prøver tatt av HI på tokt 2003 og 2004 i Barentshavet.

Sedimentprøver fra 16 stasjoner er analysert for innhold av tungmetaller, arsen, barium, kornstørrelse, total organisk karbon (TOC), totalkarbon (TC) og total svovel (TS) (Fig. 1). Fem utvalgte sedimentkjerner er i tillegg datert (<sup>210</sup>Pb og <sup>137</sup>Cs). Sedimentkjerner fra 11 stasjoner er undersøkt med røntgen (XRI) for å studere strukturer i sedimentene, skjell og større partikler. Mikroplast (MP) er analysert i overflateprøver fra 11 stasjoner tatt med multicorer og bruk av stålrør for å unngå potensiell kontaminering fra PVC i plastrørene. Det er tatt ut prøver fra dypere lag på tre av disse stasjoner for analyse av MP.

# 2. TOKT OG PRØVETAKING

På toktene 2020104 og 2020110 ble det tatt prøver på totalt 16 stasjoner i Norskehavet; Frøyabanken, Sulatrekanten, Haltenbanken, Sklinnadjupet, Sklinnadjupet vest, Norskehavet øst-vest transekt d og e, Trænabanken og Trænadjupet (Figur 1). Tabell 1 gir en oversikt over havdyp, geografiske posisjoner og lengde på sedimentkjernene samt antall prøver tatt ut til analyse fra hver stasjon. Prøvetakingsutstyret består av en multicorer som har 4 PVC-rør og 2 stålrør for mikroplastprøver med 110 millimeter indre diameter og 60 cm lengde (Figur 2 og 3). Av de 16 stasjoner er 11 stasjoner tatt med multicorer, 1 stasjon med bokscorer og 4 stasjoner med van Veen grabb (Figur 4). For sistnevnte er det tatt overflateprøver direkte fra van Veen grabben (0.1 m<sup>2</sup>).

| Stasjon      | Område                     | Geografiske  | Geografiske koordinater |         | Prøvetakings- |
|--------------|----------------------------|--------------|-------------------------|---------|---------------|
|              |                            | (WGS         | (WGS 84)                |         | utstyr        |
|              |                            | Nord         | Øst                     |         |               |
|              |                            | Fokt 2020104 |                         |         | •             |
| R2132MC006A  | Frøyabanken                | 63.88470     | 7.57127                 | -235.6  | Multicorer    |
| R2139MC008A  | Frøyabanken                | 64.19527     | 7.35512                 | -332.4  | Multicorer    |
| R2183MC009A  | Sula trekant               | 64.28006     | 8.40502                 | -356.7  | Multicorer    |
| R2229MC010A  | Haltenbanken               | 64.71354     | 8.22013                 | -238.0  | Multicorer    |
| Tokt 2020110 |                            |              |                         |         |               |
| R2242MC012A  | Trænadjupet                | 66.83023     | 10.43077                | -400.1  | Multicorer    |
| R2270MC013A  | Trænabanken                | 66.23164     | 10.47961                | -293.5  | Multicorer    |
| R2276MC014A  | Sklinnadjupet              | 65.67928     | 10.17709                | -395.8  | Multicorer    |
| R2279BC061   | Sklinnadjupet              | 65.62976     | 10.61106                | -377.8  | Boxcorer      |
| R2289MC015A  | Sklinnadjupet              | 65.56744     | 10.42937                | -410.8  | Multicorer    |
| R2326GR104   | Norskehavet øst-vest tr. d | 65.60868     | 9.74349                 | -424.53 | Grabb         |
| R2331MC016A  | Norskehavet øst-vest tr. d | 65.48132     | 9.27189                 | -368.3  | Multicorer    |
| R2338MC017A  | Sklinnadjupet vest         | 65.71696     | 9.07689                 | -449.0  | Multicorer    |
| R2354GR125   | Sklinnadjupet vest         | 65.57232     | 8.98882                 | -407.5  | Grabb         |
| R2359GR129   | Norskehavet øst-vest tr. e | 65.52309     | 8.40973                 | -341.4  | Grabb         |
| R2363MC019A  | Norskehavet øst-vest tr. e | 65.50794     | 8.04405                 | -372.9  | Multicorer    |
| R2365GR141   | Norskehavet øst-vest tr. e | 65.51556     | 7.73379                 | 380.7   | Grabb         |

# Tabell 1a. Prøvetakingsstasjoner.

# Tabell 1b. Prøvetakingsstasjoner med analyserte sedimentprøver.

| Stasjon     | Prøvetakings- | Kjernelengde | Antall prøver til |
|-------------|---------------|--------------|-------------------|
|             | utstyr        | Slicet [cm]  | kjemisk analyse   |
|             |               |              |                   |
|             | Tokt 2        | 2020104      |                   |
| R2132MC006A | Multicorer    | 37           | 1                 |
| R2139MC008A | Multicorer    | 30           | 7                 |
| R2183MC009A | Multicorer    | 36           | 7                 |
| R2229MC010A | Multicorer    | 32           | 7                 |
|             | Tokt 2        | 2020110      |                   |
| R2242MC012A | Multicorer    | 40           | 7                 |
| R2270MC013A | Multicorer    | 34           | 7                 |
| R2276MC014A | Multicorer    | 44           | 7                 |
| R2279BC060  | Boxcorer      | 1            | 1                 |
| R2289MC015A | Multicorer    | 40           | 1                 |
| R2326GR104  | Grabb         | 1            | 1                 |
| R2331MC016A | Multicorer    | 38           | 1                 |
| R2338MC017A | Multicorer    | 49           | 7                 |
| R2354GR125  | Grabb         | 1            | 1                 |
| R2359GR129  | Grabb         | 1            | 1                 |
| R2363MC019A | Multicorer    | 39           | 7                 |
| R2365GR141  | Grabb         | 1            | 1                 |



Figur 1. Kart over alle MAREANOs prøvetakingsstasjoner i perioden 2006-2020, samt stasjoner prøvetatt av HI i 2003 og 2004. De 16 stasjonene prøvetatt på toktene i 2020 er markert med stasjonsnummer i kartutsnittet vist oppe i venstre hjørne.



Figur 2. Sedimentkjerne fra Stasjon R2242 for kjemianalyse (Trænadjupet) stående i multicoreren. Røret er 60 cm langt og sedimentkjernen har vannsøyle på toppen og er dermed godkjent.

MAREANO 2020110 R2242MG012 FA. 20.07.2020

Figur 3. Toppen av sedimentkjerne A med med vannmettet overflate fra stasjon R2242 fra Trænadjupet, før sedimentkjernen deles opp i 1 cm tykke skiver til uorganiske kjemiske analyser. De øverste centimeterne i sedimentkjernen har høyt vanninnhold.

#### 3. DATA OG METODIKK

Det ble gjennomført skiving av kjerner ombord for hver centimeter. Prøvetakingsrøret har en indre diameter på 110 mm. Sedimentkjernen ble presset ut av røret v.h.a. et stempel. Figur 3 viser toppen av en sedimentkjerne som blir presset ut, klar for å ta en sedimentprøve (0-1 cm). Prøvene ble pakket i polyetylenposer med ziplås før innfrysing til ÷18 °C.

Ved NGU Lab ble frysetørking og uttak til følgende analyser gjennomført:

- Bestemmelse av TS, TC og TOC ved hjelp av Leco.
- Innvekt 1,1 g til 7M HNO<sub>3</sub>-ekstraksjon etter NS 4770 for påfølgende analyse med ICP-OES (As, Ba, Cd, Cr, Cu, Ni, Pb og Zn) og CV-AAS (Hg).

Resultatene er rapportert som mg/kg tørrvekt sediment.

Det er brukt varierende prøvemengde for våtsikting, med sikteåpning 16, 8, 4, 2 og 1 mm, samt 500, 250, 125 og 63 µm (avhengig av antatt kornstørrelsesfordeling). Fraksjonen mindre enn 2 mm er så analysert for kornstørrelse med Coulter laserdiffraksjon, slik at kornfordelingskurve kan beregnes for kornstørrelse ned til 0,4 µm. Vedlegg 1 gjengir analyserapporten fra NGU Lab. Prøver til dateringsanalyse ble tatt ut fra samme sedimentkjerne som prøvene til uorganisk kjemiske analysene nevnt ovenfor. Prøver til mikroplast ble tatt ut fra et av de 2 stålrørene (2 cm skiver) med bruk av stålspatler. Nærmere beskrivelse av uttak samt analyse av sedimentprøver for innhold av mikroplast i sedimentprøver finnes i Vedlegg 5 (NGI mikroplast rapport).

# 4. KVALITETSKONTROLL

Kornstørrelse- og organisk kullstoff-analysene ved NGU-Lab er gjennomført i henhold til akkrediterte metoder. Syreekstraksjon og tungmetallanalysene samt Ba-analyse ble utført ved NGU-Lab, også etter akkrediterte metoder. Dateringsanalysene (<sup>210</sup>Pb og <sup>137</sup>Cs) er ikke akkrediterte, men er etablerte metoder ved Gamma Dating Center presentert i vitenskapelige artikler (Andersen, 2017). Tabell 2 oppsummerer analytiske metoder, analyseusikkerhet og presisjon for parametrene vist i rapporten og som kart. De samme parametrene, i tillegg til flere elementer fra ICP-OES analysen som ikke rapporteres, kan ses i Vedlegg 1.

For kvalitetskontroll av de uorganiske kjemiske analysene er det i prøvesettet satt inn 3 naturlige prøver med stabil geokjemisk sammensetning; en sedimentprøve fra Trondheimsfjorden (Hynne), en standardprøve fra Nordkyn i Finnmark og en prøve fra Tana i Finnmark. Det er gjennomført i alt 2 parallelle analyser av hver av de tre innsatte sedimentprøvene. Analyseresultatene er presentert sammen med de øvrige resultatene i Vedlegg 1.

# 5. RESULTATER

Geokjemiske data fra samtlige analyser finnes i Vedlegg 1 og 2. I de fleste sammenhenger benyttes konsentrasjonsenheten mg/kg bortsett fra TOC, TC, TS (vektprosent), <sup>210</sup>Pb og <sup>137</sup>Cs. For å kunne operere med statistikk og kart for alle observasjoner er alle analyseresultater rapportert "< deteksjonsgrense" satt til verdien  $0,5 \times$  deteksjonsgrensen for det gjeldende stoff.

# 5.1 Sedimentklassifikasjon og beregning av vektprosent karbonat

NGU har etablert en sedimentklassifikasjon (Bøe m. fl., 2010), som revideres ved behov. Deler av sedimentklassifikasjonen relevant i MAREANO-sammenheng for kjemiske analyser er presentert i Tabell 3.

| Parameter                                                                                           | Instrument               | Akkreditering        | Analytisk usikkerhet      | Nedre detekt.  |  |  |
|-----------------------------------------------------------------------------------------------------|--------------------------|----------------------|---------------------------|----------------|--|--|
| Opparbeiding av prøver til analyser: Frysetørker FreeZone 6L med FreeZone Bulk Tray Dryer (BTD) fra |                          |                      |                           |                |  |  |
| Labconco (- 55 grd), med Vacuubrand RC-6 pumpe. Er akkreditert.                                     |                          |                      |                           |                |  |  |
| Sedimentkarakteristikk -                                                                            | analysemetoder           |                      |                           |                |  |  |
| Total karbon (TC)                                                                                   | Leco SC-632              | Ja                   | ±15 %                     | 0,06           |  |  |
| Total organisk karbon                                                                               | "                        | Ja                   | ±25 %                     | 0,1            |  |  |
| (TOC)                                                                                               |                          |                      |                           |                |  |  |
| Total svovel (TS)                                                                                   | "                        | Ja                   | ±30 %                     | 0,02           |  |  |
| Kornstørrelsesanalyse                                                                               | Coulter LS 13320         | Ja                   | ±10 %                     | Ikke angitt    |  |  |
|                                                                                                     |                          |                      |                           |                |  |  |
| Opparbeiding av prøver t                                                                            | il kjemiske elementanaly | vser: Syreekstraksjo | n av 1,1 gr tørket sedime | nt 30 minutt i |  |  |
| autoklav med 20 ml 7M I                                                                             | HNO <sub>3</sub> ,       |                      | 1                         | 1              |  |  |
| As                                                                                                  | ICP-OES: Perkin          | Ja                   | ±20 %                     | 0,5 mg/kg      |  |  |
|                                                                                                     | Elmer Optima 4300        |                      |                           |                |  |  |
|                                                                                                     | Dual View                |                      |                           |                |  |  |
| Ва                                                                                                  | "                        | ja                   | ±25 %                     | 0,5 mg/kg      |  |  |
| Cd                                                                                                  | "                        | ja                   | ±25 %                     | 0,01 mg/kg     |  |  |
| Cr                                                                                                  | "                        | ja                   | ±25 %                     | 0,5 mg/kg      |  |  |
| Cu                                                                                                  | "                        | ja                   | ±25 %                     | 0,5 mg/kg      |  |  |
| Ni                                                                                                  | "                        | ja                   | ±25 %                     | 0,5 mg/kg      |  |  |
| Pb                                                                                                  | "                        | ja                   | ±25 %                     | 0,5 mg/kg      |  |  |
| Zn                                                                                                  | "                        | ja                   | ±25 %                     | 2,0 mg/kg      |  |  |
| Hg                                                                                                  | FIMS 100 Flow            | ja                   | ±20 %                     | 0,002 mg/kg    |  |  |
|                                                                                                     | Injection Mercury        |                      |                           |                |  |  |
|                                                                                                     | System fra Perkin        |                      |                           |                |  |  |
|                                                                                                     | Elmer                    |                      |                           |                |  |  |
| <sup>210</sup> Pb                                                                                   | Canberra ultralow-       | Nei                  | Ikke relevant             | Ikke relevant  |  |  |
|                                                                                                     | background Ge-           |                      |                           |                |  |  |
|                                                                                                     | detector                 |                      |                           |                |  |  |
| <sup>137</sup> Cs                                                                                   | "                        | Nei                  | Ikke relevant             | Ikke relevant  |  |  |
| Mikroplast                                                                                          | Bauta Microplastic       | Nei                  | Felt-, metodeblank og     | Ikke relevant  |  |  |
|                                                                                                     | Sediment Separator       |                      | gjenvinning               |                |  |  |

Tabell 2. Oversikt over analytiske metoder, kvalitetssikring og akkreditering.

| Kornstørrelse              | Definisjon/beskrivelse                                                       |
|----------------------------|------------------------------------------------------------------------------|
| Leir                       | Leir:silt > 2:1 og leir+silt > 90 %, sand < 10 %, grus < 2%                  |
| Organisk slam              | Leir:silt fra 1:2 til 2:1 og leir+silt > 90 %, sand < 10 %, grus < 2 %. Høyt |
|                            | innhold av organisk material                                                 |
| Slam                       | Leir:silt fra 1:2 til 2:1 og leir +silt > 90 %, sand < 10%, grus < 2%.       |
| Sandholdig leir            | Leir+silt > 2:1 og leir+silt > 50 %, sand < 50 %, grus < 2 %.                |
| Sandholdig slam            | Leir:silt = fra 1:2 til 2:1 og leir+silt > 50%, sand < 50%, grus < 2%.       |
| Silt                       | Leir:silt < 1:2 og leir+silt > 90 %, sand < 10%, grus < 2 %.                 |
| Sandholdig silt            | Silt:leir >2:1 og leir+silt > 50 %, sand < 50 %, grus < 2 %.                 |
| Leirholdig sand            | Sand > 50 %, leir:silt > 2:1 og leir+silt < 50 %, grus < 2 %.                |
| Slamholdig sand            | Sand > 50 %, leir:silt = fra 1:2 til 2:10g leir+silt < 50 %, grus < 2 %.     |
| Siltholdig sand            | Sand > 50 %, silt:leir > 2:1 og leir+silt < 50 %, grus < 2 %.                |
| Fin sand                   | Sand > 90 %, inkluderer fin og veldig fin sand (Wentworth, 1922).            |
| Sand                       | Sand > 90 %, leir+silt < 10 %, grus < 2 %.                                   |
| Grov sand                  | Sand > 90 %, inkluderer medium, grov og veldig grov sand (Wentworth,         |
|                            | 1922).                                                                       |
| Grusholdig slam            | Sand:silt+leir < 1:9, grus 2 – 30 %.                                         |
| Grusholdig sandholdig slam | Sand:silt+leir fra 1:9 til 1:1, grus 2 – 30 %.                               |
| Grusholdig slamholdig sand | Sand:silt+leir fra 1:1 til 9:1, grus 2 – 30 %.                               |
| Grusholdig sand            | Sand:silt+leir > 9:1, grus 2 – 30 %.                                         |
| Slamholdig grus            | Grus 30 – 80 %, sand:silt+leir < 1:1.                                        |
| Slamholdig sandholdig grus | Grus 30 – 80 %, sand:silt+leir fra 1:1 til 9:1.                              |
| Sandholdig grus            | Grus 30 – 80 %, sand:silt+leir>9:1.                                          |
| Grus                       | Grus > 80 %.                                                                 |
| Grus, stein og blokk       | Dominans av grus, stein og blokk.                                            |
| Stein og blokk             | Dominans av stein og blokk.                                                  |
| Sand og blokk              | Dominans av sand og blokk.                                                   |
| Diamikton                  | Sediment med blandede kornstørrelser og dårlig sortering.                    |

Tabell 3. Sedimentklassifikasjon og kornstørrelser. Klassifikasjonen er i henhold til NGUs sedimentklassifikasjon (Geonorge.no, 2021).

Innholdet av karbonat i sedimentene beregnes fra analyser med LECO, og gjøres ut fra antakelsen om at karbon (C) som ikke er av organisk opprinnelse er bundet i karbonat (CaCO<sub>3</sub>). Karbonatverdiene i vektprosent beregnes fra følgende formel:

 $(TC - TOC) \times (CaCO_3/C) = (TC - TOC) \times 8,33$ 

TC er innholdet av totalt karbon, mens TOC er innhold av total organisk karbon.

Karbonat i sedimentene antas hovedsaklig å ha opprinnelse i biologisk materiale – mest fra skjell, mikroorganismer og større bunnlevende dyr, for eksempel foraminiferer, kråkeboller, brakiopoder og koraller. I tillegg kan karbonat stamme fra eroderte bergarter/mineraler med innhold av karbonat.

# 5.2 Overflateprøver (0-1 cm)

De geokjemiske resultatene for overflateprøvene (0-1 cm) rapporteres for å gi oversikt over dagens miljøtilstand. Parametrene som presenteres her er sedimentenes finstoffandel (<63 µm), innhold av TOC, innhold av karbonat og innholdet av tungmetallene kadmium (Cd), kobber (Cu), krom (Cr), kvikksølv (Hg), nikkel (Ni), bly (Pb), sink (Zn), halvmetallet arsen (As) samt barium (Ba). Kart for de nevnte parametrene finnes i Vedlegg 2. Videre rapporteres radioaktiv <sup>137</sup>Cs, som blir analysert i forbindelse med dateringsanalysene utført på sedimentkjerner fra fem utvalgte stasjoner. Mikroplast rapporteres fra overflateprøver (0-2 cm) tatt ut fra egne kjerner i stålrør.

#### 5.2.1 Kornstørrelsesfordeling, organisk karbon, karbonat og svovel

I utgangspunktet er prøvetaking for miljøanalyser gjennomført i områder med finkornige sedimenter. De fleste prøvetakingsstasjonene er valgt ut før tokt på bakgrunn av blant annet multistråledata (dybde og bunnreflektivitet). Metodikken for geologisk havbunnskartlegging er gitt i Bøe m. fl. (2010) og Bellec m. fl. (2017). Prøvetaking planlegges der en forventer at det avsettes slamholdige sedimenter, typisk i dype områder eller områder med svake havstrømmer. Andel finstoff (<63µm) i overflateprøvene er vist i Figur 4. Tabell 3 viser sedimentklassifikasjonen som er brukt for beskrivelse av overflateprøvene.

Tabell 4 viser kornstørrelsesfordelingen i leir-, silt-, sand- og grusfraksjoner for overflateprøvene for de 16 stasjonene. Tre av de 16 prøvene består av silt (R2276, R2326 og R2338). Langt de fleste prøvene (12) består av sandholdig silt mens en prøve, R2131 fra Frøyabanken, består av siltholdig sand som den mest grovkornete prøven av alle analyserte prøver. Siltfraksjonen utgjør 60 – 87 %, mens sandfraksjonen varierer fra 6,6 til 63,4 %. Andelen leir utgjør 2,8 til 9,7 %. Finstoff, bestående av leir + silt, utgjør 36,6 til 93,4 % av prøvene. Andel finstoff er vist i Figur 4. Det er viktig å merke seg at kornfordelingsanalyse med Coulter gir lavere leirinnhold og høyere siltinnhold enn andre tradisjonelle metoder for kornfordelingsanalyse (Rise og Brendryen, 2013). Andelen leir kan i enkelte tilfeller ganges med fire og siltandelen deles med fire, slik at for eksempel sandholdig silt kan klassifiseres som sandholdig slam (Tabell 4).



*Figur 4. Andel finstoff* ( $<63\mu m$ ) *i overflateprøvene. Prøvene fra toktene 2020104 og 2020110 er markert med rød ring og vist i detalj i kartutsnittet.* 

| Stasjon     | Område         | Leir          | Silt     | Finstoff | Sand       | Grus     | NGU sediment    |
|-------------|----------------|---------------|----------|----------|------------|----------|-----------------|
|             |                | $< 2 \ \mu m$ | 2- 63 µm | <63µm    | 63-2000 μm | >2000 µm | Klassifikasjon  |
|             |                | [%]           | [%]      | [%]      | [%]        | [%]      |                 |
| R2132MC006A | Frøyabanken    | 2,8           | 33,8     | 36,6     | 63,4       | 0,0      | Siltholdig sand |
| R2139MC008A | Frøyabanken    | 5,6           | 72,3     | 77,9     | 22,1       | 0,0      | Sandholdig silt |
| R2183MC009A | Sulatrekanten  | 8,.2          | 79,9     | 88,1     | 11,9       | 0,0      | Sandholdig silt |
| R2229MC010A | Haltenbanken   | 6,1           | 75,9     | 82,0     | 18,0       | 0,0      | Sandholdig silt |
| R2242MC012A | Trænadjupet    | 8,7           | 79,5     | 88,2     | 11,8       | 0,0      | Sandholdig silt |
| R2270MC013A | Trænabanken    | 6,2           | 66,7     | 72,9     | 27,1       | 0,0      | Sandholdig silt |
| R2276MC014A | Sklinnadjupet  | 9,1           | 81,0     | 90,1     | 9,9        | 0,0      | Silt            |
| R2279BC060  | Sklinnadjupet  | 6,4           | 62,8     | 69,3     | 30,7       | 0,0      | Sandholdig silt |
| R2289MC015A | Sklinnadjupet  | 8,4           | 76,0     | 84,4     | 15,6       | 0,0      | Sandholdig silt |
| R2326GR104  | Norskehavet    | 9,6           | 83,1     | 92,7     | 6,7        | 0,0      | Silt            |
| R2331MC016A | Norskehavet    | 7,7           | 67,4     | 75,1     | 24,9       | 0,0      | Sandholdig silt |
| R2338MC017A | Sklinnad. Vest | 9,7           | 83,7     | 93,4     | 6,6        | 0,0      | Silt            |
| R2354GR125  | Sklinnad. Vest | 9,0           | 76,8     | 85,8     | 14,2       | 0,0      | Sandholdig silt |
| R2359GR129  | Norskeh. ø-v.  | 8,1           | 74,4     | 82,5     | 17,5       | 0,0      | Sandholdig silt |
| R2363MC019A | Norskeh. ø-v   | 7,7           | 75,6     | 83,3     | 16,7       | 0,0      | Sandholdig silt |
| R2365GR141  | Norskeh. ø-v.  | 8,4           | 78,2     | 82,6     | 13,4       | 0,0      | Sandholdig silt |

Tabell 4. Kornstørrelsesfordeling og sedimentklassifikasjon for overflateprøvene (0-1 cm dybde) basert på Coulter-data.

TOC i overflateprøvene er presentert i Figur 5. Prøvene har TOC variererende fra 0,32 (R2132, Frøyabanken) til 0,91 vektprosent (R2331, Norskehavet øst-vest transekt d) (Figur 5). Generelt er det relativt lave TOC-konsentrasjoner på samtlige 16 stasjoner i det kartlagte området, når de rapporterte prøvene sammenliknes med TOC-verdier fra nærliggende stasjoner på skråningen (Figur 5).

Innhold av kalsiumkarbonat varierer fra 7,2 til 22,5 vektprosent (Figur 6). Høyest karbonatinnhold er i R2365 i Norskehavet øst-vest transekt e, mens den laveste andel karbonat er i Sulatrekanten (R2132), som også er den mest grovkornete prøven, bestående av siltholdig sand (Figur 6).

Total svovel (TS) har generelt lave nivåer i samtlige 16 analyserte overflateprøver, varierende fra 0,05 vektprosent (R2132) til 0,19 vektprosent (R2331). De lave TS verdiene er sannsynligvis knyttet til de relativt lave TOC-nivåene i de samme prøvene.



Figur 5. TOC i overflateprøver. Prøvene fra toktene 2020104 og 2020110 er markert med rød ring og vist i detalj i kartutsnittet.



Figur 6. Karbonat i overflateprøver (vektprosent). Prøvene fra toktene 2020104 og 2020110 er markert med rød ring og vist i detalj i kartutsnittet.

#### 5.2.2 Innhold av tungmetaller, arsen, barium, cesium-137 og mikroplast

Det er analysert for tungmetallene bly (Pb), kadmium (Cd), kobber (Cu), krom (Cr), kvikksølv (Hg), nikkel (Ni), sink (Zn) og halvmetallet arsen (As) i overflateprøvene fra de 16 prøvetakingsstasjonene. Tungmetall- og arsenkonsentrasjonene i sedimentprøvene er sammenlignet med Miljødirektoratets klassifikasjonssystem for forurensningsnivåer i sedimenter i kyst- og fjordområder (Molvær m. fl., 1997; SFT, 2007) og sist justert i 2016 (Miljødirektoratet Veileder M-608). Klassifikasjonssystemet er delt inn i følgende tilstandsklasser:

tilstandsklasse I: bakgrunn; tilstandsklasse II: god; tilstandsklasse III: moderat; tilstandsklasse IV: dårlig; tilstandsklasse V: svært dårlig

Barium (Ba) er også inkludert selv om Ba ikke er et toksisk element. Olsgård og Gray (1995) og Rye (1996) har rapportert om utslipp av barytt fra norsk offshorevirksomhet i Nordsjøen. Ba i sedimenter i Skagerrak er rapportert, og de forhøyede verdiene øverst i havbunnen er tolket som tilførsel av barium fra boreslam brukt i Nordsjøen og transportert med havstrømmer til Skagerrak (Sæther m. fl., 1996; Thorsnes og Klungsøyr, 1997; Lepland m. fl., 2000). Dehairs m. fl. (1980) og Nuernberg m. fl. (1997) beskriver andre prosesser for forekomst av Ba i sedimenter; det dannes små baryttkrystaller i mikronisjer i organisk materiale som brytes ned i vannsøylen, spesielt i områder med høy biologisk produktivitet. Kart som viser konsentrasjoner av tungmetallene, halvmetall arsen og barium i overflatesedimentene finnes også i Vedlegg 3. Radioaktivt <sup>137</sup>Cs er rapportert for overflatesedimentene. <sup>137</sup>Cs analyseres sammen med den radioaktive <sup>210</sup>Pb-isotopen, som brukes for datering av sedimentkjerner (avsnitt 5.3.4).

#### Arsen (As)

Prøvene varierer fra 2,7 til 6,4 mg/kg sediment, med lavest verdi i R2132 (Frøyabanken) og høyest i Sklinnadjupet (R2326). As-konsentrasjonen i de 16 prøvene er alle i klasse I, tilsvarende naturlig bakgrunn i Miljødirektoratets klassifisering. Figur 7 viser Askonsentrasjonen i toppsedimentene.

#### Bly (Pb)

Prøvene varierer fra 10,7 til 24,3 mg/kg, med høyeste konsentrasjon på stasjon R2183 (Sulatrekanten) og lavest konsentrasjon i R2132 (Frøyabanken) (Figur 8). Samtlige 16 stasjoner har Pb-konsentrasjoner i tilstandsklasse I, bakgrunn for kyst og fjordsedimenter (tilstandsklasse I: <25 mg/kg) som vist i Figur 8.



Figur 7. As-konsentrasjon i overflateprøver (0-1 cm). Blå punkt angir tilstandsklasse I (<15 mg/kg sediment). Grønne punkt angir tilstandsklasse II (15-18 mg/kg). Gule punkt angir tilstandsklasse III (18 – 71 mg/kg). Oransje punkt angir tilstandsklasse IV (71 – 580 mg/kg). Prøvene fra 2020 er markert med rød ring og vist i detalj i kartutsnittet.

# Kadmium (Cd)

Prøvene har lave kadmiumkonsentrasjoner fra under deteksjonsgrensen på 0,10 mg/kg sediment (7 stasjoner) til 0,18 mg/kg sediment. Alle de 16 prøvene er i tilstandsklasse I - bakgrunn for kyst- og fjordsedimenter (<0,25 mg/kg). Kart med Cd er i Vedlegg 2.

# Kobber (Cu)

Prøvene har Cu-konsentrasjoner varierende fra 4,7 til 15,6 mg/kg med høyest konsentrasjon i R2326 og R2338 (Sklinnadjupet vest). Samtlige 16 prøver er i tilstandsklasse I - bakgrunn for kyst og fjordsedimenter (< 20 mg/kg sediment). Cu-kartet er i Vedlegg 2.

# Krom (Cr)

Prøvene har Cr-konsentrasjoner varierende fra 15,4 til 47,3 mg/kg med høyest konsentrasjon i R2338 (Sklinnadjupet vest). Samtlige 16 overflateprøver har konsentrasjoner i tilstandsklasse I (<60 mg/kg). Cr-konsentrasjon i overflateprøvene er i Vedlegg 2.

# Kvikksølv (Hg)

Hg i overflateprøvene er vist i Figur 9. Prøvene har Hg-konsentrasjoner varierende fra 0,013 til 0,035 mg/kg. Samtlige 16 prøver er i tilstandsklasse I - bakgrunn (<0,050 mg/kg sediment) for fjord og kystsedimenter.



Figur 8. Pb-konsentrasjon i overflateprøver (0-1 cm). Blå punkt angir tilstandsklasse I for kyst- og fjordsedimenter (<25 mg/kg). Grønne punkt angir tilstandsklasse II (25-150 mg/kg). Prøvene fra toktene 2020104 og 2020110 er markert med rød ring og vist i detalj i kartutsnittet.



Figur 9. Hg i overflateprøvene. Blå punkt angir tilstandsklasse I for kyst- og fjordsedimenter (<0,05 mg/kg). Grønne punkt angir tilstandsklasse II (0,05- 0,52 mg/kg). Prøvene fra toktene 2020104 og 2020110 er markert med rød ring og vist i detalj i kartutsnittet.

#### Nikkel (Ni)

Figur 10 viser Ni-konsentrasjon i overflateprøvene. Prøvene har Ni-konsentrasjoner varierende fra 10,6 til 35,9 mg/kg med den høyeste konsentrasjonen i R2338 (Sklinnadjupet vest). Av de 16 prøvene er 10 i tilstandsklasse I - bakgrunn (< 30 mg/kg sediment), mens 6 prøver er i tilstandsklasse II – god (30 – 42 mg/kg sediment). De 6 prøvene i tilstandsklasse II er lokalisert i Sklinnadjupet, Norskehavet øst-vest transekt d, Sklinnadjupet vest og Trænadjupet og slik sett lokalisert sammen geografisk.

# Sink (Zn)

Sink varierer fra 21,9 til 71,7 mg/kg med den høyeste konsentrasjon i R2338 (Sklinnadjupet vest). Samtlige 16 prøver er i tilstandsklasse I (<90 mg/kg). Kart med Zn konsentrasjon i overflatesedimenter finnes i Vedlegg 2.

#### Barium (Ba)

Ba analyseres for å vurdere om eventuelle utslipp fra olje- og gassboringer kan spores i sedimentene, men det er viktig å være klar over at også naturlige kilder kan gi forhøyde verdier. Ba i overflatesedimentene er presentert i Figur 12. Prøvene har konsentrasjoner varierende fra 50 mg/kg sediment (R2132) til 293 mg/kg i R2365 (Norskehavet øst-vest transekt e).



Figur 10. Nikkel i overflateprøver. Blå punkt angir tilstandsklasse I for kyst- og fjordsedimenter. Grønne punkter angir tilstandsklasse II (30-42 mg/kg). Gule punkt angir tilstandsklasse III (42 – 271 mg/kg TS). Prøvene fra toktene 2020104 og 2020110 er markert med rød ring og vist i detalj i kartutsnittet.



Figur 11. Barium i overflatesedimenter. Prøvene fra toktene 2020104 og 2020110 er markert med rød ring og vist i detalj i kartutsnittet.

# Cesium-137 (137Cs)

<sup>137</sup>Cs er et menneskeskapt radioaktivt element. De viktigste kildene er utslippet fra Tsjernobyl (1986) og de atmosfæriske atomprøvesprengningene på Novaja Zembla på 1950- og 1960-tallet. Resultatene fra <sup>137</sup>Cs er presentert på kart i Vedlegg 2. Det er analysert for <sup>137</sup>Cs på 5 stasjoner R2139, R2183, R2242, R2270 og R2338, de samme fem som er datert ved hjelp av <sup>210</sup>Pb. <sup>137</sup>Cs varerierer fra 0 til 9 bequerel/kg sediment tørrvekt. Overflateprøven fra R2242 (Trænadjupet) har høyst <sup>137</sup>Cs konsentrasjon med 9 Bq/kg sediment tørrvekt. Nest høyst konsentrasjon er i R2270 (Trænabanken) med 5 Bq/kg sediment tørrvekt. R2183 fra Sulatrekanten har 4 Bq/kg sediment tørrvekt. R2338 i Sklinnadjupet vest har 3 Bq/kg sediment tørrvekt. Lavest (0 Bq/kg sediment tørrevekt) er i R2139 på Frøyabanken (Figur 12). Sammenliknet med andre resultater så er nivåene i Trænadjupet og Trænabanken sammenlignbare (Heldal m. fl., 2020). Se kapittel 5.3.4 for mer detaljer vedr. <sup>137</sup>Cs resultatene i de 5 daterte sedimentkjernene.

Resultatene fra metallanalysene av overflatesedimentene er oppsummert i Tabell 5, hvor tilstandsklassene for metallene er vist, samt antall prøver innenfor hver av tilstandsklassene i henhold til Miljødirektoratets klassifikasjonssystem for sedimenter (Miljødirektoratet, M-608, 2016) (https://www.miljodirektoratet.no/globalassets/publikasjoner/M608/M608.pdf)

| Tabell 5. Metaller og arsen (16 stasjoner fra tokt 2020104 og 2020110) i henhold til     |
|------------------------------------------------------------------------------------------|
| Miljødirektoratets tilstandsklasser for marine overflatesedimenter. Uthevet skrift viser |
| antall prøver i overflateprøver i hver av klassene I-V.                                  |

| Parametere        | Forurensningsnivåer |             |             |              |              |
|-------------------|---------------------|-------------|-------------|--------------|--------------|
|                   | Ι                   | II          | III         | IV           | V            |
|                   | Bakgrunn            | God         | Moderat     | Dårlig       | Svært dårlig |
|                   |                     |             |             |              |              |
| Arsen (mg/kg)     | <15                 | 15-18       | 18-71       | 71 - 580     | >580         |
| As                | 16                  | 0           | 0           | 0            | 0            |
| Bly (mg/kg)       | <25                 | 25 -150     | 150-1480    | 1480-2000    | >2000        |
| Pb                | 16                  | 0           | 0           | 0            | 0            |
| Kadmium (mg/kg)   | <0,25               | 0,25 – 2,5  | 2,5 –16     | 16 – 157     | >157         |
| Cd                | 16                  | 0           | 0           | 0            | 0            |
| Kobber (mg/kg)    | <20                 | 20-84       | 84          | 84-114       | >114         |
| Cu                | 16                  | 0           | 0           | 0            | 0            |
| Krom (mg/kg)      | <60                 | 60 - 660    | 660 - 6000  | 6000 - 15500 | >15500       |
| Cr                | 16                  | 0           | 0           | 0            | 0            |
| Kvikksølv (mg/kg) | <0,050              | 0,05 - 0,52 | 0,52 - 0,75 | 0,75 - 1,45  | >1,45        |
| Hg                | 16                  | 0           | 0           | 0            | 0            |
| Nikkel (mg/kg)    | <30                 | 30 - 42     | 42 - 271    | 271 - 533    | >533         |
| Ni                | 10                  | 6           | 0           | 0            | 0            |
| Sink (mg/kg)      | <90                 | 90 - 139    | 139 - 750   | 750 - 6690   | >6690        |
| Zn                | 16                  | 0           | 0           | 0            | 0            |



Figur 12. <sup>137</sup>Cs i overflatesedimenter (0-1 cm). Prøvene fra 2020 er markert med rød ring og vist i detalj i kartutsnittet.

#### <u>Mikroplast</u>

Mikroplast i overflatesedimenter fra 11 stasjoner tatt med multicorer er analysert på 2 cm tykke prøveskiver for å ha nok materiale. Resultatene, rapportert som antall mikroplastpartikler pr. kg sediment viser stor variasjon, fra 51 partikler til 2187 partikler/kg sediment (Figur 14). Mer detajlerte beskrivelse av resultatene finnes i mikroplastrapporten fra NGI (Tjønneland 2021, Vedlegg 5). Tidligere analyser og rapportering av resultater finnes i Jensen og Cramer (2017) og Jensen og Bellec (2019).

Det er stor variasjon i antall MP-partikler pr. kg sediment i overflateprøvene, fra 51 partikler/kg sediment (R2242, Trænadjupet) til 2187 partikler pr. kg sediment i R2139 (Frøyabanken). R2139 er stasjonen med høyest antall MP-partikler pr. kg sediment av samtlige prøver analysert i regi av MAREANO så langt (totalt 31 overflateprøver). Tabell 6 viser antall partikler pr. kg sediment for de 11 stasjonene. MP-partikler pr. kg sediment er vist i Figur 13. Det er store forskjeller i antall mellom geografisk nærliggende stasjoner (R2276 med 666 partikler og R2289 med 52 partikler pr. kg sediment). Årsaken til dette er ikke kjent, men kan skyldes lokalt dannet MP fra plast i nærheten av enkelte stasjoner. Mer detaljert gjennomgang av metoder er gitt i mikroplastrapporten fra NGI i Vedlegg 5.

| Stasjon    | Område                          | Antall MP-partikler/kg sediment |
|------------|---------------------------------|---------------------------------|
| R2131MC006 | Frøyabanken                     | 194                             |
| R2139MC008 | Frøyabanken                     | 2187                            |
| R2183MC009 | Sulatrekanten                   | 1369                            |
| R2229MC010 | Haltenbanken                    | 692                             |
| R2242MC012 | Trænadjupet                     | 51                              |
| R2270MC013 | Trænabanken                     | 867                             |
| R2276MC014 | Sklinnadjupet                   | 666                             |
| R2289MC015 | Sklinnadjupet                   | 52                              |
| R2331MC016 | Norskehavet øst-vest transekt d | 94                              |
| R2338MC017 | Sklinnadjupet vest              | 301                             |
| R2363MC019 | Norskehavet øst-vest transekt e | 992                             |

Tabell 6. Antall MP-partikler pr. kg sediment i overflateprøver (0-2 cm).



Figur 13. Mikroplast i overflateprøver (0-2 cm). Prøver fra toktene 2020104 og 2020110 er markert med gul ring og vist i detalj i kartutsnittet.

#### 5.3 Analyser av sedimentkjerner

#### 5.3.1 Visuell bedømmelse og XRI-analyser

Sedimentkjernene beskrives om bord samtidig som de deles opp i 1 cm tykke skiver. I tillegg tas hele sedimentkjerner med til laboratoriet på NGU, hvor de analyseres med røntgen (XRI). Dette gjøres for å få en kvalitativ vurdering for valg av stasjoner for dateringsanalyse og geokjemisk analyse av hele sedimentkjerner. XRI-utstyret er et Geotek-instrument med tilhørende programvare, som med røntgenstråler gjør det mulig å se gjennom sedimentkjernene og på den måten få et inntrykk av om det finnes sedimentære strukturer, bioturbasjon, skallfragmenter eller større sedimentære partikler som grus. XRI-bildene er presentert i Vedlegg 4. Bilder fra røntgenanalyseneer presentert for kjerner fra stasjonene der det er gjennomført dateringsanalyser (kapittel 5.3.4) og metall, TOC, karbonat og kornstørrelsesanalyser av sedimentkjerner (kapittel 5.4). Her presenteres de 8 stasjonene i figurene 14 – 21. Det er lagt til noen observasjoner fra sedimentkjernene. Dette gjelder stasjonene R2139 (Frøyabanken), R2183 (Sulatrekanten), R2229 (Haltenbanken), R2242 (Trænadjupet), R2270 (Trænabanken), R2276 (Sklinnadjupet), R2338 (Sklinnadjupet vest) og R2363 (Norskehavet øst-vest transekt e).

Sedimentene i samtlige 8 kjerner er fullstendig bioturbert. Graveganger, med orientering i mange forskjellige retninger, kommer fram som lysere sedimenter med lavere tetthet i en matriks med mørkere sedimenter med høyere tetthet. I samtlige kjerner er det mulig å se mmbrede til cm-brede graveganger (bioturbasjon), som kan være flere centimeter lange, og i ett tilfelle er det oppservert en 21 cm lang, loddrett gravegang (R2270, Trænabanken) fra ca. 11 cm under toppen (Figur 18). Denne kjernen er <sup>210</sup>Pb-datert, og det er analysert prøver for innhold av mikroplast i flere nivåer (kapittel 5.5). Bioturasjon fører til at sedimenter fra forskjellige dyp blandes, for eks. i R2276 og R2338 (Figur 19 og 20). Markante fordypinger i toppen av sedimentkjernene kan skyldes lekkasje av vann fra kjernen etter forsegling, eller fysisk forstyrrelse under prøvetaking.



Figur 14. XRI-bilde av sedimentkjerne R2139MC008 fra Frøyabanken. Sedimentkjernen er 28 cm lang (målestokk med 1 cm enhet til venstre).



Figur 15. XRI-bilde av sedimentkjerne R2183MC008 fra Sulatrekanten. Bioturbasjon ses tydelig i den øvre delen av sedimentkjernen. Sedimentkjernen er 35 cm lang (målestokk med 1 cm enhet til venstre).



Figur 16. XRI-bilde av sedimentkjerne R2229MC010, Haltenbanken. Sedimentkjernen er 32 cm lang (målestokk med 1 cm enhet til venstre).

# R2242C012



Figur 17. XRI-bilde av sedimentkjerne R2242MC012, Trænadjupet. Sedimentkjernen er 32 cm lang (målestokk med 1 cm enhet til venstre).



Figur 18. XRI-bilde av sedimentkjerne R2270MC013, Trænabanken. Sedimentkjernen er ca. 36 cm lang (målestokk med 1 cm enhet til venstre).


Figur 19. XRI-bilde av sedimentkjerne R2276MC014, Sklinnadjupet. Sedimentkjernen er ca. 36 cm lang (målestokk med 1 cm enhet til venstre).

# R2338MC017



Figur 20. XRI-bilde av sedimentkjerne R2338MC017, Sklinnadjupet vest. Sedimentkjernen er ca. 42 cm lang (målestokk med 1 cm enhet til venstre).

# R2363MC019



Figur 21. XRI-bilde av sedimentkjerne R2363MC019 Norskehavet øst-vest transekt e. Sedimentkjernen er ca. 35 cm lang (målestokk med 1 cm enhet til venstre).

#### 5.3.2 Kornstørrelsesfordeling i sedimentkjerner

De 8 sedimentkjernene fra 2139 (Frøyabanken), R2183 (Sulatrekanten), R2229 (Haltenbanken), R2242 (Trænadjupet), R2270 (Trænabanken), R2276 (Sklinnabanken), R2338 (Sklinnadjupet vest), R2363 (Norskehavet øst-vest transekt e) er analysert for kornstørrelsesfordeling (Figur 22). Det er overveiende slamholdige sedimenter i samtlige sedimentkjerner, med varierende sandinnhold. Høyest sandinnhold i samtlige 8 sedimentkjerner er observert i R2139 fra Frøyabanken (ca. 20 % sand i hele sedimentkjernen) og R2229 (Haltenbanken), med gradvis avtakende andel sand, fra ca. 30 % sand nederst til mindre enn 20 % sand øverst (Figur 22). Sedimentkjernen fra Trænadjupet, R2242 har stabilt slaminnhold på ca. 90 %. R2270 (Trænabanken) har økende andel sand mot toppen av kjernen – slaminnholdet går fra over 90 % nederst til mindre enn 80 % øverst. Dette kan tyde på sterkere strøm på stasjon R2270 (Trænabanken – 293 m dyp), som ligger grunnere enn R2242 (Trænadjupet – 400 m dyp). R2276 (400 m dyp) fra Sklinnadjupet har konstant kornstørrelsesfordeling, med ca. 90 % slam. Stasjonen R2338 fra Sklinnadjupet vest har høyt slaminnhold på mer enn 90 % gjennom hele kjernen, men med en svak nedgang og tilsvarende økning i sand mot toppen av kjernen. R2363 fra Norskehavet øst-vest transekt e, vest for Sklinnadjupet, har slaminnhold på litt over 82-86 %, sandinnhold på 14-18 %. Sammenliknet med den nærmeste stasjonen R2338 fra Sklinnadjupet vest, så har R2363 litt grovere sedimentsammensetning. R2363 er på 379 m dyp, mens R2338 er på 449 m dyp.



Figur 22. Kornfordelingskurver for 8 sedimentkjerner inndelt i leir, silt og sand (fraksjonene <2  $\mu$ m, 2-63  $\mu$ m og 63-2000  $\mu$ m). Dybdeskalaen er i cm. Leir og silt er markert med svarte symboler, mens sand er markert med blå symbol og med en annen skala (0-30 %) enn leir og silt (0-100 %).

#### 5.3.3 Total organisk karbon, karbonat og svovel

Innholdet av total organisk karbon (TOC), total svovel (TS) og karbonat (CaCO<sub>3</sub>) varierer i de 8 sedimentkjernene R2139 (Frøyabanken), R2183 (Sulatrekanten), R2229 (Haltenbanken), R2242 (Trænadjupet), R2270 (Trænabanken), R2276 (Sklinnadjupet), R2338 (Sklinnadjupet vest) og R2363 (Norskehavet øst-vest transekt e) (Figur 23). Det er mindre enn 1 vektprosent TOC i samtlige sedimentkjerner, med lavest TOC i R2139, R2183 og R2229.

Karbonatinnholdet er 10-20 vektprosent, med laveste verdier i R2139, R2183 og R2229; de øvrige stasjonene har ca. 20 vektprosent og relativt stabile konsentrasjoner gjennom kjernene. Unntak er R2270 fra Trænabanken, hvor karbonatinnholdet øker mot toppen av kjernen, fra 5,4 nederst til 16 vektprosent øverst, samt R2363 fra Norskehavet øst-vest transekt e som øker fra 7,4 nederst til 22 vektprosent øverst. Høyere andel karbonat i 5 av sedimentkjenene kan sannsynligvis knyttes til høyere innhold av kalkskall fra planktoniske organismer.

Svovelinnholdet er generelt litt høyere i sedimentkjernene R2242, R2270, R2276, R2338 og R2363 (0,1 - 0,2 vektprosent) enn på de 3 sørligste stasjonene R2139, R2183 og R2229 (TS-innhold <0,1 vektprosent for de fleste prøvene). De lavere TS-verdiene i R2139, R2183 og R2229 kan sannsynligvis knyttes til lave TOC-verdiene i de samme sedimentkjernene (Figur 23). Bakteriell nedbryting av organisk material fører til dannelse av sulfider i sedimentene gjennom sulfatreduserende bakteriell nedbryting av organisk materiale. Mengde organisk materiale og dermed TOC kan brukes som indikator for hvor mye svovel som bindes til sedimentene.



Figur 23. Variasjon i TOC, karbonat (CaCO<sub>3</sub>) og svovel (TS) i 8 sedimentkjerner. Dybdeskalaen til venstre er i centimeter. Vektprosentskala for de 8 sedimentkjernene er logaritmisk.

#### 5.3.4 <u>Blyisotop 210 (<sup>210</sup>Pb)</u> -datering, <sup>137</sup>Cs-målinger og akkumulasjonsrater

Bestemmelse av akkumulasjonsrater i sedimentkjernene er viktig for å vurdere om det skjer en tilførsel av sedimenter, og hvorvidt denne tilførselen er stabil eller preget av perioder med manglende avsetning eller erosjon. Daterte sedimentkjerner gir også informasjon om mengden tilførsel av forurensende stoffer i moderne tid. Alderen på de øverste sedimentlagene og akkumulasjonsrater kan bestemmes ved måling av <sup>210</sup>Pb-aktiviteten i sedimentene. Isotopen <sup>210</sup>Pb har en halveringstid på 22,3 år. Bakgrunnsverdien for <sup>210</sup>Pb bestemmes ut fra mengden av bakgrunnsstråling <sup>210</sup>Pb ("supported" <sup>210</sup>Pb), som er uavhengig av sedimentasjon. Bestemmelsen av <sup>210</sup>Pb-bakgrunnsstråling skjer fra de dypere sjiktene i sedimentet, hvor konsentrasjonen er konstant fordi all <sup>210</sup>Pb ("unsupported" <sup>210</sup>Pb) fra atmosfærisk nedfall er nedbrutt. I tillegg til <sup>210</sup>Pb-datering, er cesiumisotoper (<sup>137</sup>Cs) målt i alle kjernene for å identifisere begynnelsen av atomprøvesprengninger i 1950- og 1960 årene. I moderne tid er disse sprengningene den største kilden til radioaktiv forurensning av miljøet og det største utslaget er i 1963. Økte konsentrasjoner av <sup>137</sup>Cs i marine sedimenter kan ikke bare indikere begynnelsen av atomprøvesprengninger, men også radioaktive ulykker i Tsjernobyl (Ukraina) i 1986, og Fukushima (Japan) i 2011.

Datering og bestemmelse av akkumulasjonsrater ble gjennomført på 5 sedimentkjerner; R2139 (Frøyabanken), R2189 (Sulatrekanten), R2242 (Trænadjupet), R2270(Trænabanken) og R2338 (Sklinnadjupet vest). Analysene er gjennomført på Gamma Dating Center (GDC), Universitet i København. <sup>210</sup>Pb- og <sup>137</sup>Cs-analyserapporten inkludert analytiske metoder, og usikkerheter er presentert i Vedlegg 4 inkludert data og GDC sin tolkning av data for hver av de 5 analyserte sedimentkjernene.

Sedimentakkumulasjonsrater i denne rapporten baseres på <sup>210</sup>Pb- og <sup>137</sup>Cs-analyseresultater.

#### R2139MC002, Frøyabanken.

R2139 fra Frøyabanken har middels høy <sup>210</sup>Pb-aktivitet (Figur 24) med en klar tendens til eksponentielt lavere verdier i de øverste 14 cm. Alder versus dyp i Figur 25 er tolket ned til 13-14 cm tilsvarende 1899 (Vedlegg 4). Basert på alder og dyp i sedimentene er den gjennomsnittlige sedimentasjonsraten ca. 1,15 millimeter pr. år (Figur 22). <sup>137</sup>Cs-innholdet er ikke målbart i denne sedimentkjerne (Figur 24). Dette gjør det umulig å bruke <sup>137</sup>Cs for dateringsformål, eksempelvis Tsjernobyl utslippet 1986. I stedet er <sup>241</sup>Am målt i lave konsentrasjoner i enkelte intervaller.



Figur 24. Tetthet, <sup>210</sup>Pb, <sup>137</sup>Cs og <sup>214</sup>Am (rødt) aktivitetsmålinger i R2139, Frøyabanken.



#### R2183MC009, Sulatrekanten

R2183 har høy <sup>210</sup>Pb-aktivitet (Figur 26) med en tendens til eksponentielt lavere verdier med dybden i de øverste 10 cm, noe som indikerer sedimentmiksing og bioturbasjon. Alder versus dyp i Figur 27 er tolket ned til 9-10 cm tilsvarende 1887. Basert på alder og dyp i sedimentene er den gjennomsnittlige sedimentasjonsraten på ca. 1,1 millimeter pr. år for hele denne perioden, mens den øvre delen fra 0 - 10 cm har en høyere sedimentasjonsrate på ca. 1,5 mm. <sup>137</sup>Cs-toppen ved 4–5 cm (Figur 23) tilsvarer sannsynligvis 1986 (Tsjernobyl-utslippet). <sup>137</sup>Cs-dataene gir en sedimentasjonsrate på ca. 1,5 mm pr. år. Bioturbasjon bidrar til blanding av sedimentene, hvilket synes i <sup>137</sup>Cs-kurven (Figur 26).



Figur 26. Tetthet, <sup>210</sup>Pb- og <sup>137</sup>Cs-aktivitetsmålinger i R2183MC009, Sulatrekanten.



Figur 27. Alder versus dyp i sedimentene i R2183MC009, Sulatrekanten.

#### R2242MC012, Trænadjupet

R2242 har høy <sup>210</sup>Pb-aktivitet og en regelmessig reduksjon med dyp fra toppen av sedimentkjernen. Pålitelige <sup>210</sup>Pb-målinger finnes i intervallet 0 – 13 cm under toppen (Figur 28). Dateringen gir en alder på 1925 i prøven 12 – 13 cm fra toppen (Figur 29). Det gir en sedimentasjonsrate på 1,4 mm/år. <sup>137</sup>Cs-kurven i Figur 28 viser en tydelig maksimal konsentrasjon på 46 Bq/kg sediment tørrvekt i prøven ved 4-5 cm. Denne toppen tilsvarer sannsynligvis Tsjernobylutslippet 1986. Dette gir en sedimentasjonsrate på 1,5 mm/år i de øverste centimeterne i kjernen. Det er dermed relativ godt samsvar mellom <sup>210</sup>Pb- og <sup>137</sup>Cs-dateringsanalysene.



Figur 28. Tetthet, <sup>210</sup>Pb- og <sup>137</sup>Cs-aktivitetsmålinger i R2242MC012, Trænadjupet.



Figur 29. Alder versus dyp i sedimentene i R2242MC012, Trænadjupet.

#### R2270MC013, Trænabanken.

Denne sedimentkjernen viser pålitelige <sup>210</sup>Pb-analyseresultater i intervallet 0-8 cm (Figur 30). Den eksponentielt avtakende <sup>210</sup>Pb-kurven gir en sedimentasjons rate på ca. 0,8 mm/år i dette intervallet. <sup>137</sup>Cs-aktivitetskurven viser at det er maksimalt nivå i prøven 1–2 cm på 9 Bq/kg sediment tørrvekt. Bioturbasjon har sannsynligvis ført til at <sup>137</sup>Cs er blandet inn i sedimenter i de øverste 3 cm i sedimentkjernen. Alder versus dyp basert på <sup>210</sup>Pb-analysedataene er vist i Figur 31. Sammenliknet med R2242, Trænadjupet, er sedimentasjonsraten i R2270 betydelig lavere.



Figur 30. Tetthet, <sup>210</sup>Pb- og <sup>137</sup>Cs-aktivitetsmålinger i R2270MC013, Trænabanken.



Figur 31. Alder versus dyp i sedimentene i R2270MC013, Trænabanken.

#### R2338MC017, Sklinnadjupet vest

Denne sedimentkjerne har unsupported <sup>210</sup>Pb-dateringsdata som rekker 19 cm ned i kjernen (Figur 30). Det er generelt avtakende <sup>210</sup>Pb-nivåer ned gjennom sedimentkjernen, men med noe variasjon (Figur 32). <sup>137</sup>Cs viser en maksimal verdi på 7 Bq/kg sediment tørrvekt i prøven ved 10 – 11 cm, som kan svare til 1986. Alternativt kan <sup>137</sup>Cs ved 8-9 cm tilsvare 1986, med en oppblanding av <sup>137</sup>Cs i dypere sjikt forårsaktet av bioturbasjon. Alder versus dyp i sedimentene er vist i Figur 33, basert på <sup>210</sup>Pb-analysene. Her er nivået for 1986 ved 9-10 cm. Den liniære sedimentasjonsrate er satt til 2 mm/år i de øverste 19 cm basert på <sup>210</sup>Pb-dataene.



Figur 32. Tetthet, <sup>210</sup>Pb- og <sup>137</sup>Cs-aktivitetsmålinger i R2338MC017, Sklinnabanken vest.



Figur 33. Alder versus dyp i sedimentene i R2338MC017, Sklinnabanken vest.

Oppsummert viser dateringsanalysene fra de 5 sedimentkjernene R2139, R2183, R2242, R2270 og R2338 påvirkning av bioturbasjon og dermed en viss utvisking med unntak av R2242, som har en tydelig <sup>137</sup>Cs-profil og en relativ sikker datering (1986) i nivået 4-5 cm fra toppen av sedimentkjernen.

Sedimentasjonsrater og vurdering av dateringenes kvalitet basert på <sup>210</sup>Pb- og <sup>137</sup>Csdateringsanalysene er oppsummert i Tabell 7.

## Tabell 7. Daterte sedimentkjerner fra MAREANO-tokt 2020104 og 2020110. LSR: Lineær sedimentasjonsrate for intervaller karakterisert som pålitelig basert på <sup>210</sup>Pbaktivitetskurver. Dateringskvalitet karakteriseres av aldersmodeller som viser en tydelig eksponsensiell nedgang av <sup>210</sup>Pb-aktivitet og langsom utflating av <sup>137</sup>Cs-konsentrasjon.

| Stasjon    | Område             | LSR<br>(mm/år) | Dateringens kvalitet |
|------------|--------------------|----------------|----------------------|
| R2139MC008 | Frøyabanken        | 1,15           | Middels              |
| R2183MC009 | Sulatrekanten      | 1,5            | Middels              |
| R2242MC012 | Trænadjupet        | 1,4            | God                  |
| R2270MC013 | Trænabanken        | 0,8            | Middels              |
| R2338MC017 | Sklinnadjupet vest | 2,0            | Middels              |

# 5.4 Tungmetaller og barium i fem <sup>210</sup>Pb-daterte sedimentkjerner og 3 udaterte sedimentkjerner

For å vurdere dagens forurensningstilstand sammenlignet med tidligere tider er de fem <sup>210</sup>Pbdaterte sedimentkjernene R2139, R2183, R2242, R2270 og R2338, samt de tre udaterte sedimentkjernene R2229, R2276 og R2363 analysert for innhold av tungmetaller, arsen og barium. Analyseresultatene finnes i Vedlegg 1.

#### R2139, Frøyabanken

R2139MC008 er lokalisert på Frøyabanken (Figur 1). Syv prøver er analysert i intervallet 0 – 29 cm. Minimum, gjennomsnitt, median og maksimum konsentrasjoner for en rekke tungmetaller og barium er vist i Tabell 8. Cr, Cu, Ni og Zn har svakt minkende konsentrasjoner mot toppen av kjernen (Figur 34) og anses for å være på naturlig bakgrunnsnivå. Den minkende konsentrasjon kan muligvis knyttes til tilsvarende svak reduksjon i andel slam (<63 µm). Ba har en enkelt høy verdi på 135 mg/kg sediment i intervallet 2-3 cm tilsvarende ca. 1990 (basert på resultatene av dateringsanalysene og da primært <sup>210</sup>Pb-dataene (avsnitt 5.3)). Ba-konsentrasjonene over og rett under 2-3 cm er begge lavere enn 100 mg/kg sediment. Dypere i sedimentkjernen er Ba-konsentrasjonen 50 - 60 mg/kg sediment, trolig tilsvarende naturlige bakgrunnsnivå. Hg øker fra et naturlig bakgrunnsnivå på 0.012 – 0.015 mg/kg sediment nederst (28-29 cm og 24-25 cm) til maksimalt 0,023 mg/kg sediment ved 2-3 cm. Økning av Hg skjer mellom 14-15 cm og 9-10 cm, dvs. rundt år 1900. Pb øker fra et bakgrunnsnivå på mindre enn 10 mg/kg sediment i de nederste 3 prøvene (14-15 cm – 28-29 cm) til høyeste konsentrasjon på 20,6 mg/kg sediment ved 2-3 for så å reduseres til 16 mg/kg sediment øverst. Dette indikerer antropogen tilførsel av Pb i den øvre delen. As varierer mellom 2 mg/kg sediment og maksimalt 5 mg/kg sediment ved 4-5 (se avsnitt 5.5 for nærmere diskusjon). Cd har lave konsentrasjoner på maksimalt 0,12 mg/kg sediment dypt i sedimentkjernen. Flere av prøvene hadde ikke målbare Cd-verdier (deteksjonsgrense: 0,1 mg/kg sediment). Analyseresultatene viser at Hg og Pb øker svakt fra rundt år 1900, fra lave bakgrunnsnivåer (Figur 34).

Tabell 8. Sedimentkjerne R2139MC008 (0-29 cm): minimums-, gjennomsnitts-, medianog maksimumsverdier for tungmetaller, arsen og barium (mg/kg). i.d.: ikke data

| Antall |      | As    | Ba    | Cd    | Cr    | Cu    | Hg    | Ni    | Pb    | Zn    |
|--------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| prøver |      | mg/kg |
| N = 7  | Min. | 2,0   | 53,1  | <0,1  | 26,6  | 9,4   | 0,012 | 19,3  | 8,2   | 38,2  |
|        | Gns. | 3,6   | 78,1  | i.d.  | 28,1  | 10,0  | 0,017 | 20,6  | 14,2  | 42,4  |
|        | Med. | 3,5   | 62,0  | i.d.  | 28,0  | 9,7   | 0,019 | 20,0  | 16,0  | 41,1  |
|        | Max. | 5,5   | 135,0 | 0,120 | 30,3  | 11,4  | 0,023 | 23,4  | 20,6  | 48,1  |



Figur 34. Tungmetall, arsen, barium, TOC, karbonat og finstoff i den <sup>210</sup>Pb-daterte sedimentkjernen R2139MC008 (0-29 cm). X-skalaen (konsentrasjoner) er logaritmisk. Cd: halv deteksjonsgrense (0,05 mg/kg sediment) brukt for aktuelle prøver med analyseresultat under deteksjonsgrense på 0,1 mg/kg sediment. Årstallene til høyre er basert på <sup>210</sup>Pbdateringsanalysene presentert i avsnitt 5.3.4.

#### R2183MC009, Sulatrekanten

R2183 er lokalisert i Sulatrekanten (Figur 1). Den <sup>210</sup>Pb-daterte sedimentkjernen er analysert i 0-35 cm med 7 prøver (1 cm prøveskiver) fra dette intervallet. Minimum, gjennomsnitt, median og maksimum konsentrasjoner for en rekke tungmetaller barium er vist i Tabell 10. Cr. Ni og Zn har relativt stabile konsentrasjoner gjennom hele kjernen med svakt økende konsentrasjoner mot toppen (Figur 35). Ba øker i konsentrasjon mot toppen av sedimentkjernen fra et nivå på 68 – 87 mg/kg sediment til mer enn 100 mg/kg sediment i de øverste 3 prøvene (0-5 cm). Denne økningen kan dateres til ca. 1985 og kan muligvis knyttes til ekstra tilførsel og således ikke bare naturlige bidrag. Hg øker gradvis fra en naturlig bakgrunnskonsentrasjon på 0,013 mg/kg sediment dypest i 34-35 cm til maksimalt 0.031 mg/kg sediment ved 0-1 cm. Den mest markante økning finner sted mellom 9-10 cm og 14-15 cm, og da tidsmessig mellom 1915 og 1950 (Figur 35). Pb øker gradvis fra et bakgrunnsnivå på 10 mg/kg i den nederste prøven (34-35 cm) til maksimalt 24-25 mg/kg sediment i de øverste 3 prøvene (Figur 35). Det er ikke mulig å si helt presist i hvilket intervall i kjernen økningen finner sted, men for Pb synes den mest markante øknigen å finne sted mellom 14-15 cm og 9-10 cm. Cd har generelt lav konsentrasjon gjennom hele kjernen varierende fra mindre enn deteksjonsgrensen på 0,10 mg/kg sediment til maksimalt 0,19 mg/kg sediment ved 14-15 cm (Tabell 9, Figur 35). As har lave konsentrasjoner varierende fra 2,1 mg/kg sediment ved 14-15 cm og høyst 8,5 mg/kg sediment ved 2-3 cm. Ser man Cd og As sammen så øker Cd der As minker og omvendt. Det betyr at det sannsynligvis er de samme prosessene i sedimentene som dels fører til mobilisering og utfelling av Cd og As.

Tabell 9. Sedimentkjerne R2183MC009 (0-35 cm): minimums-, gjennomsnitts-, medianog maksimumsverdier for tungmetaller, arsen og barium (mg/kg). i.d.: ikke data.

| Antall |      | As    | Ba    | Cd    | Cr    | Cu    | Hg    | Ni    | Pb    | Zn    |
|--------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| prøver |      | mg/kg |
| N = 7  | Min. | 2,1   | 67,7  | <0,1  | 37,7  | 12,1  | 0,013 | 25,8  | 10,0  | 51,6  |
|        | Gns. | 4,2   | 88,8  | i.d.  | 39,8  | 13,9  | 0,022 | 27,7  | 19,0  | 58,4  |
|        | Med. | 2,9   | 83,2  | i.d.  | 39,6  | 14,1  | 0,024 | 27,4  | 21,7  | 59,7  |
|        | Max. | 8,5   | 113,0 | 0,19  | 42,1  | 15,4  | 0,031 | 29,6  | 25,3  | 64,7  |



Figur 35. Tungmetall, arsen, barium, TOC, karbonat og finstoff i den <sup>210</sup>Pb daterte sedimentkjerne R2183MC004 fra Sulatrekanten (0-35 cm). X-skalaen (konsentrasjon) er logaritmisk. Cd: halv deteksjonsgrense (0,05 mg/kg sediment) brukt for aktuelle prøver med analyseresultat under deteksjonsgrense på 0.1 mg/kg sediment. Årstallene til høyre er basert på <sup>210</sup>Pb-dateringsanalysene presentert i avsnitt 5.3.4.

#### R2229MC010, Haltenbanken

R2229 er analysert i intervallet 0 - 31 cm med 7 prøver. Minimum, gjennomsnitt, median og maksimum konsentrasjoner for en rekke tungmetaller, arsen og barium er vist i Tabell 10. Metallene Cr, Cu, Hg, Ni, Pb og Zn, samt Ba har relativt stabile konsentrasjoner gjennom sedimentkjernen (Figur 36), noe som også er reflektert i minimum-, gjennomsnitt-, medianog maksimumverdiene (Tabell 10). Figur 36 viser at Hg øker fra en bakgrunnskonsentrasjon på 0,008 mg/kg sediment nederst (30-31 cm) til maksimalt 0,02 mg/kg sediment ved 0-1 cm. Hg er relativ stabil i de øverste 3 prøvene fra 0-1 cm til 4-5 cm (Tabell 10). Pb har relativt stabil konsentrasjon i hele sedimentkjernen varierende fra 4,7 – 8,6 mg/kg sediment i de 3 nederste prøvene 30-31 cm – 14-15 cm til en maksimal konsentrasjon på 15,9 mg/kg sediment ved 0-1 cm. Cd har konsentrasjoner fra <0.1 mg til 0,19 mg/kg sediment, generelt avtakende fra bunn til topp i kjernen, og laveste verdi i prøven ved 2-3 cm. As-konsentrasjon i 2-3 cm med 4,7 mg/kg sediment. Prøven 14-15 cm er under deteksjonsgrensen på 2,0 mg/kg sediment, vist med halve deteksjonsgrense på 1,0 mg/kg sediment i Figur 36.

Tabell 10. Sedimentkjerne R2229MC010 (0-31 cm): minimums-, gjennomsnitts-, median- og maksimumsverdier for tungmetaller, arsen og barium. i.d.: ikke data.

| Antall |      | As    | Ba    | Cd    | Cr    | Cu    | Ησ    | Ni    | Pb    | Zn    |
|--------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| prøver |      | mg/kg |
| N = 7  | Min. | <2,0  | 35,4  | <0,1  | 22,1  | 5,6   | 0,008 | 14,6  | 4,7   | 29,2  |
|        | Gns. | 3,0   | 63,3  | i.d.  | 28,9  | 8,3   | 0,013 | 19,4  | 19,4  | 39,9  |
|        | Med. | 2,6   | 60,9  | i.d.  | 30,7  | 8,9   | 0,015 | 20,8  | 20,8  | 42,6  |
|        | Max. | 4.7   | 90,5  | 0,19  | 31,4  | 9,8   | 0,020 | 21,6  | 21,6  | 45,0  |



Figur 36. Tungmetall, arsen, barium, TOC, karbonat og finstoff i sedimentkjerne R2229MC005 (0 - 31 cm), Haltenbanken. X-skalaen (konsentrasjon) er logaritmisk. Cd: halv deteksjonsgrense (0.05 mg/kg sediment) brukt for aktuelle prøver med analyseresultat under deteksjonsgrense på 0.1 mg/kg sediment.

#### R2242MC012, Trænadjupet

R2242 fra Trænadjupet er analysert i intervallet 0 - 39 cm med 7 prøver. Minimum, gjennomsnitt, median og maksimum konsentrasjoner for en rekke tungmetaller, arsen og barium er vist i Tabell 11. Metallene Cr, Cu, Ni, Pb og Zn har relativt stabile konsentrasjoner gjennom sedimentkjernen (Figur 37), noe som også er reflektert i minimum-, gjennomsnitt-, median- og maksimumverdiene (Tabell 11). Ba øker litt mot toppen av sedimentkjernen fra en konsentrasjon på 87 – 100 mg kg sediment i de 4 prøvene fra 9-10 cm til 38-39 cm, til 113 – 122 mg/kg sediment i de øverste 3 prøvene i intervallet 0-5 cm. Denne økningen skjer fra rundt 1985 til 2020, og kan muligvis knyttes til ekstra tilførsel utover naturlig bidrag. Hg øker fra et bakgrunnsnivå på 14 – 17 mg/kg sediment i de nederste 3 prøvene i intervallet 14-15 cm til 38-39 cm, til 23 – 26 mg/kg sediment i de 4 øverste prøvene i intervallet 0-1 til 9-10 cm. Økning i Hg konsentrasjon skjer i intervallet 10 - 15 cm, som kan dateres til en gang mellom 1910 og 1950 (Figur 37). Pb har en stabil bakgrunnkonsentrasjon i hele sedimentkjernen varierende fra 16 mg/kg sediment nederst ved 34-35 cm til en maksimal konsentrasjon på 18,6 mg/sediment ved 4-5 cm, og så svakt avtakende øverst på 15,6 mg/kg sediment. Cd har konsentrasjoner fra 0.13 mg til 0.35 mg/kg sediment, generelt avtakende fra bunn til topp i kjernen, og laveste verdi i prøven ved 2-3 cm. As har et bakgrunnsnivå på 2-3 mg/kg sediment i de 4 prøvene fra 34-35 cm til 9-10 cm, og øker til 5-6 mg/kg sediment i de øverste 3 prøvene i intervallet fra 0-1 cm til 4-5 cm.

| Tabell 11. Sedimentkjerne R2242MC012 (0-39 cm): minimums-, gjennomsnitts-, |
|----------------------------------------------------------------------------|
| median- og maksimumsverdier for tungmetaller, arsen og barium.             |

| Antall |      | As    | Ba    | Cd    | Cr    | Cu    | Hg    | Ni    | Pb    | Zn    |
|--------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| prøver |      | mg/kg |
| N = 7  | Min. | 2,4   | 87,4  | 0,130 | 42,7  | 14,4  | 0,014 | 33,5  | 11,8  | 65,5  |
|        | Gns. | 4,0   | 106,6 | 0,194 | 46,1  | 15,2  | 0,021 | 36,7  | 18,1  | 69,6  |
|        | Med. | 3,0   | 102,0 | 0,180 | 46,4  | 15,1  | 0,023 | 37,2  | 21,3  | 70,3  |
|        | Max. | 6,0   | 122,0 | 0,300 | 49,3  | 15,9  | 0,026 | 40,7  | 23,9  | 72,2  |



Figur 37. Tungmetall, arsen, barium, TOC, karbonat og finstoff i sedimentkjerne R2242MC012 (0 - 39 cm), Trænadjupet. X-skalaen (konsentrasjon) er logaritmisk. Årstallene til høyre er basert på <sup>210</sup>Pb-dateringsanalysene presentert i avsnitt 5.3.4.

#### R2270MC013, Trænabanken

R2270 er lokalisert på Trænabanken (Figur 1). Den 33 cm lange sedimentkjernen er datert med <sup>210</sup>Pb (Avsnitt 5.3.4). Resultatene av metallanalysene i sedimentkjernen inkludert årstall fra dateringsanalysen er vist i Figur 38. Det er relativ konstant andel finstoff på <80 % i de øverste 5 prøvene (0-1 cm til 14-15 cm) og gradvis økende TOC mot toppen. Sammenliknet med andre analyserte kjerner så har R2270 mindre andel finstoff og økt andel sand (avsnitt 5.3.2). R2270 kan derfor ha vært utsatt for sterkere havstrøm enn andre stasjoner med høyere andel av slam og mindre andel sand, som f.eks. R2242. Metallene Cr, Cu, Cr, Ni og Zn har relativt konstante nivåer (Figur 38, Tabell 12), med svakt minkende konsentrasjoner øverst, samsvarende med minkende andel finstoff mot toppen av kjernen. Det tyder på at disse elementene er knyttet til sedimentene og har naturlig geologiske opprinnelse. Ba har relativt stabil konsentrasjon i hele sedimentkjernen. Hg har relativt stabile konsentrasjon varierende fra 0,015 til 0,021 mg/kg sediment, og med en svak økning mot toppen. Pb varierer fra 12,6 mg til 17,7 mg/kg sediment med høyst konsentrasjon ved 2-3 cm. Den svake økning av Pb mot toppen er sammenfallende med en tilsvarende økning i TOC. Det er derfor ikke mulig å si at det er skjedd ekstra tilførsel av Pb til det marine miljøet, men hellere at høyere konsentrasjon av organisk karbon kan ha ført til økt binding av Pb til sedimentert organisk karbon. For Hg sitt vedkommende er det en økning helt mot toppen av sedimentkjernen, noe som tyder på at det fremdeles tilføres langtransportert Hg i helt moderne tid. As har høyst konsentrasjon i den dypeste prøven ved 32-33 cm med 9,5 mg/kg sediment, og ellers svakt avtakende konsentrasjon mot toppen, med 4,6 mg/kg sediment øverst. Cd har høyst konsentrasjon ved 9-10 cm med 0,42 mg/kg sediment, hvilket er betydelig høyere konsentrasjon enn de øvrige 6 analyserte prøvene fra kjernen. Markante skift i konsentrasjon i de øverste 10 cm fra under deteksjonsgrensen på 0,10 mg/kg sediment til 0,42 mg/kg sediment kan sannsynligvis knyttes til prosesser i sedimentene som fører til mobilisering og utfelling av Cd. Den målte konsentrasjon på 0,42 mg/kg sediment er den høyste målte konsentrasjon av samtlige analyserte prøver fra de 8 sedimentkjerner.

| n | nedian- og | maksir | numsve | rdier fo | r tungm | etaller, | arsen og | g bariun | 1. i.d.: ik | ke data | •     |
|---|------------|--------|--------|----------|---------|----------|----------|----------|-------------|---------|-------|
|   | Antall     |        | As     | Ba       | Cd      | Cr       | Cu       | Hg       | Ni          | Pb      | Zn    |
|   | prøver     |        | mg/kg  | mg/kg    | mg/kg   | mg/kg    | mg/kg    | mg/kg    | mg/kg       | mg/kg   | mg/kg |
|   | N = 7      | Min.   | 3,9    | 79,7     | <0,1    | 31,6     | 10,1     | 0,015    | 22,4        | 12,6    | 47,5  |
|   |            | Gns.   | 5,7    | 90,1     | i.d.    | 45,5     | 15,6     | 0,018    | 32,0        | 15,4    | 67,4  |

45,3

64,4

15,9

22,9

0,019

0,021

32,8

42,3

15,9

17,7

69,1

91,4

Tabell 12. Sedimentkjerne R2270MC013 (0-33 cm): minimums-, gjennomsnitts-, median- og maksimumsverdier for tungmetaller, arsen og barium, i.d.: ikke data.

i.d.

0,42

5,1

9,5

Med. Max. 87,1

108,0



Figur 38. Tungmetall, arsen, barium, TOC, karbonat og finstoff i sedimentkjerne R2270MC013 (0 - 34 cm), Trænabanken. X-skalaen (konsentrasjon) er logaritmisk. Cd: halv deteksjonsgrense (0,05 mg/kg sediment) brukt for aktuelle prøver med analyseresultat under deteksjonsgrense på 0,1 mg/kg sediment. Årstallene til høyre er basert på <sup>210</sup>Pbdateringsanalysene presentert i avsnitt 5.3.4.

#### R2276MC014, Sklinnadjupet

R2276 er lokalisert i Sklinnadjupet (Figur 1). Resultatene av metallanalysene i sedimentkjernen inkludert årstall fra dateringsanalysen er vist i Figur 39. Minimum, gjennomsnitt, medianverdi og maksimum-verdier er vist i Tabell 13. Det er relativ konstant andel finstoff i sedimentkjernen og gradvis økende TOC mot toppen. Barium og metallene Cr, Cu, Cr, Ni og Zn har relativ konstante nivåer som vist i Figur 39 og Tabell 13. Det tyder på at disse elementene er knyttet til sedimentene og har naturlig geologiske opprinnelse. Hg øker svakt fra bakgrunnsnivå på 0.016 mg/kg sediment dypere i sedimentkjernen til 0,023 – 0,026 mg/kg sediment i de øverste 4 prøvene (0-1 cm til 14-15 cm). Tilsvarende øker Pb fra et naturlig bakgrunnsnivå på mindre enn 15 mg/kg sediment fra bunnen av sedimentkjernen (24-25 cm og 43-44 cm) til mer enn 20 mg/kg sediment i de øverste 15 cm av sedimentkjernen. For Hg og Pb er den svake økningen med stor sannsynlighet knyttet til menneskelige kilder knyttet til forbrenning av kull, som fører til utslipp av Hg, og forbrenning av Pb fra blyholdig bensin. Pb minker litt i konsentrasjon i de øverste prøvene (Figur 39). For Hg er det en økning helt mot toppen av sedimentkjernen, hvilket tyder på at det fremdeles tilføres langtransportert Hg i moderne tid. As har en stabil konsentrasjon i intervallet 9-10 cm til 43-44 cm med et bakgrunnsnivå på ca. 3 mg/kg sediment i den nedre del av sedimentkjernen til 8,2 mg/kg sediment ved 4-5 cm og 5,0 mg/kg sediment i den øverste prøven (0-1 cm). Cd har lave nivåer varierende fra under deteksjonsgrensen på 0,1 mg/kg sediment til 0,14 mg/kg sediment (nederst i sedimentkjernen, 43-44 cm).

Tabell 12. Sedimentkjerne R2276MC014 (0-44 cm): minimums-, gjennomsnitts-, median- og maksimumsverdier for tungmetaller, arsen og barium. i.d.: ikke data.

| Antall |      | As    | Ba    | Cd    | Cr    | Cu    | Hg    | Ni    | Pb    | Zn    |
|--------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| prøver |      | mg/kg |
| N = 7  | Min. | 2,9   | 84,3  | <0,10 | 44,0  | 14,7  | 0,016 | 32,6  | 12,3  | 64,4  |
|        | Gns. | 4,4   | 99,1  | i.d.  | 45,4  | 15,2  | 0,023 | 33,4  | 18,8  | 67,2  |
|        | Med. | 3,3   | 102,0 | i.d.  | 45,2  | 15,2  | 0,025 | 33,2  | 21,0  | 67,7  |
|        | Max. | 8,2   | 114,0 | 0,14  | 47,6  | 15,5  | 0,026 | 34,2  | 21,7  | 68,8  |



Figur 39. Tungmetall, arsen, barium, TOC, karbonat og finstoff i sedimentkjerne R2276MC014 (0 - 44 cm), Sklinnadjupet (konsentrasjon) er logaritmisk. Cd: halv deteksjonsgrense (0,05 mg/kg sediment) brukt for aktuelle prøver med analyseresultat under deteksjonsgrense på 0,1 mg/kg sediment.

#### R2338MC017, Sklinnadjupet vest

R2338 er lokalisert på nordflanken av Sklinnadjupet vest (Figur 1). Den 48 cm lange sedimentkjernen er datert med <sup>210</sup>Pb. Resultatene av metallanalysene inkludert årstall fra dateringsanalysen er vist i Figur 40. Det er relativ konstant andel finstoff og TOC gjennom sedimentkjernen. Barium og metallene Cr, Cu, Cr, Ni og Zn har relativ konstante nivåer som vist i Figur 40 og Tabell 13. Det tyder på at disse elementene er knyttet til sedimentene og har naturlig geologiske opprinnelse. Hg øker fra bakgrunnsnivå på ca. 0,020 mg/kg sediment nederst i sedimentkjernen (24-25 cm og 47-48 cm) til 0,025 – 0,028 mg/kg sediment i de 5 prøvene i de øverste 15 cm. Økningen i Hg skjer i intervallet 14-15 – 24-25 cm under overflaten, hvilket betyr at økningen har funnet sted engang før 1940 (5 cm) og litt tidligere enn 1900 (25 cm under overflaten). Tilsvarende øker Pb fra et naturlig bakgrunnsnivå på mindre enn 15 mg/kg sediment nederste 24-25 cm til 47-48 cm til 19 – 24 mg/kg sediment i de øverste 15 cm i sedimentkjernen. Økningen i Pb skjer sannsynligvis mellom 1900 og 1940 (Figur 40). For Hg og Pb er denne økningen i de siste årtiene med stor sannsynlighet knyttet til forbrenning av primært kull, som fører til utslipp av Hg, og utslipp av Pb fra blyholdig bensin. Pb minker litt i konsentrasjon i de øverste prøvene (Figur 40). Dette kan knyttes til at Pb ble fjernet fra bensin på 1970-tallet i en rekke vestlige industriland. For Hg er det en økning helt mot toppen av sedimentkjernen, hvilket tyder på at det fremdeles tilføres langtransportert Hg. As har varierende konsentrasjon fra 3,4 til 8,1 mg/kg sediment med høyst konsentrasjon ved 14-15 cm. Naturlig bakgrunnsnivå er mindre enn 5 mg/kg sediment. Cd varierer fra mindre enn 0,1 mg/kg sediment til 0,25 mg/kg sediment (nederst i sedimentkjernen), og med gradvis mindre Cd øverst. Den markante økningen skjer i intervallet mellom 4-5 cm og 9-10 cm.

| Tabell 13. Sedimentkjerne R2338MC017 (0-48 cm): minimums-, gjennomsnitts-,      |
|---------------------------------------------------------------------------------|
| median- og maksimumsverdier for tungmetaller, arsen og barium. i.d.: ikke data. |

| Antall |      | As    | Ba    | Cd    | Cr    | Cu    | Hg    | Ni    | Pb    | Zn    |
|--------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| prøver |      | mg/kg |
| N = 7  | Min. | 3,4   | 98,7  | <0,1  | 47,3  | 15,6  | 0,018 | 35,9  | 13,7  | 71,7  |
|        | Gns. | 5,4   | 111,5 | i.d.  | 49,8  | 16,2  | 0,024 | 38,5  | 19,5  | 74,8  |
|        | Med. | 5,3   | 108,0 | i.d.  | 50,0  | 16,4  | 0,025 | 38,7  | 20,5  | 75,8  |
|        | Max. | 8,1   | 126,0 | 0,250 | 52,1  | 16,7  | 0,028 | 40,7  | 24,0  | 77,7  |



Figur 40. Tungmetall, arsen, barium, TOC, karbonat og finstoff i sedimentkjerne R2338MC017 (0 - 48 cm), Sklinnadjupet vest. X-skalaen (konsentrasjon) er logaritmisk. Cd: halv deteksjonsgrense (0,05 mg/kg sediment) brukt for aktuelle prøver med analyseresultat under deteksjonsgrense på 0,1 mg/kg sediment. Årstallene til høyre er basert på <sup>210</sup>Pbdateringsanalysene presentert i avsnitt 5.3.4.

#### R2363MC019, Sklinnadjupet Norskehavet øst-vest transekt e

R2363 er lokalisert i Norskehavet øst-vest transekt e (Figur 1). Resultatene av metallanalysene i sedimentkjernen er vist i Figur 41. Det er relativ konstant andel finstoff i sedimentkjernen og gradvis økende TOC mot toppen. Metallene Cr, Cu, Cr, Ni og Zn har relativt konstante nivåer som vist i Figur 41 med litt avtakende konsentrasjoner øverst. Det tyder på at disse elementene er knyttet til sedimentene og har naturlig geologiske opprinnelse. Ba har relativt konstant konsentrasjon i de 4 nederste prøvene (9-33 cm) på mindre enn 90 mg/kg sediment. Konsentrasjonen dobles til ca. 180 mg/kg sediment i de øverste 2 prøvene (0-1 cm og 2-3 cm). Denne økning må knyttet til ekstraordinær tilførsel da ikke noen andre data tilsier markant endring i sedimentene som blir avsatt. Med antatt sedimentasjonsrate på 1 mm pr. år så kan økningen ha skjedd de siste 30 årene. Det er tidligere registrert høye Bakonsentrasjoner i datert sedimentkjerne fra dette området (Jensen m. fl., 2016). Hg øker mot toppen av sedimentkjernen fra bakgrunnsnivå på mindre enn 0,020 mg/kg sediment i de nederste 4 prøvene (9-10 cm til 32-33 cm) til 0,026 mg/kg sediment ved 2-3 cm. Økningen i Hg skjer i intervallet 4-5 cm – 9-10 cm under overflaten, hvilket betyr at økningen har funnet sted engang mellom 1950 (5 cm) og litt tidligere enn 1900 (10 cm under overflaten). Dette svarer omtrent til andre observerte økninger i daterte sedimentkjerner fra dette havområde (Jensen m. fl., 2014). Pb øker fra et naturlig bakgrunnsnivå på 10-15 mg/kg sediment i de nederste 4 prøvene (9-33 cm) til i underkant av 20 mg/kg sediment i 2 prøver ved 2-5 cm og avtar til 15,6 mg/kg sediment øverst. For Hg og Pb er økningen med stor sannsynlighet knyttet til forbrenning av kull, som fører til utslipp av Hg, og forbrenning av Pb fra blyholdig bensin. Pb minker litt i konsentrasjon i de øverste prøvene (Figur 41). Dette kan knyttes til at Pb ble fjernet fra bensin på 1970-tallet i en rekke vestlige industriland. For Hg sitt vedkommende er det en økning helt mot toppen av sedimentkjernen, hvilket tyder på at det fremdeles tilføres langtransportert Hg. As har en markant økning fra et naturlig bakgrunnsnivå på mindre enn 10 mg/kg sediment i den nedre del av sedimentkjernen til mer enn 50 mg/kg sediment i prøven 2-3 cm under toppen og 21,5 mg/kg sediment i den øverste prøven. Den markante økning skjer i intervallet mellom 4-5 cm og 9-10 cm.

Tabell 14. Sedimentkjerne R2363MC019 (0-38 cm): minimums-, gjennomsnitts-, median- og maksimumsverdier for tungmetaller, arsen og barium. i.d.: ikke data.

| Antall |      | As    | Ba    | Cd    | Cr    | Cu    | Hg    | Ni    | Pb    | Zn    |
|--------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| prøver |      | mg/kg |
| N = 7  | Min. | 2,9   | 72,9  | <0,1  | 34,2  | 11,4  | 0,016 | 25,1  | 10,9  | 52,2  |
|        | Gns. | 4,7   | 116,0 | i.d.  | 39,1  | 13,9  | 0,020 | 29,1  | 15,0  | 59,3  |
|        | Med. | 4,1   | 88,8  | i.d.  | 37,5  | 12,9  | 0,020 | 28,3  | 15,1  | 57,0  |
|        | Max. | 9,6   | 185,0 | 0,19  | 51,6  | 20,6  | 0,026 | 38,3  | 19,2  | 74,1  |



Figur 41. Tungmetall, arsen, barium, TOC, karbonat og finstoff i sedimentkjerne R2363MC019 (0 - 38 cm), Norskhavet øst-vest transekt e. X-skala (konsentrasjon) er logaritmisk. Cd: halv deteksjonsgrense (0,05 mg/kg sediment) brukt for aktuelle prøver med analyseresultat under deteksjonsgrense på 0,1 mg/kg sediment.

#### 5.5 Mikroplast i 3 sedimentkjerner

Det er analysert for innhold av mikroplast i 3 sedimentkjerner, R2270 (Trænabanken), R2338 (Sklinnadjupet vest) og R2363 (Norskehavet øst-vest transekt e). Tabell 15 viser prøver og antall MP-partikler i de analyserte prøvene.

| <i>, , ,</i> , |                 | ,                      |
|----------------|-----------------|------------------------|
|                | Dybde i kjernen | Antall MP-partikler/kg |
|                |                 | sediment               |
| R2270MC013     | 0-2 cm          | 867                    |
|                | 2-4 cm          | 725                    |
|                | 4-6 cm          | 0                      |
|                | 6-8 cm          | 1084                   |
|                | 8-10 cm         | 133                    |
| R2338MC017     | 0-2 cm          | 301                    |
|                | 2-4 cm          | 352                    |
|                | 4-6 cm          | 292                    |
|                | 6-8 cm          | 179                    |
|                | 8-10 cm         | 41                     |
|                | 20-22 cm        | 281                    |
| R2363MC019     | 0-2 cm          | 992                    |
|                | 2-4 cm          | 1579                   |
|                | 4-6 cm          | 1064                   |
|                | 6-8 cm          | 1055                   |
|                | 8-10 cm         | 654                    |
|                |                 |                        |

Tabell 15. Mikroplast i 3 sedimentkjerner R2270 (Trænabanken), R2338 (Sklinnadjupet vest) og R2363 (Norskehavet øst-vest transekt e).

R2270 har høyest andel MP ved 6-8 cm dybde, mens det også er relativ stor andel MP i de to øverste prøvene. Det høye antal MP ved 6-8 cm kan skyldes bioturbasjon, som har trukket sediment fra overflaten ned i dypere lag. Anomalien i <sup>137</sup>Cs-konsentrasjon ved 7-8 cm kan også skyldes bioturbasjon, som har dradd <sup>137</sup>Cs dypere ned i sedimentene (Kap. 5.3.4). De andre kjernene (R2338 og R2363) har høyest andel mikroplast i nivået 2-4 cm under overflaten (Figur 42). I lavere nivå reduseres antall MP i alle tre sedimentkjerner, noe som kan tyde på økende tilførsel av MP i de senere årene. Det er imidlertid bemerkelsesverdig at det er et høyt antall MP på 281 MP/kg sediment ved 20-22 cm i R2338. Dette nivået tilsvarer omtrent 1920 eller tidligere, altså før plast ble benyttet i stor skala. En mulig forklaring kan være bioturbasjon som har dradd MP ned i dypere nivå. R2363 har en fordeling av MP som viser økt tilførsel i de senest avsatte sedimentene. Det stemmer godt med økt bruk og tilførsel av plast til det marine miljøet (www.blueoceansociety.org). Det relativt høye antall MPpartikler (Tabell 15) ved 8-10 cm sammenlignet med prøvene øverst i sedimentkjernen kan tyde på at bioturabasjon spiller en rolle for omfordeling av MP, slik at de blir ført dypere ned i sedimentene. Vi har ikke dateringsdata for R2363, men det er rimelig å anta at sedimentasjonsraten er på nivå med de andre daterte sedimentkjernene i området (Tabell 7, avsnitt 5.3.4), dvs. 1-2 mm/år. Da er intervallet 8 – 10 cm avsatt i et tidsrom på mellom 80 –

100 år (1 mm/år) og 40 – 50 år (2 mm/år), og da mest sannsynlig nærmere 80 -100 år (1920 – 1940), altså før plast ble tatt i større bruk.

Det er tydelige forskjeller i antall MP-partikler mellom de 3 sedimentkjernene, med klart størst antall MP-partikler i R2363, fulgt av R2270 og R2338 (Tabell 15). Det tyder på en klar forskjell i tilførsel av partikler til sedimentene på de 3 stasjonene. Det er flest forskjellige typer MP-partikler i prøver med høyt antall partikler, dvs. i R2363 og enkelte nivåer i R2270, mens det i R2338, med færrest antall MP-partikler, også er færrest forskjellige typer partikler (Tjønneland, 2021, Vedlegg 5).

Dateringene av R2270 og R2338 viser at MP-partikler finnes tilbake før introduksjon av plast; henholdsvis 1930-tallet i R2270 og tidlig 1900-tallet i R2338 (NGI rapport i Vedlegg 5). At det er MP-partikler i sedimenter avsatt før plast ble introdusert fra 1950-tallet skyldes trolig at bioturbasjon har «trukket» partikler ned i dypere sjikt i vertikale eller skrå graveganger. Vertikale gravegange på mer enn 20 cm er observert i R2270 (kapittel 5.3.1).

### 6. OPPSUMMERING

Tungmetallkonsentrasjoner i overflatesedimenter fra Frøyabanken, Sulatrekanten, Haltenbanken, Sklinnadjupet, Sklinnadjupet vest, Norskehavet øst-vest transekter d og e, Trænabanken og Trænadjupet fra i alt 16 prøvetakingsstasjoner er analysert. Metallene Cd, Cu, Cr, Hg, Pb, Zn og As er til stede i lave konsentrasjoer tilsvarende tilstandsklasse I (bakgrunn). Ni er til stede i lave til litt høyere konsentrasjoner tilsvarende tilstandsklasse I (bakgrunn) og II (god) for noen prøver fra Sklinnadjupet, Sklinnadjupet vest og Norskehavet øst-vest transekt. Ba er analysert i overflatesedimentene. Her er det ikke angitt noen tilstandsklasse, men Ba er viktig å analysere som en indikator utslipp fra olje-/gass boreaktiviteter.

<sup>137</sup>Cs fra 5 daterte sedimentkjerner viser stor variasjon i konsentrasjon i overflateprøvene, varierende fra 0 Bq/kg sediment i prøve fra Frøyabanken til 9 Bq/kg sediment i prøve fra Trænadjupet.

Åtte analyserte sedimentkjernene fra Frøyabanken, Sulatrekanten, Haltenbanken, Trænadjupet, Trænabanken, Sklinnadjupet, Sklinnadjupet vest og Norskehavet transekt øst – vest viser lave tungmetall- og As-konsentrasjoner gjennom hele kjernene. Hg og Pb viser en svak økning fra ca. år 1900 øverst i kjernene, men fremdeles med konsentrasjoner i tilstandsklasse I (bakgrunn) i Miljødirektoratets klassifikasjonssystem. De øvrige tre sedimentkjernene som ikke er datert har også økende Hg og Pb i øverste del, men fortsatt lave metallkonsentrasjoner (Cd, Cr, Cu, Hg, Ni, Pb, og Zn) og As tilsvarende tilstandsklasse I. Cd har lavere konsentrasjoner i toppen av kjernene (<0,10-0,15 mg/kg sediment) enn i dypere lag (maksimalt 0,42 mg/kg sediment i sedimentkjernen fra Trænabanken). Ba øker mot toppen i flere av sedimentkjernene, med mest økning i R2139 på Frøyabanken og R2363 fra Norskehavet øst-vest transekt vest, mens det for de øvrige stasjonene er tale om mindre økning mot toppen.<sup>210</sup>Pb-dateringene viser at økningen starter på 1980-tallet. Det er sannsynlig at Ba er tilført sedimentene som barytt fra boreslam fra olje/gass boringer i Norskehavet eller Ba fra utslipp av formasjonsvæske. Det er tidligere registrert en slik økning i Ba i topplagene i Norskehavet (Jensen m. fl., 2016). TOC-verdiene er mindre enn 1 vektprosent i samtlige analyserte kjerner, mens kornstørrelsen er overveiende sandholdig silt. Litt grovere sedimenter finnes på Frøyabanken der vi finner siltholdig sand.

Det er registrert mikroplast i samtlige 11 overflateprøver (0-2 cm), varierende fra 51 MPpartikler/kg sediment i Trænadjupet til 2187 MP-partikler/kg sediment på Frøyabanken. Tre sedimentkjerner fra Trænabanken, Sklinnadjupet vest og Norskehavet øst-vest transekt vest viser at det er mikroplast et stkke nedover i kjernene. Antall MP-partikler avtar med dypet med unntak av kjernen fra Trænabanken, der det er et høyere antall MP-partikler i et dypere lag. Dette kan muligens skyldes bioturbasjon der gravende organismer har ført MP-partikler dypere ned i sedimentene.

#### 7. REFERANSER

Andersen T. J., 2017: Some Practical Considerations Regarding the Application of <sup>210</sup>Pb and <sup>137</sup>Cs Dating to Estuarine Sediments. Applications of Paleoenvironmental Techniques in Estuarine Studies. Developments in Paleoenvironmental Research (DPER), Vol. 20, p 121-140.

www.blueoceansociety.org (2018)

- Braastad, G. 2000: Kort innføring i toksikologi økotoksikologisk risikovurdering veiledning Del IIA. SFT-rapport TA 1756, 46 s.
- Bøe R., Dolan M., Thorsnes T., Lepland A., Olsen H., Totland O. & Elvenes S. 2010: Standard for geological seabed mapping offshore. NGU-rapport 2010.033, 15 s.
- Dehairs, F., Chesselet, R., and Jedwab, J., 1980. Discrete suspended particles of barite and the barium cycle in the ocean. Earth Planetary Science Letters, vol. 49, s. 528 550.
- Geonorge.no, 2021. Produktspesifikasjon\_Bunnsedimenter\_kornstørrelse. 53 sider
- Jensen H. K. B., Plassen L., Finne T. E. og Thorsnes T., 2014. Miljøkjemiske data og dateringsresultater fra Norskehavet og Tidligere Omstridt Område (TOO). NGU-rapport 2014.025, 82 sider.
- Jensen H. K. B., Seither A. og Knies J., 2016. Miljøkjemiske data og dateringsresultater fra Barentshavet Øst og Norskehavet. NGU-rapport 2016.025, 66 sider.
- Jensen H. K. B. og Cramer J., 2017. MAREANOs pilotprosjekt på mikroplast resultater for forslag til oppfølgning. NGU-rapport 2017.043, 51sider.
- Jensen H. K. B. og Bellec V., 2019. Miljøkjemiske data og dateringsresultater fra indre Kongsfjorden og indre Rijpfjorden samt områdene SK01 og SK02 vest for Svalbard – MAREANO, NGU rapport 2019.027, 52 sider.
- Knies, J., Jensen, H.K.B., Finne, T.E., Lepland, A. & Sæther, O. M. 2006: Sediment composition and heavy metal distribution in Barents Sea surface samples: Results from Institute of Marine Research 2003 and 2004 cruises. NGU-report 2006.067, 1-35.
- Knutsen, H., Singdal-Larsen C. and Cyvin J. B., 2019. Microplastic contents in Svalbard fjord and Bjørnøy transect sediments. NGI rapport (på engelsk), 107 sider inkl. appendikser.
- Lepland, A., Sæther O. M. & Thorsnes T. 2000: Accumulation of barium in recent Skagerrak sediments: sources and distribution control. Marine Geology, vol. 163, s. 13 26.
- MAREANO kjemidata, 2003 2019. http://www.mareano.no/datanedlasting/kjemidata.
- Miljødirektoratet veileder M-608, 2016. Grenseverdier for klassfisering av vann, sedimenter og biota. Revidert 2020.13 sider.

https://www.miljodirektoratet.no/globalassets/publikasjoner/M608/M608.pdf

- Molvær, J., Knutzen, J., Magnusson, J., Rygg, B., Skei, J. & Sørensen, J. 1997: Klassifisering av miljøkvalitet i fjorder og kystvann. Veiledning. SFT-rapport 97:03, TA-1467, 36 sider. Norsk oljehistorie i korte trekk, 2002. <u>http://www.ptil.no/ord-og-uttrykk/norsk-oljehistorie-i-</u> korte-trekk-article882-38.html.
- Nuernberg C. C., Bohrmann G., Schlueter M. og Frank M., 1997. Barium accumulation in the Atlantic sector of the Southern Ocean. Results from 190,000-year records. Paleoceanography. Vol. 12 (4), s. 594 603.

- Olsgård F. and Gray J., 1995. A comprehensive analysis of the effects of offshore oil and gas exploration and production on the benthic communities of the Norwegian continental shelf. Marine Ecology Progress Series, vol. 122, pp. 277 306.
- Rise, L. og Brendryen, J. 2013. Leirinnhold i jordarter en sammenlignende studie med vekt på Coulter Laser 200 og Sedigraph, og forslag til beregning av ekvivalent leirinnhold i prosent. NGU Rapport 2013.012, 35 s.
- Rye H., 1996. Miljøeffekter av utslipp fra borekjemikalier. Rapport fra OLF. IKU Petroleumsforskning. Rapport nr. 42.4053.00/01/96. 98 sider.
- SFT 2007: Veileder for klassifisering av miljøkvalitet i fjorder og kystfarvann. Revidering av klassifisering av metaller og organiske miljøgifter i vann og sedimenter. SFT-veileder 2229, 11 s.
- Sæther O. M., Faye G., Thorsnes T., Rise L., Longva O. and Bøe R., 1996. Regional distribution of manganese, phosphorus, heavy metals, barium, and carbon in sea-bed sediments (0-2 cm) from the northern part of the Norwegian Skagerrak. Geological Survey of Norway Bull., no. 430, p. 103-112.
- Thorsnes T. and Klungsøyr J., 1997. Contamination of Skagerrak sediments due to man-made inputs during the last 200 years. In: O. Longva and T. Thorsnes (Editors), Skagerrak in the past and at the present an integrated study of geology, chemistry, hydrography and microfossil ecology. Geological Survey of Norway. Special Publication, vol. 8, p. 52-79.
- Tjønneland M. V., 2021. Microplastics in marine sediment from the Norwegian Sea. NGI rapport (på engelsk). 135 sider.

# Vedlegg 1

Prøveliste og analyseresultater. Kornstørrelsesfordeling (Coulter analyse), Leco (total S, total C, organisk C samt karbonat (beregnet)), HNO<sub>3</sub>-ekstrahert og analysert med ICP-OES og CV-AAS (Hg) ved NGU-Laboratorier. Naturlige standarder Hynne, Nordkyn og Tana er inkludert i prøvelistene.


Leiv Eirikssons vei 39 NO - 7040 Trondheim Tlf.: 73 90 40 00 E-post: lab@ngu.no

Coulter LS 13320



## **INSTRUMENT: METODE:**

## Metodeoppsettet er beskrevet i LABdok\_K01: Kornfordelingsanalyse: metode basert på laser partikkelteller, måleområdet 0.400 µm - 2000 µm.

Kornfordelingsbestemmelse basert på laserdiffraksjon. Laserlys brytes i ulike vinkler avhengig av størrelsen på partiklene, og registreres så av en rekke detektorer. De registrerte vinklene tilsvarer gitte partikkelstørrelser, og antall partikler er relatert til den intensiteten som den korresponderende detektoren registrerer. Kornfordelingen bestemmes således på volum-basis, med antagelse om ens tetthet på materialet vil kumulativ volum% være identisk med kumulativ masse%. Beregning på volum/masse-basis er basert på antagelse om sfæriske partikler.

# MÅLEOMRÅDE : Måleområdet varierer avhengig av type detektorer som benyttes under målinger. Til vanlig gjøres målingene i området 0.4 μm - 2000 μm\*. Måleområdet kan på forespørsel utvides til 0.017 μm - 2000 μm ved hjelp av den såkalte PIDS-detektoren. Dette området omfattes ikke av akkreditering. NB! Metoden normaliserer alle data i måleområdet til sum 100 % (kumulativ %), hvor den laveste målegrensen settes som nullpunkt mht. kumulativ %. *Hvis prøvene inneholder materiale finere enn det laveste målegrense, er disse ikke detekterbare og dermed ikke tatt i beregning av kumulativ %*.

## \*omfattes av akkreditering

ANALYSEUSIKKERHET: ± 10 % [kumulativ masse(volum) %] Usikkerheten er oppgitt med dekningsfaktor 2, tilsvarende et konfidensintervall på 95 % Bestemmelse av usikkerhet er basert på sammenligning av oppnådde resultater med sertifikatverdier for kvartsstandard BCR-131, samt presisjonsdata. MERK! Metoden tar utgangspunkt i antagelse om sfæriske partikler. For prøver som avviker fra dette kan usikkerheten være større.

## PRESISJON: Det analyseres rutinemessig kontrollprøver som føres i kontrolldiagram (X-diagram). Disse kan forevises om ønskelig.

Analysekontrakt nr.: 2021.0031 Prøvetype/prøvematrise: GEOLOGISK MATERIALE/sediment

Antall prøver: 121

Prøveforbehandling: Ganske mange av prøvene inneholdt mye finstoff og hadde sammenkittet materiale som var vanskelig å løsne. Disse ble bløtlagt og frysetørket på nytt. Dette gjelder prøvene med løpenr 5, 6, 12, 14-25, 28-41, 55, 58-62, 66-71, 76-87, 88-106, 107-118.

Anmerkninger: Ingen

Delrapport som består av forside med informasjon om metode ("Forside\_Coulter"), sider med analysedata ("Data") og tilleggsinformasjon ("Prove\_info"). Fullstendig analyserapport finnes kun i papirformat. Gjengivelse av analysedata skal skje på en slik måte at meningsinnholdet i rapporten ikke endres.

For informasjon om metode for databeregning (Optical Mode) og statistiske parametre henvises til arket Prove\_info.

| Forbehandlet av: | Marit Sigrid Halle | Forbehandling fullført (dato): | 07.04.2021 |
|------------------|--------------------|--------------------------------|------------|
| Rapportert av:   | Marit Sigrid Halle | Analysert fullført (dato):     | 12.04.2021 |

|                      | 21.0031 001 Hvn                      | 21.0031 002 MIN                       | 21.0031 003 TAN                       | 21.0031 004#2 0                      | 21.0031 005#2 0                      | 21.0031 006#1 0                      | 21.0031 007#1 0                      | 21.0031 008#1 0                      | 21.0031 009#1 0                      | 21.0031 010#1 0                      | 21.0031 011#2 0                      | 21.0031 012#2 0                      | 21.0031 013#1 0                      | 21.0031 014#1 0                      | 21.0031 015#1 0                      | 21.0031 016#1 0                      | 21.0031 017#1 0                      | 21.0031 018#1 0                      | 21.0031 019#2 0                      | 21.0031 020#1 0                      | 21.0031 021#1 0                      | 21.0031 022#1 0                      | 21.0031 023#1 0                      | 21.0031 024#2 0                        | 21.0031 025#1 0                      | 21.0031 026 Hyn                      |
|----------------------|--------------------------------------|---------------------------------------|---------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|----------------------------------------|--------------------------------------|--------------------------------------|
| File name:           | ne#1_04.\$ls                         | N#1_04.\$ls                           | A#1_04.\$ls                           | 4.\$ls                                 | 4.\$ls                               | ne#1_04.\$ls                         |
| File ID:             | 21.0031_001_Hyn<br>ne#1              | 21.0031_002_MIN<br>N#1                | 21.0031_003_TAN<br>A#1                | 21.0031_004#2                        | 21.0031_005#2                        | 21.0031_006#1                        | 21.0031_007#1                        | 21.0031_008#1                        | 21.0031_009#1                        | 21.0031_010#1                        | 21.0031_011#2                        | 21.0031_012#2                        | 21.0031_013#1                        | 21.0031_014#1                        | 21.0031_015#1                        | 21.0031_016#1                        | 21.0031_017#1                        | 21.0031_018#1                        | 21.0031_019#2                        | 21.0031_020#1                        | 21.0031_021#1                        | 21.0031_022#1                        | 21.0031_023#1                        | 21.0031_024#2                          | 21.0031_025#1                        | 21.0031_026_Hyn<br>ne#1              |
| O                    | 21.0031_Hynne_4                      | 21.0031_MINN_Sp                       | 04 0004 TANA (0)                      | 21.0031_188003_                      | 21.0031_188042_                      | 21.0031_188044_                      | 21.0031_188046_                      | 21.0031_188051_                      | 21.0031_188056_                      | 21.0031_188066_                      | 21.0031_188070_                      | 21.0031_188076_                      | 21.0031_188078_                      | 21.0031_188080_                      | 21.0031_188085_                      | 21.0031_188090_                      | 21.0031_188100_                      | 21.0031_188110_                      | 21.0031_188123_                      | 21.0031_188125_                      | 21.0031_188127_                      | 21.0031_188132_                      | 21.0031_188137_                      | 21.0031_188147_                        | 21.0031_188153_                      | 21.0031_Hynne_4                      |
| Sample ID:           | 0107                                 | lit 1                                 | 21.0031_TANA (2) I                    | C006A 0-1<br>cm                      | R2139MC008A 0-1<br>cm                | R2139MC008A 2-3<br>cm                | R2139CMC008A 4-<br>5 cm              | R2139CMC008A 9-<br>10 cm             | R2139CMC008A<br>14-15 cm             | R2139CMC008A<br>24-25 cm             | 28-29 cm                             | R2183MC009A 0-1<br>cm                | R2183MC009A 2-3<br>cm                | R2183MC009A 4-5<br>cm                | R2183MC009A 9-<br>10 cm              | R2183MC009A 14-<br>15 cm             | R2183MC009A 24-<br>25 cm             | 35 cm                                | C009A 0-1<br>cm                      | R2229MC009A 2-3<br>cm                | cm R2229MC009A 4-5                   | R2229MC009A 9-<br>10 cm              | R2229MC009A 14-<br>15 cm             | R2229MC009A 24- F<br>25 cm             | 31 cm                                | 0107                                 |
| Operator:            | MSH                                  | MSH                                   | MSH                                   | MSH                                  | MSH                                  | MSH                                  | MSH                                  | MSH                                  | MSH                                  | MSH                                  | MSH                                  | MSH                                  | MSH                                  | MSH                                  | MSH                                  | MSH                                  | MSH                                  | MSH                                  | MSH                                  | MSH                                  | MSH                                  | MSH                                  | MSH                                  | MSH                                    | MSH                                  | MSH                                  |
|                      |                                      |                                       |                                       |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                        |                                      |                                      |
| Comment 1:           | 0,154 g +<br>disp.middel.            | 0,334 g +<br>disp.middel.             | 0,140 g +<br>disp.middel.             | 0,451 g +<br>disp.middel.            | 0,182 g +<br>disp.middel.            | 0,185 g +<br>disp.middel.            | 0,185 g +<br>disp.middel.            | 0,186 g +<br>disp.middel.            | 0,187 g +<br>disp.middel.            | 0,189 g +<br>disp.middel.            | 0,191 g +<br>disp.middel.            | 0,150 g +<br>disp.middel.            | 0,151 g +<br>disp.middel.            | 0,188 g +<br>disp.middel.            | 0,188 g +<br>disp.middel.            | 0,190 g +<br>disp.middel.            | 0,190 g +<br>disp.middel.            | 0,191 g +<br>disp.middel.            | 0,241 g +<br>disp.middel.              | 0,240 g +<br>disp.middel.            | 0,154 g +<br>disp.middel.            |
|                      | springvann                           | Springvann                            | Springvann                            | springvann                           | springvann                           | springvann                           | springvann                           | springvann                           | springvann                           | springvann                           | springvann                           | springvann                           | springvann                           | springvann                           | springvann                           | springvann                           | springvann                           | springvann                           | springvann                           | springvann                           | springvann                           | springvann                           | springvann                           | springvann                             | springvann                           | springvann                           |
| Comment 2:           | Ultralyd Probe 2<br>(naken) 5 ampl 5 | ultralyd, probe 2<br>(naken) 5 ampl-5 | ultralyd, Probe 2<br>(naken) 5 ampl-5 | Ultralyd Probe 2<br>(naken) 5 amol 5 | Ultralyd Probe 2<br>(naken) 5 ampl 5 | Ultralyd Probe 2<br>(naken) 5 amol 5 | Ultralyd Probe 2<br>(naken) 5 amol 5 | Ultralyd Probe 2<br>(naken) 5 amol 5 | Ultralyd Probe 2<br>(naken) 5 ampl 5 | Ultralyd Probe 2<br>(naken) 5 amol 5 | Ultralyd Probe 2<br>(naken) 5 ampl 5 ( | Ultralyd Probe 2<br>(naken) 5 ampl 5 | Ultralyd Probe 2<br>(naken) 5 ampl 5 |
| Comment 2.           | min, Leire                           | min,Fraunhofer                        | min                                   | min, Leire                             | min, Leire                           | min, Leire                           |
| Instrument           | LS 13 320,<br>Aqueous Liquid         | LS 13 320,                            | LS 13 320,                            | LS 13 320,                           | LS 13 320,                           | LS 13 320,                           | LS 13 320,                           | LS 13 320,                           | LS 13 320,                           | LS 13 320,                           | LS 13 320,                           | LS 13 320,<br>Aqueous Liquid         | LS 13 320,                             | LS 13 320,                           | LS 13 320,<br>Aqueous Liquid         |
| mou ument.           | Module                               | Module                                | Module                                | Module                               | Module                               | Module                               | Module                               | Module                               | Module                               | Module                               | Module                               | Module                               | Module                               | Module                               | Module                               | Module                               | Module                               | Module                               | Module                               | Module                               | Module                               | Module                               | Module                               | Module                                 | Module                               | Module                               |
| Run number:          | 4                                    | 4                                     | 4                                     | 4                                    | 4                                    | 4                                    | 4                                    | 4                                    | 4                                    | 4                                    | 4                                    | 4                                    | 4                                    | 4                                    | 4                                    | 4                                    | 4                                    | 4                                    | 4                                    | 4                                    | 4                                    | 4                                    | 4                                    | 4                                      | 4                                    | 4                                    |
| Start time:          | 19.03.2021                           | 19.03.2021                            | 19.03.2021                            | 19.03.2021                           | 19.03.2021                           | 19.03.2021                           | 19.03.2021                           | 19.03.2021                           | 19.03.2021                           | 19.03.2021                           | 22.03.2021                           | 22.03.2021                           | 22.03.2021                           | 22.03.2021                           | 22.03.2021                           | 22.03.2021                           | 22.03.2021                           | 22.03.2021                           | 22.03.2021                           | 22.03.2021                           | 22.03.2021                           | 22.03.2021                           | 22.03.2021                           | 22.03.2021                             | 22.03.2021                           | 22.03.2021                           |
| Run length:          | 60                                   | 60                                    | 60                                    | 60                                   | 60                                   | 60                                   | 60                                   | 60                                   | 60                                   | 60                                   | 60                                   | 60                                   | 60                                   | 60                                   | 60                                   | 60                                   | 60                                   | 60                                   | 61                                   | 60                                   | 60                                   | 61                                   | 60                                   | 60                                     | 60                                   | 60                                   |
| Optical model:       | Leire-1-65.rf780d                    | Fraunhofer.rf780d                     | Fraunhofer.rf780d                     | Leire-1-65.rf780d                      | Leire-1-65.rf780d                    | Leire-1-65.rf780d                    |
| Obscuration:         | 10                                   | 10                                    | 10                                    | 10                                   | 9                                    | 10                                   | 10                                   | 9                                    | 9                                    | 9                                    | 9                                    | 10                                   | 10                                   | 10                                   | 10                                   | 9                                    | 9                                    | 9                                    | 10                                   | 9                                    | 10                                   | 9                                    | 10                                   | 10                                     | 8                                    | 9                                    |
| PIDS Obscur:         | 01                                   |                                       | 014                                   | 01                                   |                                      | 014                                  | 014                                  | 014                                  |                                      | 01                                   | 014                                  | 01                                   | 014                                  | 014                                  | 014                                  | 014                                  | 014                                  | 014                                  | 01                                   |                                      | 014                                  | 014                                  | OK .                                 |                                        | 01                                   | 014                                  |
| Obscuration:         | 0824                                 | OK 0024                               | 0824                                  | 0824                                 | OK 0024                              | 0824                                 | OK 0024                              | OK ORA                               | OK 0024                              | 0824                                 | 0824                                 | 0824                                 | OK 0024                              | 0824                                 | OK ORA                               | OK ORA                               | 0024                                 | OK 0024                              | 0824                                 | OK 0024                              | UK 0024                              | OK 0024                              | 0824                                 | OK 0024                                | OK 0024                              | OK 0024                              |
| Genal Number:        | 9034                                 | 9034                                  | 3034                                  | 9034                                 | 9034                                 | 9034                                 | 9034                                 | 9034                                 | 9034                                 | 3034                                 | 9034                                 | 9034                                 | 9034                                 | 9034                                 | 9034                                 | 9034                                 | 9034                                 | 9034                                 | 9034                                 | 9034                                 | 9034                                 | 9034                                 | 9034                                 | 9034                                   | 9034                                 | 3034                                 |
| From                 | 0 375                                | 0.38                                  | 0.375                                 | 0.375                                | 0.375                                | 0.375                                | 0.375                                | 0.375                                | 0.375                                | 0.375                                | 0.375                                | 0.375                                | 0.375                                | 0.375                                | 0.375                                | 0.375                                | 0.375                                | 0.375                                | 0.375                                | 0.375                                | 0.375                                | 0.375                                | 0.375                                | 0.375                                  | 0.375                                | 0 375                                |
| То                   | 2000                                 | 2000                                  | 2000                                  | 2000                                 | 2000                                 | 2000                                 | 2000                                 | 2000                                 | 2000                                 | 2000                                 | 2000                                 | 2000                                 | 2000                                 | 2000                                 | 2000                                 | 2000                                 | 2000                                 | 2000                                 | 2000                                 | 2000                                 | 2000                                 | 2000                                 | 2000                                 | 2000                                   | 2000                                 | 2000                                 |
| Volume               | 100                                  | 100                                   | 100                                   | 100                                  | 100                                  | 100                                  | 100                                  | 100                                  | 100                                  | 100                                  | 100                                  | 100                                  | 100                                  | 100                                  | 100                                  | 100                                  | 100                                  | 100                                  | 100                                  | 100                                  | 100                                  | 100                                  | 100                                  | 100                                    | 100                                  | 100                                  |
| Mean:                | 60.71                                | 68.7                                  | 37.6                                  | 76.64                                | 40.09                                | 38.25                                | 36.94                                | 38.97                                | 40.26                                | 38.76                                | 39.15                                | 28.69                                | 28.62                                | 29.34                                | 30.89                                | 32.41                                | 31.81                                | 31.47                                | 37.09                                | 39.32                                | 40.5                                 | 38.4                                 | 39.03                                | 45.59                                  | 50.99                                | 68.66                                |
| Median:              | 17.54                                | 43.7                                  | 17.04                                 | 77.81                                | 35.64                                | 32.87                                | 30.61                                | 34.09                                | 36.02                                | 34.41                                | 34.48                                | 20.08                                | 19.77                                | 21.2                                 | 22.83                                | 24.09                                | 25.18                                | 24.47                                | 28.53                                | 31.21                                | 32.69                                | 30.52                                | 30.74                                | 38.19                                  | 44.09                                | 18.15                                |
| D(3,2):              | 7.245                                | 14.53                                 | 3.847                                 | 18.36                                | 9.362                                | 8.708                                | 8.344                                | 9.186                                | 9.928                                | 9.632                                | 9.578                                | 6.838                                | 6.774                                | 7.056                                | 7.23                                 | 7.506                                | 7.772                                | 7.539                                | 8.638                                | 9.141                                | 9.39                                 | 9.129                                | 9.057                                | 10.67                                  | 12.67                                | 7.38                                 |
| Mean/Median ratio:   | 3.462                                | 1.57                                  | 2.207                                 | 0.985                                | 1.125                                | 1.164                                | 1.207                                | 1.143                                | 1.118                                | 1.126                                | 1.135                                | 1.429                                | 1.448                                | 1.384                                | 1.353                                | 1.346                                | 1.263                                | 1.286                                | 1.3                                  | 1.26                                 | 1.239                                | 1.258                                | 1.27                                 | 1.194                                  | 1.157                                | 3.783                                |
| Mode:                | 9.37                                 | 55.1                                  | 87.9                                  | 96.49                                | 55.13                                | 55.13                                | 55.13                                | 55.13                                | 55.13                                | 50.22                                | 50.22                                | 41.68                                | 41.68                                | 41.68                                | 41.68                                | 41.68                                | 45.75                                | 41.68                                | 45.75                                | 50.22                                | 50.22                                | 45.75                                | 45.75                                | 55.13                                  | 60.52                                | 9.37                                 |
| S.D.:                | 109.1                                | 95.86                                 | 45.03                                 | 42.84                                | 32.08                                | 31.97                                | 32.18                                | 31.6                                 | 31.18                                | 30.23                                | 30.98                                | 27.82                                | 28.44                                | 27.98                                | 29.67                                | 33.88                                | 28.21                                | 28.97                                | 34.7                                 | 35.38                                | 36.22                                | 34.45                                | 35.36                                | 38.15                                  | 39.91                                | 132.4                                |
| Variance:            | 11893                                | 9.19E+03                              | 2028                                  | 1835                                 | 1.03E+03                             | 1022                                 | 1036                                 | 998.7                                | 972.3                                | 913.7                                | 959.7                                | 773.9                                | 808.7                                | 782.8                                | 880.5                                | 1148                                 | 795.8                                | 839.2                                | 1204                                 | 1252                                 | 1312                                 | 1187                                 | 1250                                 | 1455                                   | 1593                                 | 17530                                |
| C.V.:                | 179.6                                | 139.60                                | 119.8                                 | 55.9                                 | 80.03                                | 83.58                                | 87.12                                | 81.1                                 | 77.44                                | 77.99                                | 79.13                                | 96.96                                | 99.36                                | 95.36                                | 96.07                                | 104.5                                | 88.68                                | 92.06                                | 93.55                                | 89.98                                | 89.43                                | 89.72                                | 90.59                                | 83.68                                  | 78.26                                | 192.8                                |
| Skewness:            | 3.389                                | 4.74                                  | 1.461                                 | 0.102                                | 0.903                                | 0.969                                | 1.122                                | 0.936                                | 0.865                                | 0.864                                | 0.952                                | 1.401                                | 1.589                                | 1.417                                | 1.576                                | 3.049                                | 1.222                                | 1.439                                | 1.537                                | 1.402                                | 1.391                                | 1.431                                | 1.436                                | 1.226                                  | 1.147                                | 3.5                                  |
| Kurtosis:            | 13.17                                | 31.19                                 | 1.537                                 | -0.407                               | 0.718                                | 0.778                                | 1.393                                | 0.756                                | 0.572                                | 0.502                                | 0.822                                | 2.159                                | 3.314                                | 2.515                                | 3.587                                | 19.28                                | 1.708                                | 2.769                                | 2.866                                | 2.297                                | 2.268                                | 2.491                                | 2.424                                | 1.652                                  | 1.454                                | 13.31                                |
| d10:                 | 2.504                                | 8.24                                  | 1.14                                  | 11.43                                | 3.366                                | 3.022                                | 2.864                                | 3.318                                | 3.781                                | 3.64                                 | 3.587                                | 2.313                                | 2.29                                 | 2.396                                | 2.453                                | 2.574                                | 2.698                                | 2.58                                 | 3.108                                | 3.354                                | 3.278                                | 3.404                                | 3.338                                | 4.234                                  | 5.801                                | 2.552                                |
| d50:                 | 17.54                                | 43.68                                 | 17.04                                 | 77.81                                | 35.64                                | 32.87                                | 30.61                                | 34.09                                | 36.02                                | 34.41                                | 34.48                                | 20.08                                | 19.77                                | 21.2                                 | 22.83                                | 24.09                                | 25.18                                | 24.47                                | 28.53                                | 31.21                                | 32.69                                | 30.52                                | 30.74                                | 38.19                                  | 44.09                                | 18.15                                |
| d90:                 | 155                                  | 136.70                                | 107.5                                 | 131.9                                | 83.39                                | 82.03                                | 80.79                                | 81.97                                | 82.61                                | 80.35                                | 81.1                                 | 67.8                                 | 67.31                                | 68.4                                 | 70.61                                | 71.59                                | 70.69                                | 69.75                                | 82.42                                | 86.18                                | 88.26                                | 83.57                                | 85.67                                | 96.57                                  | 104.6                                | 163.5                                |
| Specific Surf. Area: | 8281                                 | 4130.00                               | 15595                                 | 3268                                 | 6409                                 | 6890                                 | 7190                                 | 6532                                 | 6044                                 | 6229                                 | 6264                                 | 8774                                 | 1688                                 | 8503                                 | 8299                                 | 7993                                 | 1120                                 | 7958                                 | 6946                                 | 6564                                 | 6390                                 | 6573                                 | 6625                                 | 5622                                   | 4737                                 | 8130                                 |
| %e                   | Size                                 | Size                                  | Size                                  | Size                                 | Size                                 | Size                                 | Size                                 | Size                                 | Size                                 | Size                                 | Size                                 | Size                                 | Size                                 | Size                                 | Size                                 | Size                                 | Size                                 | Size                                 | Size                                 | Size                                 | Size                                 | Size                                 | Size                                 | Size                                   | Size                                 | Size                                 |
| 10                   | 2.5                                  | 8.24                                  | 1.14                                  | 11.4                                 | 3.37                                 | 3.02                                 | 2.86                                 | 3.32                                 | 3.78                                 | 3.64                                 | 3.59                                 | 2.31                                 | 2.29                                 | 2.4                                  | 2.45                                 | 2.57                                 | 2.7                                  | 2.58                                 | 3.11                                 | 3.35                                 | 3.28                                 | 3.4                                  | 3.34                                 | 4.23                                   | 5.8                                  | 2.55                                 |
| 25                   | 6.01                                 | 20.10                                 | 3.8                                   | 47.2                                 | 11.7                                 | 9.91                                 | 8.93                                 | 11.2                                 | 13.4                                 | 12.7                                 | 12.8                                 | 6.29                                 | 6.18                                 | 6.65                                 | 7.02                                 | 7.58                                 | 8.18                                 | 7.8                                  | 9.76                                 | 11                                   | 11.3                                 | 11                                   | 11                                   | 15.1                                   | 20.4                                 | 6.13                                 |
| 50                   | 17.5                                 | 43.70                                 | 17                                    | 77.8                                 | 35.6                                 | 32.9                                 | 30.6                                 | 34.1                                 | 36                                   | 34.4                                 | 34.5                                 | 20.1                                 | 19.8                                 | 21.2                                 | 22.8                                 | 24.1                                 | 25.2                                 | 24.5                                 | 28.5                                 | 31.2                                 | 32.7                                 | 30.5                                 | 30.7                                 | 38.2                                   | 44.1                                 | 18.2                                 |
| 75                   | 65.4                                 | 80.60                                 | 59.1                                  | 106                                  | 60                                   | 57.8                                 | 56                                   | 58.4                                 | 59.4                                 | 57.3                                 | 57.5                                 | 43.3                                 | 42.9                                 | 44.3                                 | 46.3                                 | 47                                   | 47.9                                 | 46.8                                 | 53.2                                 | 56.7                                 | 57.9                                 | 55.2                                 | 56.1                                 | 65.1                                   | 71.1                                 | 68.5                                 |
| 90                   | 155                                  | 137.00                                | 108                                   | 132                                  | 83.4                                 | 82                                   | 80.8                                 | 82                                   | 82.6                                 | 80.4                                 | 81.1                                 | 67.8                                 | 67.3                                 | 68.4                                 | 70.6                                 | 71.6                                 | 70.7                                 | 69.7                                 | 82.4                                 | 86.2                                 | 88.3                                 | 83.6                                 | 85.7                                 | 96.6                                   | 105                                  | 164                                  |
|                      |                                      |                                       |                                       |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                        |                                      |                                      |
| Particle Diameter    | 21.0031_001_Hyn                      | 21.0031_002_MIN                       | 21.0031_003_TAN                       | 21.0031_004#2_0                      | 21.0031_005#2_0                      | 21.0031_006#1_0                      | 21.0031_007#1_0                      | 21.0031_008#1_0                      | 21.0031_009#1_0                      | 21.0031_010#1_0                      | 21.0031_011#2_0                      | 21.0031_012#2_0                      | 21.0031_013#1_0                      | 21.0031_014#1_0                      | 21.0031_015#1_0                      | 21.0031_016#1_0                      | 21.0031_017#1_0                      | 21.0031_018#1_0                      | 21.0031_019#2_0                      | 21.0031_020#1_0                      | 21.0031_021#1_0                      | 21.0031_022#1_0                      | 21.0031_023#1_0                      | 21.0031_024#2_0                        | 21.0031_025#1_0                      | 21.0031_026_Hyn                      |
| um                   | Volume                               | Volume                                | Volume                                | Volume                               | Volume                               | Volume                               | Volume                               | Volume                               | Volume                               | Volume                               | Volume                               | Volume                               | Volume                               | Volume                               | Volume                               | Volume                               | Volume                               | Volume                               | Volume                               | Volume                               | Volume                               | Volume                               | Volume                               | Volume                                 | Volume                               | Volume                               |
|                      | % <                                  | % <                                   | % <                                   | % <                                  | % <                                  | % <                                  | % <                                  | % <                                  | % <                                  | % <                                  | % <                                  | % <                                  | % <                                  | % <                                  | % <                                  | % <                                  | % <                                  | % <                                  | % <                                  | % <                                  | % <                                  | % <                                  | % <                                  | % <                                    | % <                                  | % <                                  |
| 0.4                  | 0                                    | 0.014                                 | 0.12                                  | 0.0042                               | 0.004                                | 0.0022                               | 0.0012                               | 0.0039                               | 0.0052                               | 0.0055                               | 0.0055                               | 0                                    | 0                                    | 0                                    | 0.00061                              | 0.0018                               | 0.0028                               | 0.0025                               | 0.0029                               | 0.0037                               | 0                                    | 0.0045                               | 0.0046                               | 0.005                                  | 0.0056                               | 0                                    |
| 0.5                  | 0                                    | 0.120                                 | 0.98                                  | 0.036                                | 0.032                                | 0.019                                | 0.01                                 | 0.033                                | 0.044                                | 0.047                                | 0.047                                | 0.00057                              | 0.00054                              | 0.00066                              | 0.0049                               | 0.015                                | 0.024                                | 0.022                                | 0.024                                | 0.031                                | 0.00047                              | 0.038                                | 0.039                                | 0.042                                  | 0.047                                | 0                                    |
| 1                    | 0.66                                 | 1.100                                 | 8.3                                   | 0.67                                 | 1.110                                | 1.14                                 | 1.14                                 | 1.13                                 | 1.1                                  | 1.14                                 | 1.17                                 | 1.27                                 | 1.28                                 | 1.25                                 | 1.31                                 | 1.3                                  | 1.28                                 | 1.33                                 | 1.14                                 | 1.11                                 | 0.87                                 | 1.14                                 | 1.17                                 | 1.01                                   | 0.89                                 | 0.63                                 |
| 1.5                  | 3.6                                  | 1.910                                 | 13.4                                  | 1.75                                 | 3.350                                | 3.66                                 | 3.8                                  | 3.4                                  | 3.12                                 | 3.22                                 | 3.31                                 | 4.67                                 | 4.72                                 | 4.51                                 | 4.47                                 | 4.27                                 | 4.08                                 | 4.28                                 | 3.56                                 | 3.37                                 | 3.14                                 | 3.35                                 | 3.44                                 | 2.86                                   | 2.35                                 | 3.48                                 |
| 2                    | 7.05                                 | 2.540                                 | 16.9                                  | 2.78                                 | 5.590                                | 6.18                                 | 6.48                                 | 5.67                                 | 5.1                                  | 5.28                                 | 5.4                                  | 8.17                                 | 8.27                                 | 7.83                                 | 7.65                                 | 7.25                                 | 6.9                                  | 7.25                                 | 6                                    | 5.62                                 | 5.53                                 | 5.55                                 | 5.68                                 | 4.68                                   | 3.75                                 | 6.84                                 |
| 5                    | 21.1                                 | 5.850                                 | 29.2                                  | 6.33                                 | 13.900                               | 15.4                                 | 16.4                                 | 14.2                                 | 12.6                                 | 13                                   | 13                                   | 20.9                                 | 21.1                                 | 20                                   | 19.2                                 | 18.2                                 | 17.3                                 | 18                                   | 15.1                                 | 14                                   | 14.3                                 | 13.9                                 | 14                                   | 11.4                                   | 8.94                                 | 20.7                                 |
| 10                   | 37.1                                 | 12.300                                | 41                                    | 9.38                                 | 22.700                               | 25.1                                 | 26.8                                 | 23.4                                 | 20.7                                 | 21.4                                 | 21.3                                 | 34.3                                 | 34.7                                 | 33                                   | 31.7                                 | 30.1                                 | 28.6                                 | 29.5                                 | 25.4                                 | 23.5                                 | 23.3                                 | 23.5                                 | 23.5                                 | 18.9                                   | 14.9                                 | 36.5                                 |
| 15                   | 46.6                                 | 18.80                                 | 47.8                                  | 11.3                                 | 28.70                                | 31.5                                 | 33.5                                 | 29.6                                 | 20.7                                 | 27.7                                 | 27.6                                 | 43                                   | 43.4                                 | 41.6                                 | 39.9                                 | 38.1                                 | 30.0                                 | 37.5                                 | 33                                   | 30.6                                 | 29.6                                 | 30.7                                 | 30.7                                 | 24.9                                   | 20                                   | 45.9                                 |
| 20                   | 57                                   | 24.80                                 | 52.8                                  | 12.9                                 | 33.60                                | 30.7                                 | 30.9                                 | 34.9<br>40.1                         | 32.1                                 | 33.3                                 | 33.2                                 | 49.9                                 | 50.3                                 | 46.5                                 | 40.5                                 | 44.9<br>51 1                         | 43.5                                 | 44.3<br>50.7                         | 39.5                                 | 30.7                                 | 35.2                                 | 37.1                                 | 37                                   | 30.3                                   | 24.7                                 | 51.9                                 |
| 50                   | 70.1                                 | 55 50                                 | 71.5                                  | 26.7                                 | 65 50                                | 67.8                                 | 69.7                                 | 40.1                                 | 65.8                                 | 67.8                                 | 67.7                                 | 80.2                                 | 80.5                                 | 79.5                                 | 78                                   | 77.4                                 | 76.8                                 | 77 7                                 | 72 4                                 | 69.5                                 | 40.9<br>68.4                         | 43.Z<br>70.7                         | 70.1                                 | 62.2                                   | 56.3                                 | 69.3                                 |
| 60                   | 73.4                                 | 63.20                                 | 75.3                                  | 33.9                                 | 75.00                                | 76.7                                 | 78.1                                 | 76.3                                 | 75.5                                 | 77.3                                 | 77.1                                 | 86.3                                 | 86.6                                 | 85.9                                 | 84.7                                 | 84.3                                 | 84.2                                 | 84.9                                 | 79.7                                 | 77.4                                 | 76.4                                 | 78.5                                 | 77.8                                 | 71.1                                   | 66.1                                 | 72.5                                 |
| 63                   | 74.3                                 | 65.20                                 | 76.4                                  | 36.3                                 | 77.60                                | 79.1                                 | 80.4                                 | 78.8                                 | 78.1                                 | 79.8                                 | 79.6                                 | 87.9                                 | 88.2                                 | 87.6                                 | 86.4                                 | 86.1                                 | 86.1                                 | 86.7                                 | 81.6                                 | 79.4                                 | 78.6                                 | 80.5                                 | 79.8                                 | 73.5                                   | 68.8                                 | 73.4                                 |
| 70                   | 76.3                                 | 69.60                                 | 78.9                                  | 42.5                                 | 82.80                                | 83.9                                 | 84.9                                 | 83.8                                 | 83.3                                 | 84.7                                 | 84.5                                 | 90.9                                 | 91.1                                 | 90.7                                 | 89.8                                 | 89.4                                 | 89.7                                 | 90.1                                 | 85.3                                 | 83.5                                 | 82.7                                 | 84.4                                 | 83.8                                 | 78.4                                   | 74.3                                 | 75.4                                 |
| 75                   | 77.6                                 | 72.30                                 | 80.6                                  | 47.3                                 | 85.80                                | 86.7                                 | 87.5                                 | 86.7                                 | 86.3                                 | 87.5                                 | 87.2                                 | 92.6                                 | 92.7                                 | 92.5                                 | 91.7                                 | 91.3                                 | 91.7                                 | 92                                   | 87.4                                 | 85.9                                 | 85.2                                 | 86.8                                 | 86.1                                 | 81.3                                   | 77.6                                 | 76.8                                 |
| 90                   | 81                                   | 78.90                                 | 85.4                                  | 61.8                                 | 92.40                                | 92.8                                 | 93.1                                 | 92.9                                 | 92.7                                 | 93.5                                 | 93.1                                 | 96.2                                 | 96.1                                 | 96.2                                 | 95.6                                 | 95.2                                 | 95.8                                 | 95.7                                 | 92                                   | 91.1                                 | 90.5                                 | 91.8                                 | 91.2                                 | 88                                     | 85.3                                 | 80.3                                 |
| 100                  | 82.9                                 | 82.3                                  | 88.2                                  | 70.6                                 | 95.1                                 | 95.3                                 | 95.5                                 | 95.4                                 | 95.3                                 | 95.9                                 | 95.4                                 | 97.6                                 | 97.4                                 | 97.6                                 | 97.2                                 | 96.7                                 | 97.4                                 | 97.1                                 | 94                                   | 93.4                                 | 92.9                                 | 94                                   | 93.4                                 | 91                                     | 88.8                                 | 82.3                                 |
| 125                  | 86.7                                 | 88.2                                  | 93.5                                  | 86.9                                 | 98.4                                 | 98.4                                 | 98.4                                 | 98.5                                 | 98.6                                 | 98.9                                 | 98.5                                 | 99.2                                 | 99                                   | 99.2                                 | 98.8                                 | 98.4                                 | 99.2                                 | 98.8                                 | 97                                   | 96.7                                 | 96.4                                 | 97.1                                 | 96.7                                 | 95.4                                   | 94.1                                 | 86.1                                 |
| 150                  | 89.5                                 | 91.6                                  | 96.9                                  | 95.4                                 | 99.5                                 | 99.6                                 | 99.4                                 | 99.6                                 | 99.7                                 | 99.8                                 | 99.7                                 | 99.8                                 | 99.6                                 | 99.7                                 | 99.4                                 | 99.1                                 | 99.8                                 | 99.5                                 | 98.6                                 | 98.5                                 | 98.3                                 | 98.7                                 | 98.5                                 | 97.8                                   | 97.1                                 | 88.8                                 |
| 170                  | 91.2                                 | 93.4                                  | 98.4                                  | 98.3                                 | 99.9                                 | 99.9                                 | 99.8                                 | 99.9                                 | 99.9                                 | 99.97                                | 99.9                                 | 99.9                                 | 99.8                                 | 99.9                                 | 99.7                                 | 99.4                                 | 99.9                                 | 99.8                                 | 99.3                                 | 99.3                                 | 99.2                                 | 99.4                                 | 99.3                                 | 99                                     | 98.5                                 | 90.5                                 |
| 180                  | 91.9                                 | 94.1                                  | 99                                    | 99.1                                 | 99.9                                 | 99.96                                | 99.9                                 | 99.96                                | 99.98                                | 99.99                                | 99.98                                | 99.98                                | 99.9                                 | 99.9                                 | 99.8                                 | 99.5                                 | 99.97                                | 99.9                                 | 99.6                                 | 99.6                                 | 99.5                                 | 99.7                                 | 99.6                                 | 99.4                                   | 99.1                                 | 91.1                                 |
| 200                  | 92.9                                 | 95.1                                  | 99.6                                  | 99.8                                 | 99.99                                | 99.99                                | 99.97                                | 99.99                                | 99.998                               | 100                                  | 99.999                               | 99.997                               | 99.98                                | 99.98                                | 99.9                                 | 99.6                                 | 99.99                                | 99.99                                | 99.9                                 | 99.9                                 | 99.9                                 | 99.9                                 | 99.9                                 | 99.8                                   | 99.7                                 | 92                                   |
| 225                  | 93.8                                 | 95.9                                  | 99.9                                  | 99.98                                | 99.999                               | 100                                  | 99.996                               | 100                                  | 100                                  | 100                                  | 100                                  | 100                                  | 99.998                               | 99.998                               | 99.99                                | 99.7                                 | 99.999                               | 99.999                               | 99.99                                | 99.99                                | 99.98                                | 99.99                                | 99.99                                | 99.97                                  | 99.9                                 | 92.7                                 |
| 200                  | 94.3                                 | 96.4                                  | 99.99                                 | 99.999                               | 100                                  | 100                                  | 100                                  | 100                                  | 100                                  | 100                                  | 100                                  | 100                                  | 100                                  | 100                                  | 100                                  | 99.7                                 | 100                                  | 100                                  | 99.999                               | 99.999                               | 99.999                               | 99.999                               | 99.999                               | 99.998                                 | 99.99                                | 93.2                                 |
| 500                  | 98 3<br>91                           | 90.Z                                  | 100                                   | 100                                  | 100                                  | 100                                  | 100                                  | 100                                  | 100                                  | 100                                  | 100                                  | 100                                  | 100                                  | 100                                  | 100                                  | 33.33                                | 100                                  | 100                                  | 100                                  | 100                                  | 100                                  | 100                                  | 100                                  | 100                                    | 100                                  | 90<br>07                             |
| 750                  | 90.3<br>QQ Q                         | 90.9<br>99 r                          | 100                                   | 100                                  | 100                                  | 100                                  | 100                                  | 100                                  | 100                                  | 100                                  | 100                                  | 100                                  | 100                                  | 100                                  | 100                                  | 100                                  | 100                                  | 100                                  | 100                                  | 100                                  | 100                                  | 100                                  | 100                                  | 100                                    | 100                                  | 91                                   |
| 1000                 | 100                                  | 99.9                                  | 100                                   | 100                                  | 100                                  | 100                                  | 100                                  | 100                                  | 100                                  | 100                                  | 100                                  | 100                                  | 100                                  | 100                                  | 100                                  | 100                                  | 100                                  | 100                                  | 100                                  | 100                                  | 100                                  | 100                                  | 100                                  | 100                                    | 100                                  | 99.996                               |



| Filo namo:                                             | 21.0031_027_MIN                                      | 21.0031_028#1_0                                    | 21.0031_029#1_0                                  | 21.0031_030#2_0                                    | 21.0031_031#1_0                                  | 21.0031_032#1_0                                    | 21.0031_033#1_0                                  | 21.0031_034#1_0                                    | 21.0031_035#2_0                                     | 21.0031_036#1_0                                     | 21.0031_037#1_0                                     | 21.0031_038#1_0                                    | 21.0031_039#1_0                                     | 21.0031_040#1_0                                     | 21.0031_041#1_0                                  | 21.0031_042#1_0                                  | 21.0031_043#1_0                                    | 21.0031_044#1_0                                    | 21.0031_045#1_0                                 | 21.0031_046#1_0                                  | 21.0031_047#1_0                                    | 21.0031_048#1_0                                    | 21.0031_049#2_0                                     | 21.0031_050#2_0                                    | 21.0031_051_Hyn                                               | 21.0031_052_MIN                                   |
|--------------------------------------------------------|------------------------------------------------------|----------------------------------------------------|--------------------------------------------------|----------------------------------------------------|--------------------------------------------------|----------------------------------------------------|--------------------------------------------------|----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|--------------------------------------------------|--------------------------------------------------|----------------------------------------------------|----------------------------------------------------|-------------------------------------------------|--------------------------------------------------|----------------------------------------------------|----------------------------------------------------|-----------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------|
|                                                        | N#1_04.\$ls<br>21.0031_027_MIN                       | 4.\$ls                                             | 4.\$ls                                           | 4.\$ls                                             | 4.\$ls                                           | 4.\$ls                                             | 4.\$ls                                           | 4.\$ls                                             | 4.\$Is                                              | 4.\$ls                                              | 4.\$ls                                              | 4.\$ls                                             | 4.\$ls                                              | 4.\$ls                                              | 4.\$ls                                           | 4.\$ls                                           | 4.\$ls                                             | 4.\$ls                                             | 4.\$ls                                          | 4.\$ls                                           | 4.\$ls                                             | 4.\$ls                                             | 4.\$ls                                              | 4.\$ls                                             | ne#1_04.\$ls<br>21.0031_051_Hyn                               | N#1_04.\$ls<br>21.0031_052_MIN                    |
| The ID.                                                | N#1<br>21.0031_MINN_Sp                               | 21.0031_020#1                                      | 21.0031_188166_                                  | 21.0031_030#2                                      | 21.0031_031#1                                    | 21.0031_188178_                                    | 21.0031_188188_                                  | 21.0031_034#1                                      | 21.0031_033#2                                       | 21.0031_030#1                                       | 21.0031_037#1                                       | 21.0031_188217_                                    | 21.0031_033#1                                       | 21.0031_188232_                                     | 21.0031_041#1                                    | 21.0031_042#1                                    | 21.0031_188248_                                    | 21.0031_188250_                                    | 21.0031_043#1                                   | 21.0031_040#1                                    | 21.0031_188270_                                    | 21.0031_048#1                                      | 21.0031_043#2                                       | 21.0031_030#2                                      | ne#1                                                          | N#1                                               |
| Sample ID:                                             | lit 1                                                | R2242MC012A 0-1<br>cm                              | R2242MC012A 2-3<br>cm                            | R2242MC012A 4-5<br>cm                              | 5 R2242MC012A 9-<br>10 cm                        | R2242MC012A 14<br>15 cm                            | - R2242MC012A 24-<br>25 cm                       | R2242MC012A 38<br>39 cm                            | - R2270MC013A 0-1<br>cm                             | R2270MC013A 2-3<br>cm                               | R2270MC013A 4-<br>cm                                | 5 R2270MC013A 9-<br>10 cm                          | R2270MC013A 14-<br>15 cm                            | R2270MC013A 24-<br>25 cm                            | R2270MC013A 32-<br>33 cm                         | - R2276MC014A 0-1<br>cm                          | R2276MC014A 2-3<br>cm                              | R2276MC014A 4-<br>cm                               | 5 R2276MC014A 9-<br>10 cm                       | R2276MC014A 14-<br>15 cm                         | - R2276MC014A 24-<br>25 cm                         | R2276MC014A 43-<br>44 cm                           | - R2279BC060 0-1<br>cm                              | R2289MC015A 0-1<br>cm                              | 0107                                                          | lit 1                                             |
| Operator:                                              | MSH                                                  | MSH                                                | MSH                                              | MSH                                                | MSH                                              | MSH                                                | MSH                                              | MSH                                                | MSH                                                 | MSH                                                 | MSH                                                 | MSH                                                | MSH                                                 | MSH                                                 | MSH                                              | MSH                                              | MSH                                                | MSH                                                | MSH                                             | MSH                                              | MSH                                                | MSH                                                | MSH                                                 | MSH                                                | MSH                                                           | MSH                                               |
| 0                                                      | 0,335 g +                                            | 0,157 g +                                          | 0,156 g +                                        | 0,130 g +                                          | 0,129 g +                                        | 0,128 g +                                          | 0,129 g +                                        | 0,128 g +                                          | 0,184 g +                                           | 0,184 g +                                           | 0,184 g +                                           | 0,184 g +                                          | 0,158 g +                                           | 0,159 g +                                           | 0,125 g +                                        | 0,155 g +                                        | 0,153 g +                                          | 0,150 g +                                          | 0,147 g +                                       | 0,144 g +                                        | 0,140 g +                                          | 0,136 g +                                          | 0,183 g +                                           | 0,153 g +                                          | 0,154 g +                                                     | 0,334 g +                                         |
| Comment 1:                                             | disp.middel,<br>Springvann                           | disp.middel,<br>springvann                         | disp.middel,<br>springvann                       | disp.middel,<br>springvann                         | disp.middel,<br>springvann                       | disp.middel,<br>springvann                         | disp.middel,<br>springvann                       | disp.middel,<br>springvann                         | disp.middel,<br>springvann                          | disp.middel,<br>springvann                          | disp.middel,<br>springvann                          | disp.middel,<br>springvann                         | disp.middel,<br>springvann                          | disp.middel,<br>springvann                          | disp.middel,<br>springvann                       | disp.middel,<br>springvann                       | disp.middel,<br>springvann                         | disp.middel,<br>springvann                         | disp.middel,<br>springvann                      | disp.middel,<br>springvann                       | disp.middel,<br>springvann                         | disp.middel,<br>springvann                         | disp.middel,<br>springvann                          | disp.middel,<br>springvann                         | disp.middel,<br>springvann                                    | disp.middel,<br>springvann                        |
| Comment 2:                                             | ultralyd, probe 2<br>(naken), 5 ampl-5               | Ultralyd Probe 2<br>(naken), 5 ampl, 5             | Ultralyd Probe 2<br>(naken), 5 ampl, 5           | Ultralyd Probe 2<br>(naken), 5 ampl, 5             | Ultralyd Probe 2<br>5 (naken), 5 ampl, 5         | Ultralyd Probe 2<br>5 (naken), 5 ampl, 5           | Ultralyd Probe 2<br>5 (naken), 5 ampl, 5         | Ultralyd Probe 2<br>(naken), 5 ampl, 5             | Ultralyd Probe 2<br>5 (naken), 5 ampl, 5            | Ultralyd Probe 2<br>(naken), 5 ampl, 5              | Ultralyd Probe 2<br>(naken), 5 ampl, 5              | Ultralyd Probe 2<br>5 (naken), 5 ampl, 5           | Ultralyd Probe 2<br>(naken), 5 ampl, 5              | Ultralyd Probe 2<br>(naken), 5 ampl, 5              | Ultralyd Probe 2<br>(naken), 5 ampl, 5           | Ultralyd Probe 2<br>(naken), 5 ampl, 5           | Ultralyd Probe 2<br>(naken), 5 ampl, 5             | Ultralyd Probe 2<br>(naken), 5 ampl, 5             | Ultralyd Probe 2<br>(naken), 5 ampl, 5          | Ultralyd Probe 2<br>(naken), 5 ampl, 5           | Ultralyd Probe 2<br>(naken), 5 ampl, 5             | Ultralyd Probe 2<br>(naken), 5 ampl, 5             | Ultralyd Probe 2<br>(naken), 5 ampl, 5              | Ultralyd Probe 2<br>(naken), 5 ampl, 5             | Ultralyd Probe 2<br>(naken), 5 ampl, 5                        | Ultralyd Probe 2<br>5 (naken), 5 ampl, 5          |
|                                                        | min,Fraunhofer<br>LS 13 320,                         | min, Leire<br>LS 13 320,                           | min, Leire<br>LS 13 320,                         | min, Leire<br>LS 13 320,                           | min, Leire<br>LS 13 320,                         | min, Leire<br>LS 13 320,                           | min, Leire<br>LS 13 320,                         | min, Leire<br>LS 13 320,                           | min, Leire<br>LS 13 320,                            | min, Leire<br>LS 13 320,                            | min, Leire<br>LS 13 320,                            | min, Leire<br>LS 13 320,                           | min, Leire<br>LS 13 320,                            | min, Leire<br>LS 13 320,                            | min, Leire<br>LS 13 320,                         | min, Leire<br>LS 13 320,                         | min, Leire<br>LS 13 320,                           | min, Leire<br>LS 13 320,                           | min, Leire<br>LS 13 320,                        | min, Leire<br>LS 13 320,                         | min, Leire<br>LS 13 320,                           | min, Leire<br>LS 13 320,                           | min, Leire<br>LS 13 320,                            | min, Leire<br>LS 13 320,                           | min, Leire<br>LS 13 320,                                      | min, Leire<br>LS 13 320,                          |
| Instrument:                                            | Aqueous Liquid<br>Module                             | Aqueous Liquid<br>Module                           | Aqueous Liquid<br>Module                         | Aqueous Liquid<br>Module                           | Aqueous Liquid<br>Module                         | Aqueous Liquid<br>Module                           | Aqueous Liquid<br>Module                         | Aqueous Liquid<br>Module                           | Aqueous Liquid<br>Module                            | Aqueous Liquid<br>Module                            | Aqueous Liquid<br>Module                            | Aqueous Liquid<br>Module                           | Aqueous Liquid<br>Module                            | Aqueous Liquid<br>Module                            | Aqueous Liquid<br>Module                         | Aqueous Liquid<br>Module                         | Aqueous Liquid<br>Module                           | Aqueous Liquid<br>Module                           | Aqueous Liquid<br>Module                        | Aqueous Liquid<br>Module                         | Aqueous Liquid<br>Module                           | Aqueous Liquid<br>Module                           | Aqueous Liquid<br>Module                            | Aqueous Liquid<br>Module                           | Aqueous Liquid<br>Module                                      | Aqueous Liquid<br>Module                          |
| Run number:                                            | 4                                                    | 4                                                  | 4                                                | 4                                                  | 4                                                | 4                                                  | 4                                                | 4                                                  | 4                                                   | 4                                                   | 4                                                   | 4                                                  | 4                                                   | 4                                                   | 4                                                | 4                                                | 4                                                  | 4                                                  | 4                                               | 4                                                | 4                                                  | 4                                                  | 4                                                   | 4                                                  | 4                                                             | 4                                                 |
| Run length:                                            | 60                                                   | 60                                                 | 60                                               | 60                                                 | 61                                               | 60                                                 | 60                                               | 60                                                 | 60                                                  | 60                                                  | 60                                                  | 60                                                 | 60                                                  | 60                                                  | 60                                               | 60                                               | 60                                                 | 60                                                 | 60                                              | 60                                               | 60                                                 | 60                                                 | 61                                                  | 60                                                 | 60                                                            | 60                                                |
| Optical model:                                         | Fraunhofer.rf780d                                    | Leire-1-65.rf780d                                  | Leire-1-65.rf780d                                | Leire-1-65.rf780d                                  | Leire-1-65.rf780d                                | Leire-1-65.rf780d                                  | Leire-1-65.rf780d                                | Leire-1-65.rf780d                                  | Leire-1-65.rf780d                                   | Leire-1-65.rf780d                                   | Leire-1-65.rf780d                                   | Leire-1-65.rf780d                                  | Leire-1-65.rf780d                                   | Leire-1-65.rf780d                                   | Leire-1-65.rf780d                                | Leire-1-65.rf780d                                | Leire-1-65.rf780d                                  | Leire-1-65.rf780d                                  | Leire-1-65.rf780d                               | Leire-1-65.rf780d                                | Leire-1-65.rf780d                                  | Leire-1-65.rf780d                                  | Leire-1-65.rf780d                                   | Leire-1-65.rf780d                                  | Leire-1-65.rf780d                                             | Fraunhofer.rf780d                                 |
| Obscuration:<br>PIDS Obscur:                           | 11                                                   | 11                                                 | 12                                               | 11                                                 | 10                                               | 10                                                 | 10                                               | 10                                                 | 10                                                  | 11                                                  | 11                                                  | 12                                                 | 10                                                  | 12                                                  | 11                                               | 11                                               | 11                                                 | 12                                                 | 11                                              | 11                                               | 11                                                 | 12                                                 | 10                                                  | 10                                                 | 10                                                            | 11                                                |
| Obscuration:                                           | ОК                                                   | ОК                                                 | ОК                                               | OK                                                 | ОК                                               | OK                                                 | ОК                                               | ОК                                                 | OK                                                  | OK                                                  | OK                                                  | OK                                                 | OK                                                  | OK                                                  | OK                                               | ОК                                               | OK                                                 | OK                                                 | OK                                              | ОК                                               | ОК                                                 | ОК                                                 | ОК                                                  | ОК                                                 | OK                                                            | ОК                                                |
| Serial Number:                                         | 9834                                                 | 9834                                               | 9834                                             | 9834                                               | 9834                                             | 9834                                               | 9834                                             | 9834                                               | 9834                                                | 9834                                                | 9834                                                | 9834                                               | 9834                                                | 9834                                                | 9834                                             | 9834                                             | 9834                                               | 9834                                               | 9834                                            | 9834                                             | 9834                                               | 9834                                               | 9834                                                | 9834                                               | 9834                                                          | 9834                                              |
| From                                                   | 0.375                                                | 0.375                                              | 0.375                                            | 0.375                                              | 0.375                                            | 0.375                                              | 0.375                                            | 0.375                                              | 0.375                                               | 0.375                                               | 0.375                                               | 0.375                                              | 0.375                                               | 0.375                                               | 0.375                                            | 0.375                                            | 0.375                                              | 0.375                                              | 0.375                                           | 0.375                                            | 0.375                                              | 0.375                                              | 0.375                                               | 0.375                                              | 0.375                                                         | 0.375                                             |
| То                                                     | 2000                                                 | 2000                                               | 2000                                             | 2000                                               | 2000                                             | 2000                                               | 2000                                             | 2000                                               | 2000                                                | 2000                                                | 2000                                                | 2000                                               | 2000                                                | 2000                                                | 2000                                             | 2000                                             | 2000                                               | 2000                                               | 2000                                            | 2000                                             | 2000                                               | 2000                                               | 2000                                                | 2000                                               | 2000                                                          | 2000                                              |
| Volume<br>Mean:                                        | 100<br>76.2                                          | 100<br>29.17                                       | 100<br>25.33                                     | 100<br>26.7                                        | 100<br>25.28                                     | 100<br>25.53                                       | 100<br>25.47                                     | 100<br>27.2                                        | 100<br>47.44                                        | 100<br>39.06                                        | 100<br>38.93                                        | 100<br>42.17                                       | 100<br>41.88                                        | 100<br>30.79                                        | 100<br>23.07                                     | 100<br>26.02                                     | 100<br>25.87                                       | 100<br>25.53                                       | 100<br>29.03                                    | 100<br>24.77                                     | 100<br>28.44                                       | 100<br>27.33                                       | 100<br>46.35                                        | 100<br>32.75                                       | 100<br>65.48                                                  | 100<br>57.75                                      |
| Median:                                                | 44.17                                                | 16.02                                              | 14.22                                            | 13.99                                              | 14.42                                            | 13.87                                              | 14.15                                            | 15.33                                              | 31.31                                               | 26.17                                               | 25.75                                               | 20.14                                              | 21.36                                               | 13.62                                               | 11.5                                             | 15.42                                            | 15.65                                              | 15.38                                              | 15.61                                           | 14.6                                             | 15.83                                              | 13.55                                              | 34.49                                               | 18.91                                              | 18.65                                                         | 42.4                                              |
| D(3,2):                                                | 14.68                                                | 6.352                                              | 6.038                                            | 6.059                                              | 6.161                                            | 6.003                                              | 6.016                                            | 6.11                                               | 8.704                                               | 7.948                                               | 7.944                                               | 7.081                                              | 7.316                                               | 6.07                                                | 5.55                                             | 6.184                                            | 6.244                                              | 6.168                                              | 6.202                                           | 6.086                                            | 6.211                                              | 5.993                                              | 8.669                                               | 6.694                                              | 7.418                                                         | 14.18                                             |
| Mode:                                                  | 55.14                                                | 34.58                                              | 31.5                                             | 31.5                                               | 31.5                                             | 31.5                                               | 31.5                                             | 31.5                                               | 66.44                                               | 55.13                                               | 55.13                                               | 2.094<br>34.58                                     | 34.58                                               | 10.29                                               | 10.29                                            | 31.5                                             | 34.58                                              | 34.58                                              | 34.58                                           | 31.5                                             | 31.5                                               | 34.58                                              | 80.07                                               | 37.97                                              | 9.37                                                          | 55.14                                             |
| S.D.:                                                  | 130.4                                                | 39.27                                              | 29.7                                             | 37.72                                              | 29.55                                            | 33.62                                              | 30.33                                            | 31.15                                              | 54.15                                               | 39.67                                               | 40.07                                               | 58.44                                              | 52.09                                               | 44.07                                               | 32.33                                            | 29.62                                            | 28.6                                               | 28.18                                              | 41.66                                           | 27.97                                            | 39.29                                              | 38.3                                               | 42.96                                               | 40.79                                              | 122.1                                                         | 58.34                                             |
| Variance:<br>C.V.:                                     | 17013<br>171.2                                       | 1542<br>134.6                                      | 882.3<br>117.3                                   | 1422<br>141.3                                      | 873.5<br>116.9                                   | 1130<br>131.7                                      | 919.9<br>119.1                                   | 970.1<br>114.5                                     | 2933<br>114.2                                       | 1574<br>101.6                                       | 1605<br>102.9                                       | 3415<br>138.6                                      | 2714<br>124.4                                       | 1943<br>143.1                                       | 1045<br>140.2                                    | 877.2<br>113.8                                   | 818.1<br>110.6                                     | 794.3<br>110.4                                     | 1735<br>143.5                                   | 782.5<br>112.9                                   | 1543<br>138.1                                      | 1467<br>140.1                                      | 1846<br>92.7                                        | 1664<br>124.6                                      | 14915<br>186.5                                                | 3403<br>101                                       |
| Skewness:                                              | 5.449                                                | 3.778                                              | 2.218                                            | 4.106                                              | 2.263                                            | 3.716                                              | 2.251                                            | 1.91                                               | 2.678                                               | 1.45                                                | 1.513                                               | 2.944                                              | 2.177                                               | 2.898                                               | 3.18                                             | 2.208                                            | 2.039                                              | 2.029                                              | 4.189                                           | 2.187                                            | 4.063                                              | 3.731                                              | 1.021                                               | 3.243                                              | 3.575                                                         | 2.763                                             |
| Kurtosis:                                              | 36.72                                                | 22.28                                              | 6.105                                            | 25.57                                              | 6.41                                             | 23.56                                              | 6.148                                            | 3.932                                              | 11.48                                               | 1.942                                               | 2.212                                               | 11.53                                              | 5.704                                               | 10.86                                               | 12.86                                            | 6.406                                            | 5.333                                              | 5.416                                              | 25.19                                           | 6.491                                            | 24.65                                              | 21.09                                              | 0.484                                               | 17.3                                               | 14.54                                                         | 11.6                                              |
| d10:<br>d50:                                           | 8.341<br>44.17                                       | 2.208<br>16.02                                     | 2.124<br>14.22                                   | 2.146<br>13.99                                     | 2.185<br>14.42                                   | 2.126<br>13.87                                     | 2.109<br>14.15                                   | 2.101<br>15.33                                     | 2.999<br>31.31                                      | 2.716<br>26.17                                      | 2.727<br>25.75                                      | 2.377 20.14                                        | 2.454<br>21.36                                      | 2.119<br>13.62                                      | 1.993<br>11.5                                    | 2.152<br>15.42                                   | 2.174<br>15.65                                     | 2.144<br>15.38                                     | 2.152<br>15.61                                  | 2.136<br>14.6                                    | 2.148<br>15.83                                     | 2.111<br>13.55                                     | 2.89<br>34.49                                       | 2.273<br>18.91                                     | 2.56<br>18.65                                                 | 8.089<br>42.4                                     |
| d90:                                                   | 139.5                                                | 69.73                                              | 62.98                                            | 62.93                                              | 62.29                                            | 61.7                                               | 63.48                                            | 69.31                                              | 110.1                                               | 95.57                                               | 95.39                                               | 108.6                                              | 110.5                                               | 83.96                                               | 54.82                                            | 63.24                                            | 62.69                                              | 62.61                                              | 66.49                                           | 60.93                                            | 65.35                                              | 66.41                                              | 108.7                                               | 78.94                                              | 159.6                                                         | 121.6                                             |
| Specific Surf. Area:                                   | 4087                                                 | 9446                                               | 9937                                             | 9903                                               | 9739                                             | 9994                                               | 9974                                             | 9819                                               | 6894                                                | 7549                                                | 7553                                                | 8473                                               | 8201                                                | 9884                                                | 10811                                            | 9703                                             | 9610                                               | 9727                                               | 9675                                            | 9859                                             | 9661                                               | 10012                                              | 6921                                                | 8963                                               | 8088                                                          | 4232                                              |
| %<                                                     | Size                                                 | Size                                               | Size                                             | Size                                               | Size                                             | Size                                               | Size                                             | Size                                               | Size                                                | Size                                                | Size                                                | Size                                               | Size                                                | Size                                                | Size                                             | Size                                             | Size                                               | Size                                               | Size                                            | Size                                             | Size                                               | Size                                               | Size                                                | Size                                               | Size                                                          | Size                                              |
| 10                                                     | 8.34                                                 | 2.21                                               | 2.12                                             | 2.15                                               | 2.18                                             | 2.13                                               | 2.11                                             | 2.1                                                | 3                                                   | 2.72                                                | 2.73                                                | 2.38                                               | 2.45                                                | 2.12                                                | 1.99                                             | 2.15                                             | 2.17                                               | 2.14                                               | 2.15                                            | 2.14                                             | 2.15                                               | 2.11                                               | 2.89                                                | 2.27                                               | 2.56                                                          | 8.09                                              |
| 50                                                     | 44.2                                                 | 5.58<br>16                                         | 14.2                                             | 14                                                 | 14.4                                             | 13.9                                               | 14.2                                             | 15.3                                               | 9.13<br>31.3                                        | 26.2                                                | 25.8                                                | 20.1                                               | 21.4                                                | 13.6                                                | 11.5                                             | 15.4                                             | 5.46<br>15.7                                       | 5.38<br>15.4                                       | 15.6                                            | 5.25<br>14.6                                     | 15.8                                               | 4.56                                               | 34.5                                                | 18.9                                               | 18.6                                                          | 42.4                                              |
| 75                                                     | 81.3                                                 | 38.2                                               | 34.6                                             | 34.1                                               | 34.4                                             | 33.5                                               | 34.4                                             | 37.7                                               | 67.4                                                | 57.9                                                | 57.3                                                | 54.6                                               | 57.6                                                | 36.2                                                | 28.2                                             | 36.4                                             | 36.7                                               | 36.3                                               | 37.5                                            | 34.8                                             | 37.2                                               | 36                                                 | 73.4                                                | 46                                                 | 69                                                            | 76.1                                              |
| 90                                                     | 140                                                  | 69.7                                               | 63                                               | 62.9                                               | 62.3                                             | 61.7                                               | 63.5                                             | 69.3                                               | 110                                                 | 95.6                                                | 95.4                                                | 109                                                | 110                                                 | 84                                                  | 54.8                                             | 63.2                                             | 62.7                                               | 62.6                                               | 66.5                                            | 60.9                                             | 65.4                                               | 66.4                                               | 109                                                 | 78.9                                               | 160                                                           | 122                                               |
| Particle Diameter                                      | 21.0031_027_MIN<br>N#1_04.\$Is                       | 21.0031_028#1_0<br>4 \$ls                          | 21.0031_029#1_0<br>4 \$ls                        | 21.0031_030#2_0<br>4 \$ls                          | 21.0031_031#1_0<br>4 \$ls                        | 21.0031_032#1_0<br>4 \$ls                          | 21.0031_033#1_0<br>4.\$ls                        | 21.0031_034#1_0<br>4 \$ls                          | 21.0031_035#2_0<br>4.\$ls                           | 21.0031_036#1_0<br>4.\$ls                           | 21.0031_037#1_0<br>4.\$ls                           | 21.0031_038#1_0<br>4 \$ls                          | 21.0031_039#1_0<br>4 \$ls                           | 21.0031_040#1_0<br>4 \$ls                           | 21.0031_041#1_0<br>4 \$ls                        | 21.0031_042#1_0<br>4 \$ls                        | 21.0031_043#1_0<br>4.\$ls                          | 21.0031_044#1_0<br>4 \$ls                          | 21.0031_045#1_0<br>4 \$ls                       | 21.0031_046#1_0<br>4 \$ls                        | 21.0031_047#1_0<br>4 \$ls                          | 21.0031_048#1_0<br>4 \$ls                          | 21.0031_049#2_0<br>4 \$ls                           | 21.0031_050#2_0<br>4 \$ls                          | 21.0031_051_Hyn                                               | 21.0031_052_MIN<br>N#1_04.\$ls                    |
| um                                                     | Volume                                               | Volume                                             | Volume                                           | Volume                                             | Volume                                           | Volume                                             | Volume                                           | Volume                                             | Volume                                              | Volume                                              | Volume                                              | Volume                                             | Volume                                              | Volume                                              | Volume                                           | Volume                                           | Volume                                             | Volume                                             | Volume                                          | Volume                                           | Volume                                             | Volume                                             | Volume                                              | Volume                                             | Volume                                                        | Volume                                            |
| 0.4                                                    | % <<br>0.014                                         | % <                                                | % <                                              | % <                                                | % <                                              | % <                                                | % <                                              | % <                                                | % <                                                 | % <                                                 | % <                                                 | % <                                                | % <                                                 | % <                                                 | % <                                              | % <                                              | % <                                                | % <                                                | % <                                             | % <                                              | % <                                                | % <                                                | % <                                                 | % <                                                | % <                                                           | % <<br>0.015                                      |
| 0.5                                                    | 0.12                                                 | 0.00069                                            | 0.00064                                          | 0.00054                                            | 0.00057                                          | 0.0006                                             | 0.00047                                          | 0.00053                                            | 0.00056                                             | 0.00053                                             | 0.00049                                             | 0.000032                                           | 0.000025                                            | 0.000018                                            | 0.000029                                         | 0.00071                                          | 0.00069                                            | 0.00068                                            | 0.00079                                         | 0.00059                                          | 0.00082                                            | 0                                                  | 0.00025                                             | 0.00044                                            | 0                                                             | 0.12                                              |
| 1                                                      | 1.09                                                 | 1.37                                               | 1.43                                             | 1.37                                               | 1.35                                             | 1.4                                                | 1.37                                             | 1.41                                               | 0.99                                                | 1.08                                                | 1.06                                                | 1.05                                               | 0.97                                                | 1.11                                                | 1.27                                             | 1.42                                             | 1.4                                                | 1.42                                               | 1.45                                            | 1.4                                              | 1.46                                               | 0.73                                               | 0.93                                                | 1.26                                               | 0.66                                                          | 1.13                                              |
| 1.5                                                    | 1.89<br>2.51                                         | 4.98<br>8.67                                       | 5.25<br>9.16                                     | 5.12<br>9.01                                       | 5<br>8.78                                        | 5.18<br>9.12                                       | 5.2<br>9.23                                      | 5.28<br>9.29                                       | 3.54<br>6.13                                        | 6.79                                                | 3.86<br>6.74                                        | 4.33<br>7.81                                       | 4.09<br>7.46                                        | 4.93<br>9.12                                        | 5.49<br>10.1                                     | 5.16<br>8.99                                     | 5.08<br>8.85                                       | 5.19<br>9.04                                       | 5.2<br>9                                        | 5.18<br>9.07                                     | 5.21<br>9.02                                       | 4.49<br>9.06                                       | 6.32                                                | 4.73<br>8.33                                       | 3.5<br>6.83                                                   | 1.97<br>2.61                                      |
| 5                                                      | 5.79                                                 | 22.7                                               | 24.2                                             | 24.2                                               | 23.6                                             | 24.5                                               | 24.5                                             | 24                                                 | 15.8                                                | 17.5                                                | 17.5                                                | 20.7                                               | 20                                                  | 24.9                                                | 27.3                                             | 23.5                                             | 23.2                                               | 23.5                                               | 23.4                                            | 24                                               | 23.3                                               | 27                                                 | 16.4                                                | 21.8                                               | 20.6                                                          | 5.99                                              |
| 10<br>15                                               | 12.2<br>18.5                                         | 38.5<br>48.3                                       | 41.1<br>51.3                                     | 41.4<br>51.8                                       | 40.6<br>51                                       | 41.5<br>52.1                                       | 41<br>51.5                                       | 39.6<br>49.5                                       | 26.5<br>33.7                                        | 29.5<br>37.4                                        | 29.7<br>37.7                                        | 34.6<br>43.5                                       | 33.5<br>42.2                                        | 41.9<br>52.5                                        | 45.9<br>57.7                                     | 39.4<br>49.3                                     | 39.1<br>48.9                                       | 39.5<br>49.4                                       | 39.3<br>49                                      | 40.5<br>50.7                                     | 38.9<br>48.6                                       | 43.3<br>52.2                                       | 26.9<br>33.3                                        | 36.2<br>44.8                                       | 36.1<br>45.4                                                  | 12.6<br>19.1                                      |
| 20                                                     | 24.5                                                 | 55.8                                               | 58.9                                             | 59.4                                               | 58.8                                             | 59.8                                               | 59.3                                             | 56.8                                               | 39.3                                                | 43.5                                                | 43.9                                                | 49.8                                               | 48.5                                                | 59.9                                                | 65.7                                             | 56.8                                             | 56.4                                               | 56.9                                               | 56.3                                            | 58.3                                             | 56.1                                               | 58.8                                               | 38.1                                                | 51.3                                               | 51.4                                                          | 25.3                                              |
| 25                                                     | 30.2                                                 | 62                                                 | 65.2                                             | 65.7                                               | 65.1                                             | 66.1                                               | 65.5                                             | 62.8                                               | 44.2                                                | 48.8                                                | 49.2                                                | 55                                                 | 53.6                                                | 65.4                                                | 71.7                                             | 63.1                                             | 62.7                                               | 63.2                                               | 62.5                                            | 64.6                                             | 62.3                                               | 64.4                                               | 42.4                                                | 56.8                                               | 55.7                                                          | 31.2                                              |
| 60                                                     | 62.8                                                 | 82.7<br>87                                         | 85.1                                             | 85.3<br>89.1                                       | 85.3<br>89.3                                     | 85.8<br>89.5                                       | 85.1                                             | 82.7                                               | 64.6<br>70.9                                        | 70.1                                                | 70.5                                                | 72.8                                               | 71.4                                                | 81.9                                                | 88.6<br>91.3                                     | 84.3<br>88.8                                     | 84.3<br>89                                         | 84.5<br>89                                         | 83.4<br>87.8                                    | 85.5<br>89.7                                     | 83.7<br>88.2                                       | 84<br>88.1                                         | 67.1                                                | 82.8                                               | 69<br>72.3                                                    | 57<br>65                                          |
| 63                                                     | 64.9                                                 | 88                                                 | 90                                               | 90                                                 | 90.2                                             | 90.4                                               | 89.9                                             | 88.1                                               | 72.6                                                | 77.8                                                | 78.1                                                | 78.4                                               | 77.2                                                | 85.8                                                | 91.9                                             | 89.9                                             | 90.1                                               | 90.1                                               | 88.9                                            | 90.7                                             | 89.3                                               | 89.1                                               | 69                                                  | 84.2                                               | 73.2                                                          | 67.1                                              |
| 70<br>75                                               | 69.2<br>72                                           | 90.1<br>91.3                                       | 91.9<br>93                                       | 91.7<br>92 7                                       | 92.1<br>93.3                                     | 92.1<br>93.1                                       | 91.7<br>92.8                                     | 90.2<br>91.4                                       | 76.3<br>78 7                                        | 81.2<br>83.3                                        | 81.5<br>83.6                                        | 80.9<br>82.5                                       | 79.9<br>81.5                                        | 87.4<br>88.4                                        | 93.1<br>93.8                                     | 92.1<br>93.3                                     | 92.3<br>93.5                                       | 92.3<br>93.6                                       | 91<br>92 2                                      | 92.7<br>93.9                                     | 91.4<br>92.5                                       | 90.9<br>92                                         | 73.1<br>75.9                                        | 87.1<br>88.8                                       | 75.3<br>76.6                                                  | 71.6<br>74.4                                      |
| 90                                                     | 78.6                                                 | 94                                                 | 95.5                                             | 94.9                                               | 95.7                                             | 95.4                                               | 95.2                                             | 94.2                                               | 84.6                                                | 88.5                                                | 88.6                                                | 86.4                                               | 85.8                                                | 90.9                                                | 95.4                                             | 95.9                                             | 96.1                                               | 96.3                                               | 94.7                                            | 96.5                                             | 95                                                 | 94.5                                               | 83.2                                                | 92.8                                               | 80.3                                                          | 81.2                                              |
| 100                                                    | 82                                                   | 95.4                                               | 96.6                                             | 95.9                                               | 96.7                                             | 96.4                                               | 96.3                                             | 95.6                                               | 87.6                                                | 91.1                                                | 91.1                                                | 88.5                                               | 88                                                  | 92.3                                                | 96.2                                             | 97                                               | 97.1                                               | 97.3                                               | 95.8                                            | 97.5                                             | 96                                                 | 95.7                                               | 87.2                                                | 94.6                                               | 82.3                                                          | 84.7                                              |
| 125                                                    | 87.8<br>91.3                                         | 97.4<br>98.3                                       | 98.3<br>99.2                                     | 97.6<br>98.5                                       | 98.2<br>99.1                                     | 98<br>98.9                                         | 98<br>99.1                                       | 98<br>99.3                                         | 92.6<br>95.5                                        | 95.3<br>97.7                                        | 95.1<br>97.6                                        | 92.3<br>94.8                                       | 92.2<br>94.9                                        | 95.1<br>97                                          | 97.5<br>98.4                                     | 98.3<br>99.1                                     | 98.5<br>99.4                                       | 98.7<br>99.4                                       | 97.3<br>98                                      | 98.7<br>99.4                                     | 97.4<br>98.3                                       | 97.5<br>98.4                                       | 93.9<br>97.4                                        | 97.1<br>98.3                                       | 86.2<br>89.1                                                  | 90.6<br>94.1                                      |
| 170                                                    | 93                                                   | 98.8                                               | 99.6                                             | 99                                                 | 99.6                                             | 99.3                                               | 99.6                                             | 99.8                                               | 96.9                                                | 99                                                  | 98.8                                                | 96.2                                               | 96.4                                                | 98                                                  | 99                                               | 99.6                                             | 99.8                                               | 99.7                                               | 98.4                                            | 99.7                                             | 98.7                                               | 98.8                                               | 98.9                                                | 98.8                                               | 90.8                                                          | 95.9                                              |
| 180                                                    | 93.7                                                 | 98.9                                               | 99.8                                             | 99.1                                               | 99.8                                             | 99.4                                               | 99.8                                             | 99.9                                               | 97.5                                                | 99.4                                                | 99.2                                                | 96.7                                               | 96.9                                                | 98.3                                                | 99.2                                             | 99.7                                             | 99.9                                               | 99.9                                               | 98.6                                            | 99.8                                             | 98.9                                               | 98.9                                               | 99.3                                                | 99                                                 | 91.5                                                          | 96.5                                              |
| 200                                                    | 04 6                                                 | 00.2                                               | 00.0                                             | 00.2                                               | 00.0                                             | 00.6                                               | 00.0                                             | 00 00                                              | 08.2                                                | 00.9                                                | 00 7                                                | 07 F                                               | 07.9                                                | 08.8                                                | 00 F                                             | 00.0                                             | 00 02                                              | 00.06                                              | 08.8                                            | 00.0                                             | 00.1                                               | 00 1                                               | 00 8                                                | 00.2                                               | 02 F                                                          | 07 /                                              |
| 200<br>225                                             | 94.6<br>95.3                                         | 99.2<br>99.3                                       | 99.9<br>99.99                                    | 99.2<br>99.3                                       | 99.9<br>99.99                                    | 99.6<br>99.7                                       | 99.9<br>99.99                                    | 99.99<br>99.999                                    | 98.2<br>98.7                                        | 99.8<br>99.97                                       | 99.7<br>99.96                                       | 97.5<br>98                                         | 97.8<br>98.5                                        | 98.8<br>99.1                                        | 99.5<br>99.8                                     | 99.9<br>99.99                                    | 99.98<br>99.999                                    | 99.96<br>99.996                                    | 98.8<br>99                                      | 99.9<br>99.99                                    | 99.1<br>99.2                                       | 99.1<br>99.3                                       | 99.8<br>99.97                                       | 99.2<br>99.3                                       | 92.5<br>93.4                                                  | 97.4<br>98                                        |
| 200<br>225<br>250                                      | 94.6<br>95.3<br>95.6                                 | 99.2<br>99.3<br>99.4                               | 99.9<br>99.99<br>100                             | 99.2<br>99.3<br>99.4                               | 99.9<br>99.99<br>100                             | 99.6<br>99.7<br>99.7                               | 99.9<br>99.99<br>100                             | 99.99<br>99.999<br>100                             | 98.2<br>98.7<br>98.9                                | 99.8<br>99.97<br>99.998                             | 99.7<br>99.96<br>99.996                             | 97.5<br>98<br>98.3                                 | 97.8<br>98.5<br>99.1                                | 98.8<br>99.1<br>99.4                                | 99.5<br>99.8<br>99.9                             | 99.9<br>99.99<br>100                             | 99.98<br>99.999<br>100                             | 99.96<br>99.996<br>100                             | 98.8<br>99<br>99.2                              | 99.9<br>99.99<br>100                             | 99.1<br>99.2<br>99.3                               | 99.1<br>99.3<br>99.4                               | 99.8<br>99.97<br>99.998                             | 99.2<br>99.3<br>99.4                               | 92.5<br>93.4<br>93.9                                          | 97.4<br>98<br>98.4                                |
| 200<br>225<br>250<br>400<br>500                        | 94.6<br>95.3<br>95.6<br>97.3<br>98.1                 | 99.2<br>99.3<br>99.4<br>99.96<br>100               | 99.9<br>99.99<br>100<br>100<br>100               | 99.2<br>99.3<br>99.4<br>99.97<br>100               | 99.9<br>99.99<br>100<br>100<br>100               | 99.6<br>99.7<br>99.7<br>99.98<br>100               | 99.9<br>99.99<br>100<br>100<br>100               | 99.99<br>99.999<br>100<br>100<br>100               | 98.2<br>98.7<br>98.9<br>99.8<br>99.99               | 99.8<br>99.97<br>99.998<br>100<br>100               | 99.7<br>99.96<br>99.996<br>100<br>100               | 97.5<br>98<br>98.3<br>99.8<br>99.997               | 97.8<br>98.5<br>99.1<br>99.997<br>100               | 98.8<br>99.1<br>99.4<br>99.996<br>100               | 99.5<br>99.8<br>99.9<br>100<br>100               | 99.9<br>99.99<br>100<br>100<br>100               | 99.98<br>99.999<br>100<br>100<br>100               | 99.96<br>99.996<br>100<br>100<br>100               | 98.8<br>99<br>99.2<br>99.9<br>100               | 99.9<br>99.99<br>100<br>100<br>100               | 99.1<br>99.2<br>99.3<br>99.97<br>100               | 99.1<br>99.3<br>99.4<br>99.98<br>100               | 99.8<br>99.97<br>99.998<br>100<br>100               | 99.2<br>99.3<br>99.4<br>99.98<br>100               | 92.5<br>93.4<br>93.9<br>96.5<br>97.7                          | 97.4<br>98<br>98.4<br>99.6<br>99.98               |
| 200<br>225<br>250<br>400<br>500<br>750                 | 94.6<br>95.3<br>95.6<br>97.3<br>98.1<br>98.9         | 99.2<br>99.3<br>99.4<br>99.96<br>100<br>100        | 99.9<br>99.99<br>100<br>100<br>100<br>100        | 99.2<br>99.3<br>99.4<br>99.97<br>100<br>100        | 99.9<br>99.99<br>100<br>100<br>100<br>100        | 99.6<br>99.7<br>99.7<br>99.98<br>100<br>100        | 99.9<br>99.99<br>100<br>100<br>100<br>100        | 99.99<br>99.999<br>100<br>100<br>100<br>100<br>100 | 98.2<br>98.7<br>98.9<br>99.8<br>99.99<br>100        | 99.8<br>99.97<br>99.998<br>100<br>100<br>100        | 99.7<br>99.96<br>99.996<br>100<br>100<br>100        | 97.5<br>98<br>98.3<br>99.8<br>99.997<br>100        | 97.8<br>98.5<br>99.1<br>99.997<br>100<br>100        | 98.8<br>99.1<br>99.4<br>99.996<br>100<br>100        | 99.5<br>99.8<br>99.9<br>100<br>100<br>100        | 99.9<br>99.99<br>100<br>100<br>100<br>100        | 99.98<br>99.999<br>100<br>100<br>100<br>100        | 99.96<br>99.996<br>100<br>100<br>100<br>100        | 98.8<br>99<br>99.2<br>99.9<br>100<br>100        | 99.9<br>99.99<br>100<br>100<br>100<br>100        | 99.1<br>99.2<br>99.3<br>99.97<br>100<br>100        | 99.1<br>99.3<br>99.4<br>99.98<br>100<br>100        | 99.8<br>99.97<br>99.998<br>100<br>100<br>100        | 99.2<br>99.3<br>99.4<br>99.98<br>100<br>100        | 92.5<br>93.4<br>93.9<br>96.5<br>97.7<br>99.5                  | 97.4<br>98<br>98.4<br>99.6<br>99.98<br>100        |
| 200<br>225<br>250<br>400<br>500<br>750<br>1000<br>2000 | 94.6<br>95.3<br>95.6<br>97.3<br>98.1<br>98.9<br>99.5 | 99.2<br>99.3<br>99.4<br>99.96<br>100<br>100<br>100 | 99.9<br>99.99<br>100<br>100<br>100<br>100<br>100 | 99.2<br>99.3<br>99.4<br>99.97<br>100<br>100<br>100 | 99.9<br>99.99<br>100<br>100<br>100<br>100<br>100 | 99.6<br>99.7<br>99.7<br>99.98<br>100<br>100<br>100 | 99.9<br>99.99<br>100<br>100<br>100<br>100<br>100 | 99.99<br>99.999<br>100<br>100<br>100<br>100<br>100 | 98.2<br>98.7<br>99.8<br>99.8<br>99.99<br>100<br>100 | 99.8<br>99.97<br>99.998<br>100<br>100<br>100<br>100 | 99.7<br>99.96<br>99.996<br>100<br>100<br>100<br>100 | 97.5<br>98<br>98.3<br>99.8<br>99.997<br>100<br>100 | 97.8<br>98.5<br>99.1<br>99.997<br>100<br>100<br>100 | 98.8<br>99.1<br>99.4<br>99.996<br>100<br>100<br>100 | 99.5<br>99.8<br>99.9<br>100<br>100<br>100<br>100 | 99.9<br>99.99<br>100<br>100<br>100<br>100<br>100 | 99.98<br>99.999<br>100<br>100<br>100<br>100<br>100 | 99.96<br>99.996<br>100<br>100<br>100<br>100<br>100 | 98.8<br>99<br>99.2<br>99.9<br>100<br>100<br>100 | 99.9<br>99.99<br>100<br>100<br>100<br>100<br>100 | 99.1<br>99.2<br>99.3<br>99.97<br>100<br>100<br>100 | 99.1<br>99.3<br>99.4<br>99.98<br>100<br>100<br>100 | 99.8<br>99.97<br>99.998<br>100<br>100<br>100<br>100 | 99.2<br>99.3<br>99.4<br>99.98<br>100<br>100<br>100 | 92.5<br>93.4<br>93.9<br>96.5<br>97.7<br>99.5<br>99.997<br>100 | 97.4<br>98<br>98.4<br>99.6<br>99.98<br>100<br>100 |



|                               | 21.0031_053_TAN                 | 21.0031_054#1_0                | 21.0031_055#1_0                | 21.0031_056#1_0                | 21.0031_057#1_0                | 21.0031_058#1_0                | 21.0031_059#1_0                | 21.0031_060#1_0                | 21.0031_061#1_0                | 21.0031_062#1_0                | 21.0031_063#1_0                | 21.0031_064#1_0                | 21.0031_065#1_0                | 21.0031_066#1_0                | 21.0031_067#1_0                | 21.0031_068#1_0                | 21.0031_069#1_0                | 21.0031_070#1_0                | 21.0031_071#1_0                | 21.0031_072#1_0                | 21.0031_073_Hyn                 | 21.0031_074_MIN                 | 21.0031_075#1_0                | 21.0031_076#1_0                | 21.0031_077#1_0                | 21.0031_078#1_0                |
|-------------------------------|---------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|---------------------------------|---------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|
| File name:                    | A#1_04.\$ls<br>21.0031 053 TAN  | 4.\$Is                         | 4.\$Is                         | 4.\$Is                         | 4.\$Is                         | 4.\$ls                         | 4.\$ls                         | 4.\$Is                         | 4.\$Is                         | 4.\$Is                         | 4.\$ls                         | 4.\$Is                         | 4.\$Is                         | 4.\$Is                         | 4.\$ls                         | 4.\$ls                         | 4.\$ls                         | 4.\$ls                         | 4.\$ls                         | 4.\$Is                         | ne#1_04.\$ls<br>21.0031 073 Hvn | N#1_04.\$ls<br>21.0031 074 MIN  | 4.\$Is                         | 4.\$ls                         | 4.\$ls                         | 4.\$Is                         |
| File ID:                      | A#1                             | 21.0031_054#1                  | 21.0031_055#1                  | 21.0031_056#1                  | 21.0031_057#1                  | 21.0031_058#1                  | 21.0031_059#1                  | 21.0031_060#1                  | 21.0031_061#1                  | 21.0031_062#1                  | 21.0031_063#1                  | 21.0031_064#1                  | 21.0031_065#1                  | 21.0031_066#1                  | 21.0031_067#1                  | 21.0031_068#1                  | 21.0031_069#1                  | 21.0031_070#1                  | 21.0031_071#1                  | 21.0031_072#1                  | ne#1                            | N#1                             | 21.0031_075#1                  | 21.0031_076#1                  | 21.0031_077#1                  | 21.0031_078#1                  |
| Sample ID:                    | 21.0031_TANA (4)                | R2326GR104 0-1                 | R2331MC016A 0-1                | R2338MC017A 0-1                | R2338MC017A 2-3                | R2338MC017A 4-5                | R2338MC017A 9-                 | R2338MC017A 14-                | R2338MC017A 24-                | R2338MC017A 47-                | R2354GR125 0-1                 | R2359GR129 0-1                 | R2363MC019A 0-1                | R2363MC019A 2-3                | R2363MC019A 4-5                | 5 R2363MC019A 9-               | R2363MC019A 14- 1              | R2363MC019A 24-                | R2363MC019A 37-                | R2365GR141 0-1                 | 21.0031_Hynne_4<br>0107         | 21.0031_MINN_Sp<br>lit 1        | R2339MC018A 0-1                | R2339MC018A 1-2                | R2339MC018A 2-3                | 8 R2339MC018A 3-4              |
| Operator:                     | MSH                             | cm<br>MSH                      | cm<br>MSH                      | cm<br>MSH                      | cm<br>MSH                      | cm<br>MSH                      | 10 cm<br>MSH                   | 15 cm<br>MSH                   | 25 cm<br>MSH                   | 48 cm<br>MSH                   | cm<br>MSH                      | cm<br>MSH                      | cm<br>MSH                      | cm<br>MSH                      | cm<br>MSH                      | 10 cm<br>MSH                   | 15 cm<br>MSH                   | 25 cm<br>MSH                   | 38 cm<br>MSH                   | cm<br>MSH                      | MSH                             | MSH                             | cm<br>MSH                      | cm<br>MSH                      | cm<br>MSH                      | cm<br>MSH                      |
|                               |                                 |                                |                                |                                |                                |                                |                                |                                |                                |                                |                                |                                |                                |                                |                                |                                |                                |                                |                                |                                |                                 |                                 |                                |                                |                                |                                |
| Comment 1:                    | 0,140 g +<br>disp.middel,       | 0,141 g +<br>disp.middel,      | 0,136 g +<br>disp.middel,      | 0,137 g +<br>disp.middel,      | 0,133 g +<br>disp.middel,      | 0,129 g +<br>disp.middel,      | 0,124 g +<br>disp.middel,      | 0,119 g +<br>disp.middel,      | 0,119 g +<br>disp.middel,      | 0,120 g +<br>disp.middel,      | 0,123 g +<br>disp.middel,      | 0,126 g +<br>disp.middel,      | 0,130 g +<br>disp.middel,      | 0,141 g +<br>disp.middel,      | 0,143 g +<br>disp.middel,      | 0,143 g +<br>disp.middel,      | 0,144 g +<br>disp.middel,      | 0,146 g +<br>disp.middel,      | 0,147 g +<br>disp.middel,      | 0,147 g +<br>disp.middel,      | 0,154 g +<br>disp.middel,       | 0,334 g +<br>disp.middel,       | 0,145 g +<br>disp.middel,      | 0,122 g +<br>disp.middel,      | 0,122 g +<br>disp.middel,      | 0,120 g +<br>disp.middel,      |
|                               | Springvann<br>ultralvd. Probe 2 | springvann<br>Ultralvd Probe 2  | Springvann<br>ultralvd, probe 2 | springvann<br>Ultralvd Probe 2 | springvann<br>Ultralvd Probe 2 | springvann<br>Ultralvd Probe 2 | springvann<br>Ultralvd Probe 2 |
| Comment 2:                    | (naken), 5 ampl-5               | (naken), 5 ampl, 5             | 5 (naken), 5 ampl, 5           | (naken), 5 ampl, 5             | (naken), 5 ampl, 5             | (naken), 5 ampl, 5             | (naken), 5 ampl, 5             | (naken), 5 ampl, 5             | (naken), 5 ampl, 5             | (naken), 5 ampl, 5             | (naken), 5 ampl, 5              | (naken), 5 ampl-5               | (naken), 5 ampl, 5             |
|                               | LS 13 320,                      | LS 13 320,                     | LS 13 320,                     | LS 13 320,                     | LS 13 320,                     | LS 13 320,                     | LS 13 320,                     | LS 13 320,                     | LS 13 320,                     | LS 13 320,                     | LS 13 320,                     | LS 13 320,                     | LS 13 320,                     | LS 13 320,                     | LS 13 320,                     | LS 13 320,                     | LS 13 320,                     | LS 13 320,                     | LS 13 320,                     | LS 13 320,                     | LS 13 320,                      | LS 13 320,                      | LS 13 320,                     | LS 13 320,                     | LS 13 320,                     | LS 13 320,                     |
| Instrument:                   | Aqueous Liquid<br>Module        | Aqueous Liquid<br>Module       | Aqueous Liquid<br>Module       | Aqueous Liquid<br>Module       | Aqueous Liquid<br>Module       | Aqueous Liquid<br>Module       | Aqueous Liquid<br>Module       | Aqueous Liquid<br>Module       | Aqueous Liquid<br>Module       | Aqueous Liquid<br>Module       | Aqueous Liquid<br>Module       | Aqueous Liquid<br>Module       | Aqueous Liquid<br>Module       | Aqueous Liquid<br>Module       | Aqueous Liquid<br>Module       | Aqueous Liquid<br>Module       | Aqueous Liquid<br>Module       | Aqueous Liquid<br>Module       | Aqueous Liquid<br>Module       | Aqueous Liquid<br>Module       | Aqueous Liquid<br>Module        | Aqueous Liquid<br>Module        | Aqueous Liquid<br>Module       | Aqueous Liquid<br>Module       | Aqueous Liquid<br>Module       | Aqueous Liquid<br>Module       |
| Run number:                   | 4                               | 4                              | 4                              | 4                              | 4                              | 4                              | 4                              | 4                              | 4                              | 4                              | 4                              | 4                              | 4                              | 4                              | 4                              | 4                              | 4                              | 4                              | 4                              | 4                              | 4                               | 4                               | 4                              | 4                              | 4                              | 4                              |
| Start time:<br>Run length:    | 24.03.2021<br>60                | 24.03.2021<br>61               | 24.03.2021<br>60               | 24.03.2021<br>60               | 24.03.2021<br>60               | 25.03.2021<br>60               | 26.03.2021<br>60               | 60                             | 26.03.2021<br>60               | 26.03.2021<br>60                | 26.03.2021<br>60                | 26.03.2021<br>60               | 26.03.2021<br>60               | 26.03.2021<br>60               | 60                             |
| Optical model:                | Fraunhofer.rf780d               | Leire-1-65.rf780d               | Fraunhofer.rf780d               | Leire-1-65.rf780d              | Leire-1-65.rf780d              | Leire-1-65.rf780d              | Leire-1-65.rf780d              |
| Obscuration:                  | 10                              | 11                             | 10                             | 11                             | 11                             | 11                             | 11                             | 10                             | 10                             | 10                             | 9                              | 9                              | 8                              | 10                             | 10                             | 10                             | 9                              | 10                             | 11                             | 10                             | 10                              | 10                              | 12                             | 10                             | 11                             | 11                             |
| PIDS Obscur:<br>Obscuration:  | ОК                              | ОК                             | ОК                             | ОК                             | ОК                             | OK                             | OK                             | ОК                             | ОК                             | OK                             | ОК                             | ОК                             | OK                             | OK                             | OK                             | OK                             | OK                             | ОК                             | OK                             | ОК                             | OK                              | OK                              | OK                             | OK                             | ОК                             | ОК                             |
| Serial Number:                | 9834                            | 9834                           | 9834                           | 9834                           | 9834                           | 9834                           | 9834                           | 9834                           | 9834                           | 9834                           | 9834                           | 9834                           | 9834                           | 9834                           | 9834                           | 9834                           | 9834                           | 9834                           | 9834                           | 9834                           | 9834                            | 9834                            | 9834                           | 9834                           | 9834                           | 9834                           |
|                               |                                 |                                |                                |                                |                                |                                |                                |                                |                                |                                |                                |                                |                                |                                |                                |                                |                                |                                |                                |                                |                                 |                                 |                                |                                |                                |                                |
| From                          | 0.375                           | 0.375<br>2000                  | 0.375<br>2000                  | 0.375<br>2000                  | 0.375                          | 0.375                          | 0.375                          | 0.375                          | 0.375<br>2000                  | 0.375<br>2000                  | 0.375                          | 0.375<br>2000                  | 0.375                          | 0.375<br>2000                  | 0.375                          | 0.375                          | 0.375<br>2000                  | 0.375<br>2000                  | 0.375<br>2000                  | 0.375<br>2000                  | 0.375<br>2000                   | 0.375<br>2000                   | 0.375<br>2000                  | 0.375<br>2000                  | 0.375<br>2000                  | 0.375                          |
| Volume                        | 100                             | 100                            | 100                            | 100                            | 100                            | 100                            | 100                            | 100                            | 100                            | 100                            | 100                            | 100                            | 100                            | 100                            | 100                            | 100                            | 100                            | 100                            | 100                            | 100                            | 100                             | 100                             | 100                            | 100                            | 100                            | 100                            |
| Mean:                         | 39.1                            | 23.23                          | 78.47                          | 23.18                          | 21.8                           | 19.48                          | 20.08                          | 19.43                          | 19.96                          | 20.3                           | 33.18                          | 37.17                          | 36.2                           | 34.35                          | 31.73                          | 34.9                           | 37.43                          | 35.87                          | 30.17                          | 31.96                          | 66.73                           | 72.89                           | 18.92                          | 18.61                          | 18.03                          | 17.84                          |
| Median:                       | 17.6                            | 12.92                          | 20.94                          | 12.62                          | 12.13                          | 11.6                           | 11.64                          | 11.6                           | 11.78                          | 12.04                          | 14.04                          | 17.59                          | 19.85                          | 18.95                          | 18.24                          | 19.2                           | 20.64                          | 17.66                          | 11.1                           | 17.19                          | 18.04                           | 43.28                           | 11.37                          | 11.12                          | 10.78                          | 10.46                          |
| D(3,2):<br>Mean/Median ratio: | 2.222                           | 1.799                          | 3.748                          | 1.838                          | 1.797                          | 5.49<br>1.679                  | 1.726                          | 1.675                          | 1.694                          | 1.686                          | 2.362                          | 2.114                          | 1.824                          | 1.813                          | 1.739                          | 1.818                          | 1.813                          | 2.031                          | 2.718                          | 1.859                          | 3.698                           | 1.684                           | 1.664                          | 1.674                          | 1.673                          | 1.706                          |
| Mode:                         | 87.9                            | 31.5                           | 31.5                           | 28.7                           | 28.7                           | 28.7                           | 28.7                           | 28.7                           | 28.7                           | 28.7                           | 28.7                           | 31.5                           | 31.5                           | 31.5                           | 31.5                           | 31.5                           | 31.5                           | 31.5                           | 8.536                          | 31.5                           | 9.37                            | 55.14                           | 28.7                           | 28.7                           | 28.7                           | 8.536                          |
| S.D.:                         | 48.18                           | 29.73                          | 150.3                          | 33.01                          | 29                             | 21.71                          | 23.84                          | 21.52                          | 23.42                          | 24.17                          | 51.69                          | 52.01                          | 46.82                          | 43.43                          | 38.47                          | 44.64                          | 47.42                          | 46.32                          | 46.48                          | 43.42                          | 125                             | 120.6                           | 21.91                          | 22.01                          | 21.03                          | 20.99                          |
| Variance:<br>C.V.:            | 2321                            | 883.8<br>128                   | 22593<br>191.5                 | 1089<br>142.4                  | 840.9<br>133                   | 471.3<br>111.4                 | 568.4<br>118.7                 | 463<br>110.7                   | 548.5<br>117.4                 | 584.2<br>119.1                 | 2672<br>155.8                  | 2705<br>139.9                  | 2193<br>129.3                  | 1886<br>126.4                  | 1480<br>121.2                  | 1993<br>127.9                  | 2249<br>126.7                  | 2146<br>129.1                  | 2161<br>154                    | 1885<br>135.8                  | 15634<br>187.4                  | 14554<br>165.5                  | 480.2<br>115.8                 | 484.4<br>118.3                 | 442.3<br>116.6                 | 440.5<br>117.6                 |
| Skewness:                     | 1.786                           | 3.249                          | 3.03                           | 4.138                          | 3.673                          | 2.214                          | 2.753                          | 2.173                          | 2.778                          | 2.869                          | 3.168                          | 2.736                          | 2.66                           | 2.533                          | 2.477                          | 2.622                          | 2.608                          | 2.316                          | 2.789                          | 3.145                          | 3.431                           | 5.129                           | 2.699                          | 3.027                          | 2.946                          | 2.751                          |
| Kurtosis:                     | 4.018                           | 15.7                           | 9.293                          | 23.81                          | 19.59                          | 6.34                           | 10.86                          | 6.008                          | 11.51                          | 12.06                          | 12.17                          | 9.15                           | 9.096                          | 8.273                          | 8.826                          | 8.958                          | 9.213                          | 6.431                          | 8.999                          | 13.57                          | 13.09                           | 31.33                           | 10.34                          | 13.86                          | 13.56                          | 10.62                          |
| d10:<br>d50:                  | 1.145                           | 2.075                          | 2.451                          | 2.047                          | 2.029                          | 1.986                          | 2.008                          | 2.023                          | 2.015                          | 2.005                          | 2.156<br>14.04                 | 2.35<br>17.59                  | 2.464                          | 2.382                          | 2.402                          | 2.486                          | 2.548<br>20.64                 | 2.225                          | 1.944                          | 2.286                          | 2.534<br>18.04                  | 8.251<br>43.28                  | 1.98<br>11.37                  | 1.986<br>11 12                 | 1.962                          | 1.915<br>10.46                 |
| d90:                          | 109.7                           | 54.53                          | 224.4                          | 51.31                          | 49.43                          | 46.09                          | 46.84                          | 45.97                          | 46.48                          | 46.85                          | 90.07                          | 99.55                          | 92                             | 87.69                          | 80.56                          | 88.88                          | 96.58                          | 97.65                          | 86.9                           | 78.66                          | 165.4                           | 133.6                           | 43.34                          | 42.57                          | 41.59                          | 41.35                          |
| Specific Surf. Area:          | 15463                           | 10340                          | 8275                           | 10492                          | 10656                          | 10929                          | 10834                          | 10805                          | 10800                          | 10783                          | 9825                           | 8910                           | 8514                           | 8767                           | 8783                           | 8497                           | 8227                           | 9137                           | 10971                          | 9151                           | 8182                            | 4133                            | 11014                          | 11080                          | 11251                          | 11506                          |
| 9/ -                          | Sizo                            | Sizo                           | Sizo                           | Sizo                           | Sizo                           | Sizo                           | Sizo                           | Sizo                           | Sizo                           | Sizo                           | Sizo                           | Sizo                           | Sizo                           | Sizo                           | Sizo                           | Sizo                           | Sizo                           | Sizo                           | Sizo                           | Sizo                           | Sizo                            | Sizo                            | Sizo                           | Sizo                           | Sizo                           | Sizo                           |
| 10                            | 1.15                            | 2.07                           | 2.45                           | 2.05                           | 2.03                           | 1.99                           | 2.01                           | 2.02                           | 2.01                           | 2                              | 2.16                           | 2.35                           | 2.46                           | 2.38                           | 2.4                            | 2.49                           | 2.55                           | 2.23                           | 1.94                           | 2.29                           | 2.53                            | 8.25                            | 1.98                           | 1.99                           | 1.96                           | 1.92                           |
| 25                            | 3.87                            | 4.93                           | 6.54                           | 4.86                           | 4.75                           | 4.61                           | 4.64                           | 4.65                           | 4.65                           | 4.64                           | 5.22                           | 6.02                           | 6.56                           | 6.29                           | 6.21                           | 6.49                           | 6.78                           | 5.75                           | 4.23                           | 5.86                           | 6.1                             | 20.1                            | 4.58                           | 4.53                           | 4.44                           | 4.32                           |
| 50                            | 17.6                            | 12.9                           | 20.9                           | 12.6                           | 12.1                           | 11.6                           | 11.6                           | 11.6                           | 11.8                           | 12                             | 14                             | 17.6                           | 19.8                           | 18.9                           | 18.2                           | 19.2                           | 20.6                           | 17.7                           | 11.1                           | 17.2                           | 18                              | 43.3                            | 11.4                           | 11.1                           | 10.8                           | 10.5                           |
| 90                            | 110                             | 54.5                           | 224                            | 29.5<br>51.3                   | 49.4                           | 46.1                           | 46.8                           | 46                             | 46.5                           | 46.8                           | 90.1                           | 43.5<br>99.6                   | 43.2<br>92                     | 43.0                           | 80.6                           | 88.9                           | 96.6                           | 97.7                           | 86.9                           | 78.7                           | 165                             | 134                             | 43.3                           | 42.6                           | 41.6                           | 41.4                           |
|                               |                                 |                                |                                |                                |                                |                                |                                |                                |                                |                                |                                |                                |                                |                                |                                |                                |                                |                                |                                |                                |                                 |                                 |                                |                                |                                |                                |
| Particle Diameter             | 21.0031_053_TAN<br>A#1_04.\$ls  | 21.0031_054#1_0<br>4.\$ls      | 21.0031_055#1_0<br>4.\$ls      | 21.0031_056#1_0<br>4.\$ls      | 21.0031_057#1_0<br>4.\$ls      | 21.0031_058#1_0<br>4.\$ls      | 21.0031_059#1_0<br>4.\$ls      | 21.0031_060#1_0<br>4.\$ls      | 21.0031_061#1_0<br>4.\$ls      | 21.0031_062#1_0<br>4.\$ls      | 21.0031_063#1_0<br>4.\$ls      | 21.0031_064#1_0<br>4.\$ls      | 21.0031_065#1_0<br>4.\$ls      | 21.0031_066#1_0<br>4.\$ls      | 21.0031_067#1_0<br>4.\$ls      | 21.0031_068#1_0<br>4.\$ls      | 21.0031_069#1_0<br>4.\$ls      | 21.0031_070#1_0<br>4.\$ls      | 21.0031_071#1_0<br>4.\$ls      | 21.0031_072#1_0<br>4.\$ls      | 21.0031_073_Hyn<br>ne#1_04.\$ls | 21.0031_074_MIN<br>N#1_04.\$ls  | 21.0031_075#1_0<br>4.\$ls      | 21.0031_076#1_0<br>4.\$ls      | 21.0031_077#1_0<br>4.\$ls      | 21.0031_078#1_0<br>4.\$ls      |
| um                            | Volume                          | Volume                         | Volume                         | Volume                         | Volume                         | Volume                         | Volume                         | Volume                         | Volume                         | Volume                         | Volume                         | Volume                         | Volume                         | Volume                         | Volume                         | Volume                         | Volume                         | Volume                         | Volume                         | Volume                         | Volume                          | Volume                          | Volume                         | Volume                         | Volume                         | Volume                         |
| 0.4                           | % <<br>0.12                     | % <<br>0                       | % <                            | % <<br>0                       | % <<br>0                       | % <                            | % <<br>0                       | % <<br>0.0015                  | % <<br>0.0012                  | % <<br>0                       | % <<br>0                       | % <<br>0                       | % <<br>0                       | % <                            | % <<br>0                       | % <<br>0                        | % <<br>0.014                    | % <<br>0                       | % <                            | % <                            | % <<br>0                       |
| 0.5                           | 0.97                            | 0.00069                        | 0.00047                        | 0.00073                        | 0.0007                         | 0.00073                        | 0.00063                        | 0.00059                        | 0.00066                        | 0.00059                        | 0.00064                        | 0.00082                        | 0.012                          | 0.0098                         | 0.00088                        | 0.00081                        | 0.00073                        | 0.00048                        | 0.000004                       | 0.00084                        | 0                               | 0.12                            | 0.00067                        | 0.00074                        | 0.00071                        | 0.00077                        |
| 1                             | 8.25                            | 1.47                           | 1.17                           | 1.52                           | 1.52                           | 1.58                           | 1.52                           | 1.49                           | 1.51                           | 1.49                           | 1.39                           | 1.32                           | 1.34                           | 1.39                           | 1.31                           | 1.25                           | 1.19                           | 1.29                           | 1.18                           | 1.38                           | 0.66                            | 1.1                             | 1.56                           | 1.57                           | 1.59                           | 1.67                           |
| 1.5                           | 13.3<br>16.7                    | 5.4<br>9.47                    | 4.36<br>7.61                   | 5.53<br>9.66                   | 5.57<br>9.78                   | 5.78<br>10.1                   | 5.65<br>9.94                   | 5.57<br>9.82                   | 5.61<br>9.88                   | 5.62<br>9.96                   | 5.09<br>8.94                   | 4.64<br>8.01                   | 4.45<br>7.59                   | 4.66<br>7.93                   | 4.54<br>7.8                    | 4.34<br>7.48                   | 4.18<br>7.25                   | 4.86<br>8.56                   | 5.6<br>10.5                    | 4.84<br>8.32                   | 3.55<br>6.92                    | 1.91<br>2.53                    | 5.79<br>10.2                   | 5.77<br>10.1                   | 5.87<br>10.3                   | 6.14<br>10.7                   |
| 5                             | 28.9                            | 25.3                           | 19.9                           | 25.6                           | 26.2                           | 26.9                           | 26.7                           | 26.7                           | 26.6                           | 26.7                           | 24.1                           | 21.3                           | 19.9                           | 20.6                           | 20.7                           | 19.9                           | 19.3                           | 22.3                           | 28.9                           | 21.8                           | 20.9                            | 5.85                            | 27.1                           | 27.3                           | 27.8                           | 28.5                           |
| 10                            | 40.5                            | 43.1                           | 33.9                           | 43.6                           | 44.6                           | 45.8                           | 45.7                           | 45.7                           | 45.3                           | 44.8                           | 41.1                           | 36.5                           | 33.9                           | 35.1                           | 35.6                           | 34.5                           | 33.1                           | 36.9                           | 47.3                           | 37.1                           | 36.6                            | 12.3                            | 46.2                           | 46.8                           | 47.7                           | 48.7                           |
| 15<br>20                      | 47.2<br>52.2                    | 54<br>62.1                     | 42.5<br>48.9                   | 54.8<br>63.1                   | 56<br>64.3                     | 57.3<br>65.7                   | 57.2<br>65.5                   | 57.4<br>65.8                   | 56.9<br>65.5                   | 56.4<br>65                     | 51.7<br>59.4                   | 46<br>53.3                     | 43<br>50.2                     | 44.2<br>51.4                   | 45.1<br>52.5                   | 43.8<br>51.1                   | 42.1<br>49.2                   | 46.1<br>53                     | 57.5<br>64.1                   | 46.6<br>54                     | 46.1<br>52.1                    | 18.8<br>24.9                    | 58.2<br>66.9                   | 58.9<br>67.6                   | 59.9<br>68.6                   | 60.8<br>69.3                   |
| 25                            | 56.2                            | 68.6                           | 54.3                           | 69.8                           | 71                             | 72.4                           | 72.2                           | 72.5                           | 72.2                           | 71.9                           | 65.5                           | 59.4                           | 56.5                           | 57.7                           | 59                             | 57.5                           | 55.3                           | 58.6                           | 68.8                           | 60.5                           | 56.3                            | 30.7                            | 73.9                           | 74.5                           | 75.4                           | 76                             |
| 50                            | 70.8                            | 88.3                           | 71                             | 89.5                           | 90.2                           | 91.7                           | 91.3                           | 91.7                           | 91.4                           | 91.3                           | 82.4                           | 78                             | 77.7                           | 78.5                           | 80.2                           | 78.5                           | 76.2                           | 76.9                           | 82.6                           | 81.6                           | 69.4                            | 56                              | 92.7                           | 93                             | 93.5                           | 93.5                           |
| 60<br>63                      | 74.6                            | 91.7<br>92.5                   | 74.2                           | 92.6                           | 93.2                           | 94.5                           | 94.2                           | 94.5                           | 94.3                           | 94.1                           | 85<br>85 7                     | 81.5                           | 81.9                           | 82.7                           | 84.4                           | 82.7                           | 80.6                           | 80.8                           | 85.2                           | 85.5                           | 72.6                            | 63.8<br>65 9                    | 95.2                           | 95.5                           | 95.8                           | 95.7                           |
| 70                            | 78.1                            | 94                             | 76.7                           | 94.6                           | 95.1                           | 96.2                           | 95.9                           | 96.2                           | 96.1                           | 95.8                           | 87                             | 84.2                           | 85.1                           | 85.9                           | 87.5                           | 85.9                           | 84                             | 83.9                           | 87.2                           | 88.2                           | 75.4                            | 70.3                            | 96.7                           | 96.9                           | 97.1                           | 97                             |
| 75                            | 79.8                            | 94.8                           | 77.7                           | 95.2                           | 95.7                           | 96.8                           | 96.5                           | 96.8                           | 96.7                           | 96.5                           | 87.9                           | 85.3                           | 86.4                           | 87.2                           | 88.8                           | 87.1                           | 85.4                           | 85.2                           | 88.1                           | 89.3                           | 76.7                            | 73                              | 97.1                           | 97.4                           | 97.6                           | 97.5                           |
| 90                            | 84.7                            | 96.5                           | 80.3                           | 96.5                           | 97                             | 98.1                           | 97.7                           | 98.1                           | 97.9                           | 97.8                           | 90                             | 88.4                           | 89.6                           | 90.4                           | 91.8                           | 90.2                           | 88.8                           | 88.6                           | 90.4                           | 91.8                           | 80.2                            | 79.7                            | 98.1                           | 98.4                           | 98.5                           | 98.3                           |
| 125                           | 93.1                            | 97.3<br>98.4                   | 84.4                           | 97.1                           | 97.6                           | 98.7<br>99.6                   | 98.2<br>99.1                   | 98.7<br>99.7                   | 98.4<br>99.2                   | 98.3<br>99                     | 91.2                           | 90.1<br>93.1                   | 91.3                           | 92.1<br>95.1                   | 93.4<br>96.2                   | 91.8                           | 90.6                           | 90.4<br>94                     | 91.7                           | 93.2<br>95.6                   | 86                              | 88.6                            | 98.5<br>99.3                   | 98.7<br>99.2                   | 98.9<br>99.4                   | 98.7<br>99.4                   |
| 150                           | 96.4                            | 99                             | 86.5                           | 98.6                           | 98.9                           | 99.9                           | 99.6                           | 99.97                          | 99.6                           | 99.5                           | 95.6                           | 95.2                           | 96.3                           | 96.8                           | 97.9                           | 96.6                           | 96.3                           | 96.2                           | 96.1                           | 97.2                           | 88.7                            | 91.9                            | 99.8                           | 99.6                           | 99.7                           | 99.8                           |
| 170                           | 98                              | 99.3                           | 87.8                           | 98.8                           | 99.2                           | 99.99                          | 99.8                           | 99.997                         | 99.8                           | 99.7                           | 96.7                           | 96.4                           | 97.3                           | 97.8                           | 98.8                           | 97.7                           | 97.5                           | 97.4                           | 97.2                           | 98                             | 90.3                            | 93.6                            | 99.9                           | 99.8                           | 99.9                           | 99.97                          |
| 180<br>200                    | 98.5<br>00 1                    | 99.4<br>99.6                   | 88.4<br>89.3                   | 98.9<br>99 1                   | 99.3<br>99.5                   | 99.999                         | 99.9<br>99.96                  | 100                            | 99.9<br>99.9                   | 99.8<br>ga a                   | 97.2<br>97.8                   | 96.9<br>97 7                   | 97.7<br>98 3                   | 98.2<br>98.8                   | 99.1<br>99.5                   | 98.1<br>98.7                   | 97.9                           | 97.9                           | 97.6<br>98.4                   | 98.3<br>98.7                   | 91<br>91 9                      | 94.2<br>95 1                    | 99.97<br>99 996                | 99.9<br>99 97                  | 99.9<br>99.9                   | 99.99<br>99 aaa                |
| 225                           | 99.5                            | 99.8                           | 90                             | 99.4                           | 99.7                           | 100                            | 99.99                          | 100                            | 99.99                          | 99.99                          | 98.3                           | 98.4                           | 98.9                           | 99.2                           | 99.7                           | 99.1                           | 99                             | 99.1                           | 99                             | 99.1                           | 92.8                            | 95.8                            | 100                            | 99.997                         | 99.996                         | 100                            |
| 250                           | 99.7                            | 99.9                           | 90.5                           | 99.6                           | 99.9                           | 100                            | 100                            | 100                            | 99.999                         | 99.999                         | 98.7                           | 98.8                           | 99.2                           | 99.6                           | 99.8                           | 99.4                           | 99.3                           | 99.5                           | 99.4                           | 99.3                           | 93.4                            | 96.1                            | 100                            | 100                            | 100                            | 100                            |
| 400                           | 99.996                          | 100                            | 94.2                           | 100                            | 100                            | 100                            | 100                            | 100                            | 100                            | 100                            | 99.96                          | 99.98                          | 99.996                         | 99.999                         | 99.99                          | 99.997                         | 99.99                          | 99.999                         | 99.998                         | 99.99                          | 96.2                            | 97.5                            | 100                            | 100                            | 100                            | 100                            |
| 750                           | 100                             | 100                            | 99                             | 100                            | 100                            | 100                            | 100                            | 100                            | 100                            | 100                            | 100                            | 100                            | 100                            | 100                            | 100                            | 100                            | 100                            | 100                            | 100                            | 100                            | 99.5                            | 98.9                            | 100                            | 100                            | 100                            | 100                            |
| 1000                          | 100                             | 100                            | 99.99                          | 100                            | 100                            | 100                            | 100                            | 100                            | 100                            | 100                            | 100                            | 100                            | 100                            | 100                            | 100                            | 100                            | 100                            | 100                            | 100                            | 100                            | 99.998                          | 99.7                            | 100                            | 100                            | 100                            | 100                            |
| 2000                          | 100                             | 100                            | 100                            | 100                            | 100                            | 100                            | 100                            | 100                            | 100                            | 100                            | 100                            | 100                            | 100                            | 100                            | 100                            | 100                            | 100                            | 100                            | 100                            | 100                            | 100                             | 100                             | 100                            | 100                            | 100                            | 100                            |



|                                | 21.0031 079#1 0                        | 21.0031 080#1 0                        | 21.0031 081#1 0                        | 21.0031 082#1 0                        | 21.0031 083#1 0                          | 21.0031 084#1 0                        | 21.0031 085#1 0                        | 21.0031 086#1 0                        | 21.0031 087#1 0                        | 21.0031 088#1 0                        | 21.0031 089#1 0                        | 21.0031 090#1 0                        | 21.0031 091#1 0                        | 21.0031 092#1 0                        | 21.0031 093#1 0                        | 21.0031 094#1 0                    | 21.0031 095#1 0                      | 21.0031 096#1 0                    | 21.0031 097#1 0                    | 21.0031 098#1 0                    | 21.0031 099#1 0                    | 21.0031 100#1 0                        | 21.0031 101#1 0                    | 21.0031 102#1 0                    | 21.0031 103#1 0                    | 21.0031 104#1 0                      |
|--------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|------------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|------------------------------------|--------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|----------------------------------------|------------------------------------|------------------------------------|------------------------------------|--------------------------------------|
| File name:                     | 4.\$ls                                 | 4.\$ls                                 | 4.\$ls                                 | 4.\$ls                                 | 4.\$ls                                   | 4.\$ls                                 | 4.\$ls                                 | 4.\$ls                                 | 4.\$ls                                 | 4.\$ls                                 | 4.\$ls                                 | 4.\$ls                                 | 4.\$ls                                 | 4.\$ls                                 | 4.\$ls                                 | 4.\$ls                             | 4.\$ls                               | 4.\$ls                             | 4.\$ls                             | 4.\$ls                             | 4.\$ls                             | 4.\$ls                                 | 4.\$ls                             | 4.\$ls                             | 4.\$ls                             | 4.\$ls                               |
| File ID:                       | 21.0031_079#1                          | 21.0031_080#1                          | 21.0031_081#1                          | 21.0031_082#1                          | 21.0031_083#1                            | 21.0031_084#1                          | 21.0031_085#1                          | 21.0031_086#1                          | 21.0031_087#1                          | 21.0031_088#1                          | 21.0031_089#1                          | 21.0031_090#1                          | 21.0031_091#1                          | 21.0031_092#1                          | 21.0031_093#1                          | 21.0031_094#1                      | 21.0031_095#1                        | 21.0031_096#1                      | 21.0031_097#1                      | 21.0031_098#1                      | 21.0031_099#1                      | 21.0031_100#1                          | 21.0031_101#1                      | 21.0031_102#1                      | 21.0031_103#1                      | 21.0031_104#1                        |
| Sample ID:                     | 21.0031_188437_<br>R2339MC018A 4-5     | 21.0031_188438_<br>R2339MC018A 5-6 I   | 21.0031_188439_<br>R2339MC018A 6-7     | 21.0031_188440_<br>R2339MC018A 7-8     | _ 21.0031_188441_<br>8 R2339MC018A 8-9   | 21.0031_188442_<br>R2339MC018A 9-      | 21.0031_188443_<br>R2339MC018A 10-     | 21.0031_188444_<br>R2339MC018A 11-     | 21.0031_188445_<br>R2339MC018A 12-     | 21.0031_188446_<br>R2339MC018A 13-     | 21.0031_188447_<br>R2339MC018A 14-     | 21.0031_188448_<br>• R2339MC018A 15•   | 21.0031_188449_<br>R2339MC018A 16-     | 21.0031_188450_<br>R2339MC018A 17-     | 21.0031_188451_<br>R2339MC018A 18-     | 21.0031_188452_<br>R2339MC018A 19- | 21.0031_188453_<br>R2339MC018A 20- I | 21.0031_188454_<br>R2339MC018A 21- | 21.0031_188455_<br>R2339MC018A 22- | 21.0031_188456_<br>R2339MC018A 23- | 21.0031_188457_<br>R2339MC018A 24- | 21.0031_188458_<br>R2339MC018A 25-     | 21.0031_188459_<br>R2339MC018A 26- | 21.0031_188460_<br>R2339MC018A 27- | 21.0031_188461_<br>R2339MC018A 28- | 21.0031_188462_<br>- R2339MC018A 29- |
| Operator                       | cm<br>MSH                              | CM                                     | CM<br>MSH                              | cm<br>MSH                              | cm<br>MSH                                | 10 cm                                  | 11 cm                                  | 12 cm                                  | 13 cm                                  | 14 cm                                  | 15 cm                                  | 16 cm                                  | 17 cm                                  | 18 cm                                  | 19 cm                                  | 20 cm                              | 21 cm                                | 22 cm                              | 23 cm                              | 24 cm                              | 25 cm                              | 26 cm                                  | 27 cm                              | 28 cm                              | 29 cm                              | 30 cm                                |
| Operator.                      | MSH                                    | MOL                                    | MOL                                    | MOL                                    | мэп                                      | MOL                                    | MOL                                    | MOL                                    | NOT                                    | NISH                                   | MSH                                    | NOT                                    | MOL                                    | MOL                                    | MSH                                    | MOH                                | MSH                                  | W3H                                | MSH                                | MOL                                | MOL                                | MOH                                    | MOL                                | MOH                                | MOH                                | MSH                                  |
| Commont 1.                     | 0,110 g +                              | 0,114 g +                              | 0,114 g +                              | 0,114 g +                              | 0,114 g +                                | 0,114 g +                              | 0,114 g +                              | 0,114 g +                              | 0,114 g +                              | 0,114 g +                              | 0,114 g +                              | 0,114 g +                              | 0,114 g +                              | 0,114 g +                              | 0,114 g +                              | 0,114 g +                          | 0,114 g +                            | 0,114 g +                          | 0,114 g +                          | 0,114 g +                          | 0,114 g +                          | 0,114 g +                              | 0,114 g +                          | 0,114 g +                          | 0,114 g +                          | 0,115 g +                            |
| Comment 1.                     | springvann                             | springvann                             | springvann                             | springvann                             | springvann                               | springvann                             | springvann                             | springvann                             | springvann                             | springvann                             | springvann                             | springvann                             | springvann                             | springvann                             | springvann                             | springvann                         | spr.vann                             | spr.vann                           | spr.vann                           | spr.vann                           | spr.vann                           | type III                               | spr.vann                           | spr.vann                           | spr.vann                           | spr.vann                             |
| Comment 2:                     | Ultralyd Probe 2<br>(naken), 5 ampl, 5 | Ultralyd Probe 2<br>5 (naken), 5 ampl, 5 | Ultralyd Probe 2<br>(naken), 5 ampl, 5 | UL- Probe 2<br>(naken), 5 ampl, 5  | UL- Probe 2<br>(naken), 5 ampl, 5    | UL- Probe 2<br>naken), 5 ampl, 5   | UL- Probe 2<br>(naken), 5 ampl, 5  | UL- Probe 2<br>(naken), 5 ampl, 5  | UL- Probe 2<br>(naken), 5 ampl, 5  | Ultralyd Probe 2<br>(naken), 5 ampl, 5 | UL- Probe 2<br>(naken), 5 ampl, 5  | UL- Probe 2<br>(naken), 5 ampl, 5  | UL- Probe 2<br>(naken), 5 ampl, 5  | UL- Probe 2<br>5 (naken), 5 ampl, 5  |
|                                | min, Leire<br>LS 13 320.                 | min, Leire<br>LS 13 320.               | min, Leire<br>LS 13 320.               | min, Leire<br>LS 13 320.               | min, Leire<br>LS 13 320.               | min, Leire<br>LS 13 320.               | min, Leire<br>LS 13 320.               | min, Leire<br>LS 13 320.               | min, Leire<br>LS 13 320.               | min, Leire<br>LS 13 320.               | min, Leire<br>LS 13 320.               | min, Leire<br>LS 13 320.           | min, Leire<br>LS 13 320.             | min, Leire<br>LS 13 320.           | min, Leire<br>LS 13 320.           | min, Leire<br>LS 13 320.           | min, Leire<br>LS 13 320.           | min, Leire<br>LS 13 320.               | min, Leire<br>LS 13 320.           | min, Leire<br>LS 13 320.           | min, Leire<br>LS 13 320.           | min, Leire<br>LS 13 320.             |
| Instrument:                    | Aqueous Liquid                           | Aqueous Liquid                         | Aqueous Liquid                         | Aqueous Liquid                         | Aqueous Liquid                         | Aqueous Liquid                         | Aqueous Liquid                         | Aqueous Liquid                         | Aqueous Liquid                         | Aqueous Liquid                         | Aqueous Liquid                         | Aqueous Liquid                     | Aqueous Liquid                       | Aqueous Liquid                     | Aqueous Liquid                     | Aqueous Liquid                     | Aqueous Liquid                     | Aqueous Liquid                         | Aqueous Liquid                     | Aqueous Liquid                     | Aqueous Liquid                     | Aqueous Liquid                       |
| Run number:                    | 4                                      | 4                                      | 4                                      | 4                                      | 4                                        | 4                                      | 4                                      | 4                                      | 4                                      | 4                                      | 4                                      | 4                                      | 4                                      | 4                                      | 4                                      | 4                                  | 4                                    | 4                                  | 4                                  | 4                                  | 4                                  | 4                                      | 4                                  | 4                                  | 4                                  | 4                                    |
| Start time:                    | 26.03.2021                             | 26.03.2021                             | 26.03.2021                             | 26.03.2021                             | 26.03.2021                               | 26.03.2021                             | 06.04.2021                             | 06.04.2021                             | 06.04.2021                             | 06.04.2021                             | 06.04.2021                             | 06.04.2021                             | 06.04.2021                             | 06.04.2021                             | 06.04.2021                             | 09.04.2021                         | 09.04.2021                           | 09.04.2021                         | 09.04.2021                         | 09.04.2021                         | 09.04.2021                         | 09.04.2021                             | 09.04.2021                         | 09.04.2021                         | 09.04.2021                         | 09.04.2021                           |
| Run length:                    | 60                                     | 60                                     | 60                                     | 60                                     | 60                                       | 60                                     | 60                                     | 60                                     | 60                                     | 60                                     | 60                                     | 60                                     | 60                                     | 60                                     | 60                                     | 60                                 | 60                                   | 60                                 | 60                                 | 60                                 | 60                                 | 60                                     | 60                                 | 60                                 | 60                                 | 60                                   |
| Optical model:<br>Obscuration: | Leire-1-65.m780d                       | 10                                     | 10                                     | Leire-1-65.m/80d                       | Leire-1-65.m780d                         | Leire-1-65.m780d                       | Leire-1-65.ff780d                      | Leire-1-65.m780a                       | Leire-1-65.m780d                       | Leire-1-65.m/800                       | Leire-1-65.m7800                       | Leire-1-65.m/800                       | Leire-1-65.ff/80d                      | 10                                     | Leire-1-65.m7800                       | Leire-1-65.m/800                   | Leire-1-65.ff/80d                    | 10                                 | Leire-1-65.m7800                   | Leire-1-65.m780a                   | Leire-1-65.117800                  | Leire-1-65.m780d                       | 10                                 | 10                                 | 10                                 | Leire-1-65.m780d                     |
| PIDS Obscur:                   | -                                      |                                        |                                        |                                        |                                          |                                        |                                        |                                        |                                        |                                        |                                        |                                        |                                        |                                        |                                        |                                    |                                      |                                    |                                    |                                    | -                                  |                                        |                                    |                                    |                                    |                                      |
| Obscuration:                   | ОК                                     | OK                                     | OK                                     | OK                                     | OK                                       | OK                                     | OK                                     | OK                                     | OK                                     | OK                                     | OK                                     | OK                                     | OK                                     | OK                                     | OK                                     | OK                                 | OK                                   | OK                                 | OK                                 | OK                                 | OK                                 | OK                                     | OK                                 | OK                                 | OK                                 | ОК                                   |
| Serial Number:                 | 9834                                   | 9834                                   | 9834                                   | 9834                                   | 9834                                     | 9834                                   | 9834                                   | 9834                                   | 9834                                   | 9834                                   | 9834                                   | 9834                                   | 9834                                   | 9834                                   | 9834                                   | 9834                               | 9834                                 | 9834                               | 9834                               | 9834                               | 9834                               | 9834                                   | 9834                               | 9834                               | 9834                               | 9834                                 |
| From                           | 0.375                                  | 0.375                                  | 0.375                                  | 0.375                                  | 0.375                                    | 0.375                                  | 0.375                                  | 0.375                                  | 0.375                                  | 0.375                                  | 0.375                                  | 0.375                                  | 0.375                                  | 0.375                                  | 0.375                                  | 0.375                              | 0.375                                | 0.375                              | 0.375                              | 0.375                              | 0.375                              | 0.375                                  | 0.375                              | 0.375                              | 0.375                              | 0.375                                |
| То                             | 2000                                   | 2000                                   | 2000                                   | 2000                                   | 2000                                     | 2000                                   | 2000                                   | 2000                                   | 2000                                   | 2000                                   | 2000                                   | 2000                                   | 2000                                   | 2000                                   | 2000                                   | 2000                               | 2000                                 | 2000                               | 2000                               | 2000                               | 2000                               | 2000                                   | 2000                               | 2000                               | 2000                               | 2000                                 |
| Volume                         | 100                                    | 100                                    | 100                                    | 100                                    | 100                                      | 100                                    | 100                                    | 100                                    | 100                                    | 100                                    | 100                                    | 100                                    | 100                                    | 100                                    | 100                                    | 100                                | 100                                  | 100                                | 100                                | 100                                | 100                                | 100                                    | 100                                | 100                                | 100                                | 100                                  |
| Mean:                          | 19.54                                  | 19.6                                   | 18.62                                  | 18.94                                  | 19.33                                    | 19.49                                  | 20.16                                  | 19.71                                  | 19.65                                  | 17.2                                   | 19.84                                  | 20.4                                   | 19.68                                  | 19.58                                  | 19.3                                   | 18.86                              | 19.13                                | 18.74                              | 19.29                              | 19.19                              | 20.16                              | 19.54                                  | 19.45                              | 19.06                              | 19.98                              | 19.68                                |
| Median:<br>D(3.2):             | 10.95<br>5.36                          | 11.24<br>5.439                         | 10.77<br>5.32                          | 10.79<br>5.346                         | 5.362                                    | 10.92<br>5.375                         | 10.99<br>5.321                         | 11.34<br>5.478                         | 5.459                                  | 10.22                                  | 11.06<br>5.354                         | 10.96<br>5.321                         | 5.326                                  | 10.86                                  | 10.94<br>5.323                         | 10.78<br>5.272                     | 5.28                                 | 10.77<br>5.265                     | 11.16<br>5.407                     | 11.23<br>5.424                     | 11.31<br>5.408                     | 11.31<br>5.407                         | 10.93<br>5.334                     | 10.88                              | 11.03<br>5.349                     | 10.92<br>5.34                        |
| Mean/Median ratio:             | 1.785                                  | 1.744                                  | 1.729                                  | 1.756                                  | 1.753                                    | 1.785                                  | 1.835                                  | 1.737                                  | 1.74                                   | 1.682                                  | 1.794                                  | 1.861                                  | 1.801                                  | 1.802                                  | 1.763                                  | 1.749                              | 1.762                                | 1.739                              | 1.728                              | 1.708                              | 1.782                              | 1.728                                  | 1.779                              | 1.751                              | 1.812                              | 1.802                                |
| Mode:                          | 28.7                                   | 28.7                                   | 28.7                                   | 28.7                                   | 28.7                                     | 28.7                                   | 28.7                                   | 28.7                                   | 28.7                                   | 8.536                                  | 28.7                                   | 28.7                                   | 26.14                                  | 28.7                                   | 28.7                                   | 28.7                               | 28.7                                 | 28.7                               | 26.14                              | 28.7                               | 28.7                               | 28.7                                   | 26.14                              | 28.7                               | 28.7                               | 28.7                                 |
| S.D.:                          | 26.93                                  | 26.44                                  | 22.77                                  | 24.58                                  | 25.69                                    | 25.86                                  | 29.94                                  | 25.72                                  | 25.77                                  | 19.39                                  | 27.42                                  | 30.42                                  | 28.41                                  | 27.42                                  | 25.68                                  | 24.53                              | 26.64                                | 23.52                              | 25.68                              | 24.23                              | 28.9                               | 25.28                                  | 26.63                              | 25.34                              | 28.36                              | 27.78                                |
| C.V.:                          | 137.9                                  | 134.9                                  | 122.3                                  | 604<br>129.7                           | 132.9                                    | 132.7                                  | 896.4<br>148.5                         | 130.5                                  | 131.2                                  | 112.8                                  | 138.2                                  | 925.1                                  | 144.3                                  | 140.1                                  | 133.1                                  | 130.1                              | 139.3                                | 125.5                              | 133.1                              | 586.9<br>126.3                     | 835.4<br>143.3                     | 639.2<br>129.4                         | 136.9                              | 133                                | 804.5<br>142                       | 141.2                                |
| Skewness:                      | 4.432                                  | 4.633                                  | 3.125                                  | 3.845                                  | 4.408                                    | 3.803                                  | 4.906                                  | 4.029                                  | 3.998                                  | 2.431                                  | 4.116                                  | 4.575                                  | 4.824                                  | 4.223                                  | 3.992                                  | 3.795                              | 4.885                                | 3.418                              | 4.248                              | 3.706                              | 4.569                              | 3.795                                  | 4.267                              | 4.151                              | 4.371                              | 4.67                                 |
| Kurtosis:                      | 30.66                                  | 35.14                                  | 14.38                                  | 22.62                                  | 31.88                                    | 21.15                                  | 34.2                                   | 25.37                                  | 25                                     | 8.261                                  | 23.73                                  | 28.43                                  | 34.34                                  | 24.83                                  | 23.89                                  | 21.29                              | 36.89                                | 17.63                              | 27.38                              | 21.54                              | 28.84                              | 21.55                                  | 27.78                              | 26.75                              | 26.83                              | 33.01                                |
| d10:                           | 1.966                                  | 1.991                                  | 1.952                                  | 1.965                                  | 1.96                                     | 1.972                                  | 1.939                                  | 2.004                                  | 1.998                                  | 1.878                                  | 1.956                                  | 1.941                                  | 1.946                                  | 1.934                                  | 1.944                                  | 1.928                              | 1.931                                | 1.924                              | 1.979                              | 1.984                              | 1.972                              | 1.972                                  | 1.954                              | 1.942                              | 1.954                              | 1.952                                |
| d50:<br>d90:                   | 43.14                                  | 43.55                                  | 42.71                                  | 42.82                                  | 43.43                                    | 43.52                                  | 43.62                                  | 44.29                                  | 43.74                                  | 40.41                                  | 43.69                                  | 43.98                                  | 42.91                                  | 43.04                                  | 43.19                                  | 42.49                              | 42.63                                | 42.71                              | 42.94                              | 43.22                              | 43.69                              | 43.84                                  | 43.03                              | 42.67                              | 43.75                              | 43.49                                |
| Specific Surf. Area:           | 11194                                  | 11032                                  | 11278                                  | 11224                                  | 11189                                    | 11162                                  | 11276                                  | 10954                                  | 10990                                  | 11771                                  | 11206                                  | 11276                                  | 11266                                  | 11339                                  | 11271                                  | 11380                              | 11363                                | 11395                              | 11097                              | 11063                              | 11094                              | 11096                                  | 11249                              | 11304                              | 11218                              | 11235                                |
|                                |                                        |                                        |                                        |                                        |                                          |                                        |                                        |                                        |                                        |                                        |                                        |                                        |                                        |                                        |                                        |                                    |                                      |                                    |                                    |                                    |                                    |                                        |                                    |                                    |                                    |                                      |
| %<<br>10                       | Size                                   | Size                                   | Size                                   | Size                                   | Size                                     | Size                                   | Size                                   | Size                                   | Size<br>2                              | Size                                   | Size                                   | Size                                   | Size                                   | Size                                   | Size                                   | Size                               | Size                                 | Size                               | Size                               | Size                               | Size                               | Size                                   | Size                               | Size                               | Size                               | Size                                 |
| 25                             | 4.47                                   | 4.56                                   | 4.42                                   | 4.44                                   | 4.47                                     | 4.46                                   | 4.45                                   | 4.59                                   | 4.57                                   | 4.19                                   | 4.46                                   | 4.41                                   | 4.42                                   | 4.38                                   | 4.41                                   | 4.36                               | 4.37                                 | 4.35                               | 4.51                               | 4.53                               | 4.54                               | 4.52                                   | 4.42                               | 4.39                               | 4.42                               | 4.41                                 |
| 50                             | 10.9                                   | 11.2                                   | 10.8                                   | 10.8                                   | 11                                       | 10.9                                   | 11                                     | 11.3                                   | 11.3                                   | 10.2                                   | 11.1                                   | 11                                     | 10.9                                   | 10.9                                   | 10.9                                   | 10.8                               | 10.9                                 | 10.8                               | 11.2                               | 11.2                               | 11.3                               | 11.3                                   | 10.9                               | 10.9                               | 11                                 | 10.9                                 |
| 75                             | 25.3                                   | 25.8                                   | 25                                     | 25                                     | 25.6                                     | 25.4                                   | 25.5                                   | 26.1                                   | 25.9                                   | 23.8                                   | 25.6                                   | 25.5                                   | 25.2                                   | 25.1                                   | 25.3                                   | 24.9                               | 25.1                                 | 25.1                               | 25.4                               | 25.6                               | 25.8                               | 25.9                                   | 25.1                               | 25                                 | 25.5                               | 25.3                                 |
| 90                             | 43.1                                   | 43.5                                   | 42.7                                   | 42.8                                   | 43.4                                     | 43.5                                   | 43.0                                   | 44.3                                   | 43.7                                   | 40.4                                   | 43.7                                   | 44                                     | 42.9                                   | 43                                     | 43.2                                   | 42.5                               | 42.6                                 | 42.7                               | 42.9                               | 43.2                               | 43.7                               | 43.8                                   | 43                                 | 42.7                               | 43.7                               | 43.5                                 |
| Particle Diameter              | 21.0031_079#1_0                        | 21.0031_080#1_0                        | 21.0031_081#1_0                        | 21.0031_082#1_0                        | 21.0031_083#1_0                          | 21.0031_084#1_0                        | 21.0031_085#1_0                        | 21.0031_086#1_0                        | 21.0031_087#1_0                        | 21.0031_088#1_0                        | 21.0031_089#1_0                        | 21.0031_090#1_0                        | 21.0031_091#1_0                        | 21.0031_092#1_0                        | 21.0031_093#1_0                        | 21.0031_094#1_0                    | 21.0031_095#1_0                      | 21.0031_096#1_0                    | 21.0031_097#1_0                    | 21.0031_098#1_0                    | 21.0031_099#1_0                    | 21.0031_100#1_0                        | 21.0031_101#1_0                    | 21.0031_102#1_0                    | 21.0031_103#1_0                    | 21.0031_104#1_0                      |
| um                             | 4.şıs<br>Volume                        | 4.\$IS<br>Volume                       | 4.\$IS<br>Volume                       | 4.5is<br>Volume                        | 4.ais<br>Volume                          | 4.5is<br>Volume                        | 4.ais<br>Volume                        | 4.ais<br>Volume                        | 4.şıs<br>Volume                        | 4.şıs<br>Volume                        | 4.ais<br>Volume                        | 4.şıs<br>Volume                        | 4.5is<br>Volume                        | 4.şıs<br>Volume                        | 4.ais<br>Volume                        | 4.5is<br>Volume                    | 4.ais<br>Volume                      | 4.ais<br>Volume                    | 4.ais<br>Volume                    | 4.\$is<br>Volume                   | 4.ais<br>Volume                    | 4.şıs<br>Volume                        | 4.\$is<br>Volume                   | 4.5is<br>Volume                    | 4.şıs<br>Volume                    | 4.sis<br>Volume                      |
|                                | % <                                    | % <                                    | % <                                    | % <                                    | % <                                      | % <                                    | % <                                    | % <                                    | % <                                    | % <                                    | % <                                    | % <                                    | % <                                    | % <                                    | % <                                    | % <                                | % <                                  | % <                                | % <                                | % <                                | % <                                | % <                                    | % <                                | % <                                | % <                                | % <                                  |
| 0.4                            | 0                                      | 0                                      | 0                                      | 0                                      | 0                                        | 0                                      | 0                                      | 0                                      | 0                                      | 0                                      | 0                                      | 0                                      | 0                                      | 0                                      | 0                                      | 0                                  | 0                                    | 0                                  | 0                                  | 0                                  | 0                                  | 0                                      | 0                                  | 0                                  | 0                                  | 0                                    |
| 0.5                            | 0.00086                                | 0.00081                                | 0.00076                                | 0.00067                                | 0.00083                                  | 0.00067                                | 0.00097                                | 0.00075                                | 0.00076                                | 0.0011                                 | 0.00088                                | 0.00084                                | 0.00074                                | 0.00085                                | 0.00077                                | 0.0008                             | 0.0009                               | 0.00081                            | 0.00072                            | 0.00076                            | 0.00098                            | 0.00089                                | 1.62                               | 0.00075                            | 0.00075                            | 0.00059                              |
| 1.5                            | 5.89                                   | 5.76                                   | 5.94                                   | 5.85                                   | 5.92                                     | 5.81                                   | 6.06                                   | 5.68                                   | 5.71                                   | 6.4                                    | 5.94                                   | 6.01                                   | 5.96                                   | 6.04                                   | 5.97                                   | 6.07                               | 6.06                                 | 6.09                               | 5.78                               | 5.77                               | 5.88                               | 5.86                                   | 5.92                               | 5.97                               | 5.91                               | 5.89                                 |
| 2                              | 10.3                                   | 10.1                                   | 10.4                                   | 10.3                                   | 10.3                                     | 10.2                                   | 10.5                                   | 9.97                                   | 10                                     | 11.1                                   | 10.4                                   | 10.5                                   | 10.5                                   | 10.6                                   | 10.5                                   | 10.6                               | 10.6                                 | 10.7                               | 10.2                               | 10.1                               | 10.2                               | 10.2                                   | 10.4                               | 10.5                               | 10.4                               | 10.4                                 |
| 5                              | 27.6                                   | 27.2                                   | 27.9                                   | 27.9                                   | 27.6                                     | 27.7                                   | 27.8                                   | 27                                     | 27.1                                   | 29.3                                   | 27.7                                   | 27.9                                   | 27.9                                   | 28.1                                   | 27.9                                   | 28.2                               | 28.2                                 | 28.3                               | 27.4                               | 27.3                               | 27.2                               | 27.3                                   | 27.9                               | 28.1                               | 27.9                               | 28                                   |
| 10                             | 47.3<br>59.3                           | 46.6<br>58.5                           | 47.7<br>59.8                           | 47.7<br>59.7                           | 47.1<br>58.9                             | 47.4<br>59.3                           | 47.2<br>59.1                           | 46.3<br>58.2                           | 46.4<br>58.4                           | 49.3<br>61.4                           | 47<br>58.9                             | 47.3<br>59.2                           | 47.4<br>59.4                           | 47.5<br>59.5                           | 47.3<br>59.3                           | 47.7<br>59.8                       | 47.6<br>59.6                         | 47.8<br>59.7                       | 46.7<br>58.8                       | 46.6<br>58.6                       | 46.4<br>58.4                       | 46.4<br>58.4                           | 47.3<br>59.4                       | 47.5<br>59.5                       | 47.1<br>59                         | 47.4<br>59.4                         |
| 20                             | 67.9                                   | 67.2                                   | 68.3                                   | 68.3                                   | 67.5                                     | 67.8                                   | 67.7                                   | 66.8                                   | 67                                     | 69.9                                   | 67.5                                   | 67.8                                   | 68                                     | 68.1                                   | 67.9                                   | 68.4                               | 68.2                                 | 68.3                               | 67.7                               | 67.4                               | 67.2                               | 67.1                                   | 68.1                               | 68.2                               | 67.6                               | 68                                   |
| 25                             | 74.7                                   | 74.1                                   | 75                                     | 75                                     | 74.3                                     | 74.5                                   | 74.4                                   | 73.7                                   | 73.9                                   | 76.5                                   | 74.3                                   | 74.4                                   | 74.8                                   | 74.9                                   | 74.7                                   | 75.1                               | 74.9                                 | 74.9                               | 74.6                               | 74.3                               | 74                                 | 74                                     | 74.9                               | 75                                 | 74.4                               | 74.7                                 |
| 50                             | 92.6                                   | 92.5                                   | 92.9                                   | 92.8                                   | 92.6                                     | 92.5                                   | 92.4                                   | 92.3                                   | 92.4                                   | 94                                     | 92.4                                   | 92.2                                   | 92.8                                   | 92.7                                   | 92.7                                   | 92.9                               | 93                                   | 92.9                               | 92.8                               | 92.7                               | 92.4                               | 92.4                                   | 92.6                               | 92.8                               | 92.3                               | 92.4                                 |
| 63                             | 94.9<br>95.4                           | 94.9<br>95.5                           | 95.8<br>95.8                           | 95.6                                   | 95.1<br>95.7                             | 94.8<br>95.3                           | 94.7<br>95.2                           | 94.8<br>95.3                           | 94.9<br>95.4                           | 96.6                                   | 94.9<br>95.4                           | 94.5                                   | 95.6                                   | 95                                     | 95<br>95.5                             | 95.Z<br>95.7                       | 95.9<br>95.9                         | 95.8                               | 95.2<br>95.7                       | 95.6                               | 94.8<br>95.3                       | 94.8<br>95.3                           | 94.9<br>95.4                       | 95.1<br>95.6                       | 94.6<br>95.1                       | 94.8<br>95.3                         |
| 70                             | 96.3                                   | 96.4                                   | 96.7                                   | 96.5                                   | 96.6                                     | 96.1                                   | 96.1                                   | 96.3                                   | 96.3                                   | 97.4                                   | 96.3                                   | 95.9                                   | 96.5                                   | 96.4                                   | 96.4                                   | 96.6                               | 96.9                                 | 96.6                               | 96.6                               | 96.5                               | 96.3                               | 96.3                                   | 96.2                               | 96.6                               | 96                                 | 96.1                                 |
| 75                             | 96.8                                   | 96.9                                   | 97.1                                   | 97                                     | 97                                       | 96.6                                   | 96.6                                   | 96.8                                   | 96.8                                   | 97.8                                   | 96.7                                   | 96.4                                   | 96.9                                   | 96.8                                   | 96.9                                   | 97.1                               | 97.4                                 | 97.1                               | 97.1                               | 97                                 | 96.8                               | 96.8                                   | 96.7                               | 97                                 | 96.5                               | 96.6                                 |
| 90                             | 97.7                                   | 97.9                                   | 98                                     | 98                                     | 98                                       | 97.7                                   | 97.6                                   | 97.8                                   | 97.9                                   | 98.7                                   | 97.6                                   | 97.4                                   | 97.6                                   | 97.7                                   | 97.9                                   | 98.2                               | 98.3                                 | 98                                 | 98.1                               | 98                                 | 97.8                               | 98                                     | 97.7                               | 98                                 | 97.6                               | 97.6                                 |
| 125                            | 98.7                                   | 99                                     | 90.4<br>99.1                           | 90.0<br>99.1                           | 99.4                                     | 98.8                                   | 98.5                                   | 90.3                                   | 98.8                                   | 99.1                                   | 98.6                                   | 98.3                                   | 98.6                                   | 98.6                                   | 98.8                                   | 98.9                               | 98.8                                 | 99.1                               | 99.5                               | 99.1                               | 98.6                               | 99                                     | 98.7                               | 98.9                               | 98.7                               | 98.9                                 |
| 150                            | 99.1                                   | 99.3                                   | 99.6                                   | 99.3                                   | 99.3                                     | 99.1                                   | 98.8                                   | 99.3                                   | 99.2                                   | 99.96                                  | 98.9                                   | 98.6                                   | 99.1                                   | 98.9                                   | 99.2                                   | 99.2                               | 99.1                                 | 99.4                               | 99.2                               | 99.4                               | 98.8                               | 99.2                                   | 99.1                               | 99.2                               | 98.9                               | 99.3                                 |
| 170                            | 99.4                                   | 99.5                                   | 99.8                                   | 99.5                                   | 99.5                                     | 99.4                                   | 99                                     | 99.4                                   | 99.4                                   | 99.99                                  | 99.1                                   | 98.9                                   | 99.3                                   | 99.1                                   | 99.4                                   | 99.4                               | 99.4                                 | 99.7                               | 99.3                               | 99.5                               | 98.9                               | 99.4                                   | 99.4                               | 99.4                               | 99                                 | 99.4                                 |
| 180                            | 99.5                                   | 99.5                                   | 99.9                                   | 99.5                                   | 99.6                                     | 99.5                                   | 99.1                                   | 99.5                                   | 99.6                                   | 99.999                                 | 99.3                                   | 99                                     | 99.4                                   | 99.2                                   | 99.5                                   | 99.5                               | 99.4                                 | 99.7                               | 99.4                               | 99.6                               | 99                                 | 99.5                                   | 99.5                               | 99.5                               | 99.1<br>99.4                       | 99.4                                 |
| 225                            | 99.8                                   | 99.7                                   | 99.99                                  | 99.9                                   | 99.8                                     | 99.9                                   | 99.5                                   | 99.8                                   | 99.9                                   | 100                                    | 99.8                                   | 99.2<br>99.5                           | 99.6                                   | 99.8                                   | 99.8                                   | 99.9                               | 99.7                                 | 99.96                              | 99.8                               | 99.9                               | 99.6                               | 99.9                                   | 99.8                               | 99.8                               | 99.6                               | 99.6                                 |
| 250                            | 99.9                                   | 99.8                                   | 99.999                                 | 99.97                                  | 99.8                                     | 99.95                                  | 99.7                                   | 99.9                                   | 99.9                                   | 100                                    | 99.9                                   | 99.7                                   | 99.7                                   | 99.9                                   | 99.9                                   | 99.98                              | 99.8                                 | 99.99                              | 99.9                               | 99.97                              | 99.8                               | 99.97                                  | 99.9                               | 99.9                               | 99.8                               | 99.7                                 |
| 400                            | 99.999                                 | 99.999                                 | 100                                    | 100                                    | 99.999                                   | 100                                    | 99.998                                 | 100                                    | 100                                    | 100                                    | 100                                    | 100                                    | 99.999                                 | 100                                    | 100                                    | 100                                | 99.999                               | 100                                | 100                                | 100                                | 100                                | 100                                    | 99.999                             | 100                                | 100                                | 100                                  |
| 500<br>750                     | 100                                    | 100                                    | 100                                    | 100                                    | 100                                      | 100                                    | 100                                    | 100                                    | 100                                    | 100                                    | 100                                    | 100                                    | 100                                    | 100                                    | 100                                    | 100                                | 100                                  | 100                                | 100                                | 100                                | 100                                | 100                                    | 100                                | 100                                | 100                                | 100                                  |
| 1000                           | 100                                    | 100                                    | 100                                    | 100                                    | 100                                      | 100                                    | 100                                    | 100                                    | 100                                    | 100                                    | 100                                    | 100                                    | 100                                    | 100                                    | 100                                    | 100                                | 100                                  | 100                                | 100                                | 100                                | 100                                | 100                                    | 100                                | 100                                | 100                                | 100                                  |
| 2000                           | 100                                    | 100                                    | 100                                    | 100                                    | 100                                      | 100                                    | 100                                    | 100                                    | 100                                    | 100                                    | 100                                    | 100                                    | 100                                    | 100                                    | 100                                    | 100                                | 100                                  | 100                                | 100                                | 100                                | 100                                | 100                                    | 100                                | 100                                | 100                                | 100                                  |



| · NGU -         |                                            |                                            |                                            |                                            |                                            |                                            |                                            |                                            |                                            |                                            |                                            |                                            |                                            |                                            |                                            |                                                |                                        |
|-----------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|------------------------------------------------|----------------------------------------|
| name:           | 21.0031_105#1_0                            | 21.0031_106#1_0                            | ) 21.0031_107#1_0                          | ) 21.0031_108#1_0                          | 21.0031_109#1_0                            | 21.0031_110#1_0                            | 21.0031_111#1_0                            | 21.0031_112#1_0                            | 21.0031_113#1_0                            | 21.0031_114#1_0                            | ) 21.0031_115#1_0<br>/ \$le                | 21.0031_116#1_0                            | 21.0031_117#1_0                            | 21.0031_118#1_0                            | 21.0031_119_Hyn                            | 21.0031_120_MIN                                | 21.0031_121_TAN                        |
| :               | ۹.915<br>21.0031_105#1                     | وروب <del>،</del><br>21.0031_106#1         | وري. <del>.</del><br>21.0031_107#1         | دىپ. <del>-</del><br>21.0031_108#1         | دىپ. <del>ت</del><br>21.0031_109#1         | دىپ. <del>-</del><br>21.0031_110#1         | وروب <del>،</del><br>21.0031_111#1         | دىپ. <del>-</del><br>21.0031_112#1         | وروب <del>،</del><br>21.0031_113#1         | وبو. <del>ب</del><br>21.0031_114#1         | درو. <del>.</del><br>21.0031_115#1         | وروب <del>،</del><br>21.0031_116#1         | ورو. <del></del><br>21.0031_117#1          | وروب <del>،</del><br>21.0031_118#1         | 21.0031_119_Hyn<br>ne#1                    | 21.0031_120_MIN<br>N#1                         | 21.0031_121_TAN<br>A#1                 |
| ə ID:           | 21.0031_188463_<br>R2339MC018A 30-         | 21.0031_118464_<br>- R2339018A 31-32       | 21.0031_118465_<br>R2339018A 32-33         | 21.0031_188466_<br>R2339018A 33-34         | 21.0031_188467_<br>R2339018A 34-35         | 21.0031_188468_<br>R2339018A 35-36         | 21.0031_188469_<br>R2339018A 36-37         | 21.0031_188470_<br>R2339018A 37-38         | 21.0031_188471_<br>R2339018A 38-39         | 21.0031_188472_<br>R2339018A 39-40         | 21.0031_188473_<br>R2339018A 40-41         | 21.0031_188474_<br>R2339018A 41-42         | 21.0031_188475_<br>R2339018A 42-43         | 21.0031_188476_<br>R2339018A 43-44         | 21.0031_Hynne_4<br>0107                    | 21.0031_MINN_Sp<br>lit 1                       | 21.0031_TANA (3)                       |
| or:             | MSH                                            | MSH                                    |
|                 | 0,115 g +                                  | 0,115 g +                                  | 0,116 g +                                  | 0,154 g +                                  | 0,334 g +                                      | 0,140 g +                              |
| nent 1:         | disp.middel,<br>spr.vann                   | disp.middel,<br>springvann                     | disp.middel,<br>Springvann             |
| nent 2:         | UL- Probe 2<br>(naken), 5 ampl, 5          | UL Probe 2<br>(naken), 5 ampl, 5           | UL Probe 2<br>5 (naken), 5 ampl, 9         | UL Probe 2<br>5 (naken), 5 ampl, 5         | UL Probe 2<br>(naken), 5 ampl, 5           | UL Probe 2<br>5 (naken), 5 ampl, 5         | UL Probe 2<br>(naken), 5 ampl, 5           | UL Probe 2<br>(naken), 5 ampl, 5           | UL Probe 2<br>(naken), 5 ampl, 5           | UL Probe 2<br>(naken), 5 ampl, 5           | UL Probe 2<br>5 (naken), 5 ampl, 5         | UL Probe 2<br>5 (naken), 5 ampl, 5         | UL Probe 2<br>(naken), 5 ampl, 5           | UL Probe 2<br>(naken), 5 ampl, 5           | UL Probe 2<br>5 (naken), 5 ampl, 5         | UL probe 2<br>(naken), 5 ampl-5                | ultralyd, Probe 2<br>(naken), 5 ampl-5 |
| nent:           | min, Leire<br>LS 13 320,<br>Aqueous Liquid | min,Fraunhofer<br>LS 13 320,<br>Aqueous Liquid | min<br>LS 13 320,<br>Aqueous Liquid    |
| umber:          | Module<br>4                                    | Module<br>4                            |
| me:             | 09.04.2021                                 | 12.04.2021                                 | 12.04.2021                                 | 12.04.2021                                 | 12.04.2021                                 | 12.04.2021                                 | 12.04.2021                                 | 12.04.2021                                 | 12.04.2021                                 | 12.04.2021                                 | 12.04.2021                                 | 12.04.2021                                 | 12.04.2021                                 | 12.04.2021                                 | 12.04.2021                                 | 12.04.2021                                     | 12.04.2021                             |
| ngth:<br>model: | 60<br>Leire-1-65 rf780d                    | 60<br>Leire-1-65 rf780d                    | 60                                         | 60                                         | 60<br>Leire-1-65 rf780d                    | 60                                         | 60<br>Leire-1-65 rf780d                    | 61<br>Leire-1-65 rf780d                    | 61<br>Leire-1-65 rf780d                    | 60<br>Leire-1-65 rf780d                    | 60<br>Fraunhofer rf780d                        | 60<br>Fraunhofer rf780d                |
| ation:          | 10                                         | 10                                         | 10                                         | 10                                         | 10                                         | 10                                         | 10                                         | 10                                         | 10                                         | 10                                         | 10                                         | 10                                         | 11                                         | 10                                         | 10                                         | 10                                             | 10                                     |
| bscur:          | OK                                             | OK                                     |
| Number:         | 9834                                       | 9834                                       | 9834                                       | 9834                                       | 9834                                       | 9834                                       | 9834                                       | 9834                                       | 9834                                       | 9834                                       | 9834                                       | 9834                                       | 9834                                       | 9834                                       | 9834                                       | 9834                                           | 9834                                   |
|                 |                                            |                                            | 0.075                                      | 0.075                                      |                                            |                                            |                                            |                                            | 0.075                                      | 0.075                                      | 0.075                                      |                                            | 0.075                                      |                                            |                                            | 0.075                                          | 0.075                                  |
|                 | 0.375<br>2000                                  | 0.375<br>2000                          |
|                 | 100                                        | 100                                        | 100                                        | 100                                        | 100                                        | 100                                        | 100                                        | 100                                        | 100                                        | 100                                        | 100                                        | 100                                        | 100                                        | 100                                        | 100                                        | 100                                            | 100                                    |
|                 | 19.42                                      | 18.7                                       | 18.28                                      | 18.95                                      | 18.09                                      | 18.23                                      | 18.32                                      | 18.65                                      | 18.5                                       | 19.22                                      | 19.37                                      | 19.28                                      | 18.79                                      | 18.62                                      | 60.76                                      | 68.68                                          | 36.87                                  |
| :               | 10.92<br>5 325                             | 11.03<br>5 353                             | 10.85<br>5 302                             | 10.91<br>5 284                             | 10.86<br>5 305                             | 10.8<br>5.27                               | 10.89<br>5 296                             | 11.07<br>5 31                              | 10.7<br>5 153                              | 11.08<br>5 313                             | 11.26<br>5.35                              | 11.39<br>5.42                              | 11.28<br>5.41                              | 11.03<br>5 333                             | 16.85<br>7 143                             | 42.61<br>14 37                                 | 16.66<br>3.821                         |
| ledian ratio:   | 1.779                                      | 1.696                                      | 1.684                                      | 1.736                                      | 1.666                                      | 1.689                                      | 1.681                                      | 1.684                                      | 1.729                                      | 1.735                                      | 1.721                                      | 1.694                                      | 1.666                                      | 1.688                                      | 3.607                                      | 1.612                                          | 2.213                                  |
|                 | 28.7                                       | 28.7                                       | 28.7                                       | 28.7                                       | 28.7                                       | 28.7                                       | 28.7                                       | 28.7                                       | 28.7                                       | 28.7                                       | 28.7                                       | 28.7                                       | 28.7                                       | 28.7                                       | 9.37                                       | 55.14                                          | 87.9                                   |
|                 | 26.67                                      | 23.26                                      | 21.52                                      | 25.08                                      | 20.78                                      | 21.69                                      | 21.42                                      | 22.28                                      | 23.51                                      | 24.99                                      | 25.11                                      | 23.01                                      | 21.59                                      | 22.17                                      | 118.3                                      | 103.2                                          | 44.2                                   |
| e:              | 711.3                                      | 541.2                                      | 462.9                                      | 628.9<br>132.3                             | 431.6                                      | 470.3                                      | 458.7                                      | 496.4                                      | 552.8                                      | 624.4<br>130                               | 630.6<br>129.6                             | 529.6<br>119.3                             | 466.1                                      | 491.3                                      | 13992                                      | 10646<br>150 2                                 | 1954                                   |
| SS:             | 4.475                                      | 4.032                                      | 2.826                                      | 4.346                                      | 2.639                                      | 3.115                                      | 2.789                                      | 3.021                                      | 3.799                                      | 3.991                                      | 4.107                                      | 2.911                                      | 2.588                                      | 2.99                                       | 3.795                                      | 5.146                                          | 1.452                                  |
| s:              | 31.82                                      | 31.02                                      | 11.58                                      | 31.24                                      | 10.02                                      | 15.73                                      | 11.52                                      | 13.62                                      | 23.13                                      | 26.21                                      | 28.63                                      | 12.47                                      | 9.398                                      | 13.59                                      | 16.34                                      | 35.11                                          | 1.445                                  |
|                 | 1.949                                      | 1.96                                       | 1.94                                       | 1.93                                       | 1.945                                      | 1.93                                       | 1.938                                      | 1.933                                      | 1.873                                      | 1.934                                      | 1.946                                      | 1.972                                      | 1.971                                      | 1.951                                      | 2.484                                      | 8.161                                          | 1.135                                  |
|                 | 10.92                                      | 11.03                                      | 10.85                                      | 10.91                                      | 10.86                                      | 10.8                                       | 10.89                                      | 11.07                                      | 10.7                                       | 11.08                                      | 11.26                                      | 11.39                                      | 11.28                                      | 11.03                                      | 16.85                                      | 42.61                                          | 16.66                                  |
| c Surf. Area:   | 43.13                                      | 42.76<br>11208                             | 42.03                                      | 42.44<br>11355                             | 11309                                      | 42.15<br>11384                             | 42.3<br>11329                              | 42.82<br>11300                             | 42.25<br>11645                             | 43.17<br>11293                             | 43.5<br>11214                              | 44.28<br>11071                             | 43.34<br>11091                             | 42.8<br>11252                              | 8399                                       | 4174                                           | 15702                                  |
|                 | Size                                           | Size                                   |
|                 | 1.95                                       | 1.96                                       | 1.94                                       | 1.93                                       | 1.95                                       | 1.93                                       | 1.94                                       | 1.93                                       | 1.87                                       | 1.93                                       | 1.95                                       | 1.97                                       | 1.97                                       | 1.95                                       | 2.48                                       | 8.16                                           | 1.14                                   |
|                 | 4.39                                       | 4.42                                       | 4.37<br>10 9                               | 4.36<br>10.9                               | 4.37<br>10.9                               | 4.33<br>10.8                               | 4.35<br>10.9                               | 4.38<br>11 1                               | 4.24                                       | 4.39<br>11 1                               | 4.44                                       | 4.5<br>11 4                                | 4.49<br>11.3                               | 4.4                                        | 5.91<br>16.8                               | 19.8<br>42.6                                   | 3.75<br>16.7                           |
|                 | 25.2                                       | 25.2                                       | 24.9                                       | 25.1                                       | 24.8                                       | 24.8                                       | 25                                         | 25.4                                       | 24.9                                       | 25.5                                       | 25.8                                       | 26.2                                       | 25.8                                       | 25.3                                       | 61.4                                       | 77.9                                           | 57.5                                   |
|                 | 43.1                                       | 42.8                                       | 42                                         | 42.4                                       | 41.8                                       | 42.2                                       | 42.3                                       | 42.8                                       | 42.2                                       | 43.2                                       | 43.5                                       | 44.3                                       | 43.3                                       | 42.8                                       | 145                                        | 134                                            | 107                                    |
| e Diameter      | 21.0031_105#1_0<br>4.\$ls                  | 21.0031_106#1_0<br>4.\$Is                  | ) 21.0031_107#1_0<br>4.\$ls                | 0 21.0031_108#1_0<br>4.\$Is                | 21.0031_109#1_0<br>4.\$ls                  | 21.0031_110#1_0<br>4.\$ls                  | 21.0031_111#1_0<br>4.\$Is                  | 21.0031_112#1_0<br>4.\$ls                  | 21.0031_113#1_0<br>4.\$Is                  | 21.0031_114#1_0<br>4.\$Is                  | ) 21.0031_115#1_0<br>4.\$Is                | 21.0031_116#1_0<br>4.\$ls                  | 21.0031_117#1_0<br>4.\$ls                  | 21.0031_118#1_0<br>4.\$ls                  | 21.0031_119_Hyn<br>ne#1_04.\$ls            | 21.0031_120_MIN<br>N#1_04.\$ls                 | 21.0031_121_TAN<br>A#1_04.\$ls         |
|                 | Volume                                         | Volume                                 |
|                 | % <                                        | % <                                        | % <                                        | % <                                        | % <                                        | % <                                        | % <                                        | % <                                        | % <                                        | % <                                        | % <                                        | % <                                        | % <                                        | % <                                        | % <                                        | % <                                            | % <                                    |
|                 | 0.00072                                    | 0.00066                                    | 0.00062                                    | 0.00081                                    | 0.00065                                    | 0.00073                                    | 0.00071                                    | 0.00076                                    | 0.0011                                     | 0.00082                                    | 0.0009                                     | 0.00076                                    | 0.00064                                    | 0.00077                                    | 0                                          | 0.014                                          | 0.12                                   |
|                 | 1.6                                        | 1.57                                       | 1.58                                       | 1.65                                       | 1.58                                       | 1.62                                       | 1.61                                       | 1.63                                       | 1.83                                       | 1.65                                       | 1.66                                       | 1.58                                       | 1.55                                       | 1.61                                       | 0.67                                       | 1.11                                           | 8.34                                   |
|                 | 5.92                                       | 5.85                                       | 5.95                                       | 6.04                                       | 5.92                                       | 6.01                                       | 5.97                                       | 6.01                                       | 6.43                                       | 6.03                                       | 5.98                                       | 5.82                                       | 5.8                                        | 5.92                                       | 3.63                                       | 1.93                                           | 13.5                                   |
|                 | 10.4                                       | 10.3                                       | 10.5                                       | 10.6                                       | 10.5                                       | 10.6                                       | 10.5                                       | 10.6                                       | 11.1                                       | 10.6                                       | 10.5                                       | 10.2                                       | 10.2                                       | 10.4                                       | 7.11                                       | 2.56                                           | 17                                     |
|                 | 20<br>47.4                                 | 47.1                                       | 47.6                                       | 20.2<br>47.4                               | 20.2<br>47.5                               | ∠o.4<br>47.7                               | 20.2<br>47.5                               | 47                                         | 20.0<br>48                                 | 20<br>47                                   | 46.6                                       | 46.2                                       | 46.5                                       | ∠o<br>47.1                                 | 37.7                                       | 12.5                                           | 29.5<br>41.3                           |
|                 | 59.4                                       | 59.1                                       | 59.6                                       | 59.4                                       | 59.7                                       | 59.8                                       | 59.5                                       | 58.9                                       | 59.9                                       | 58.9                                       | 58.5                                       | 58.1                                       | 58.4                                       | 59.1                                       | 47.4                                       | 19                                             | 48.2                                   |
|                 | 68.1                                       | 67.9                                       | 68.3                                       | 68.1                                       | 68.4                                       | 68.5                                       | 68.2                                       | 67.7                                       | 68.5                                       | 67.6                                       | 67.2                                       | 66.8                                       | 67.1                                       | 67.8                                       | 53.6                                       | 25.2                                           | 53.3                                   |
|                 | 74.8                                       | 74.7                                       | 75.2                                       | 74.9                                       | 75.2                                       | 75.3                                       | 75                                         | 74.5                                       | 75.2                                       | 74.5                                       | 74                                         | 73.6                                       | 74                                         | 74.7                                       | 58                                         | 31.1                                           | 57.4                                   |
|                 | 92.6<br>94.9                               | 93<br>95.4                                 | 93.2<br>95.4                               | 93<br>95.2                                 | 93.3<br>95.6                               | 93.1                                       | 93.1                                       | 92.9<br>95.3                               | 93.1                                       | 92.7                                       | 92.5<br>95                                 | 92.2<br>94.8                               | 92.7                                       | 92.9<br>95.3                               | 74.6                                       | 64.5                                           | 75.9                                   |
|                 | 95.4                                       | 95.9                                       | 95.9                                       | 95.7                                       | 96.1                                       | 95.9                                       | 96                                         | 95.9                                       | 96                                         | 95.5                                       | 95.5                                       | 95.3                                       | 95.7                                       | 95.8                                       | 75.5                                       | 66.6                                           | 77.1                                   |
|                 | 96.3                                       | 96.8                                       | 96.8                                       | 96.5                                       | 97                                         | 96.8                                       | 96.8                                       | 96.8                                       | 96.9                                       | 96.4                                       | 96.5                                       | 96.3                                       | 96.7                                       | 96.7                                       | 77.5                                       | 70.9                                           | 79.5                                   |
|                 | 96.8                                       | 97.2                                       | 97.3                                       | 97                                         | 97.4                                       | 97.3                                       | 97.3                                       | 97.3                                       | 97.3                                       | 96.9                                       | 97                                         | 96.8                                       | 97.1                                       | 97.2                                       | 78.8                                       | 73.6                                           | 81.2                                   |
|                 | 97.7                                       | 98.2<br>98.6                               | 98.3<br>98.7                               | 98.2<br>98.6                               | 98.4<br>98.8                               | 98.5<br>99                                 | 98.3<br>98.7                               | 98.3                                       | 98.3<br>98.7                               | 97.8<br>98.3                               | 98<br>98.4                                 | 98<br>98.5                                 | 98.1<br>98.6                               | 98.2<br>98.7                               | 82.3                                       | 80                                             | 88.5                                   |
|                 | 98.8                                       | 99.4                                       | 99.3                                       | 99.1                                       | 99.5                                       | 99.5                                       | 99.4                                       | 99.2                                       | 99.2                                       | 99                                         | 98.9                                       | 99.2                                       | 99.4                                       | 99.3                                       | 87.9                                       | 88.6                                           | 93.7                                   |
|                 | 99.2                                       | 99.7                                       | 99.7                                       | 99.3                                       | 99.8                                       | 99.6                                       | 99.8                                       | 99.6                                       | 99.4                                       | 99.4                                       | 99.3                                       | 99.6                                       | 99.8                                       | 99.6                                       | 90.4                                       | 91.9                                           | 97.1                                   |
|                 | 99.4                                       | 99.8                                       | 99.9                                       | 99.4                                       | 99.96                                      | 99.8                                       | 99.9                                       | 99.8                                       | 99.6                                       | 99.6                                       | 99.6                                       | 99.8                                       | 99.96                                      | 99.8                                       | 91.9                                       | 93.6                                           | 98.7                                   |
|                 | 99.5                                       | 99.8                                       | 99.96                                      | 99.5                                       | 99.98                                      | 99.8                                       | 99.9                                       | 99.9                                       | 99.6                                       | 99.7                                       | 99.7                                       | 99.9                                       | 99.98                                      | 99.9                                       | 92.5                                       | 94.3                                           | 99.2                                   |
|                 | 99.8                                       | 99.9                                       | 99.99<br>100                               | 99.7<br>99.8                               | 99.998<br>100                              | 99.98                                      | 99.998                                     | 99.998                                     | 99.9                                       | 99.8                                       | 99.9                                       | 99.99                                      | 99.998<br>100                              | 99.99                                      | 93.4<br>94.1                               | 95.2<br>95.9                                   | 99.95                                  |
|                 | 99.8                                       | 99.9                                       | 100                                        | 99.9                                       | 100                                        | 99.998                                     | 100                                        | 100                                        | 99.97                                      | 99.9                                       | 99.9                                       | 100                                        | 100                                        | 99.999                                     | 94.5                                       | 96.3                                           | 99.995                                 |
|                 | 99.999                                     | 99.999                                     | 100                                        | 99.998                                     | 100                                        | 100                                        | 100                                        | 100                                        | 100                                        | 100                                        | 99.999                                     | 100                                        | 100                                        | 100                                        | 96.7                                       | 98.1                                           | 100                                    |
|                 | 100                                        | 100                                        | 100                                        | 100                                        | 100                                        | 100                                        | 100                                        | 100                                        | 100                                        | 100                                        | 100                                        | 100                                        | 100                                        | 100                                        | 97.8                                       | 98.8                                           | 100                                    |
|                 | 100                                        | 100                                        | 100                                        | 100                                        | 100                                        | 100                                        | 100                                        | 100                                        | 100                                        | 100                                        | 100                                        | 100                                        | 100                                        | 100                                        | 99.5<br>99.907                             | 99.4<br>ga a                                   | 100                                    |
|                 | 100                                        | 100                                        | 100                                        | 100                                        | 100                                        | 100                                        | 100                                        | 100                                        | 100                                        | 100                                        | 100                                        | 100                                        | 100                                        | 100                                        | 100                                        | 100                                            | 100                                    |
|                 |                                            |                                            |                                            |                                            |                                            |                                            |                                            |                                            |                                            |                                            |                                            |                                            |                                            |                                            |                                            |                                                |                                        |



Leiv Eirikssons vei 39 NO - 7040 Trondheim Tlf.: 73 90 40 00 E-post: lab@ngu.no

Coulter LS 13320



## **INSTRUMENT: METODE:**

# Metodeoppsettet er beskrevet i LABdok\_K01: Kornfordelingsanalyse: metode basert på laser partikkelteller, måleområdet 0.400 μm - 2000 μm.

Kornfordelingsbestemmelse basert på laserdiffraksjon. Laserlys brytes i ulike vinkler avhengig av størrelsen på partiklene, og registreres så av en rekke detektorer. De registrerte vinklene tilsvarer gitte partikkelstørrelser, og antall partikler er relatert til den intensiteten som den korresponderende detektoren registrerer. Kornfordelingen bestemmes således på volum-basis, med antagelse om ens tetthet på materialet vil kumulativ volum% være identisk med kumulativ masse%. Beregning på volum/masse-basis er basert på antagelse om sfæriske partikler.

MÅLEOMRÅDE : Måleområdet varierer avhengig av type detektorer som benyttes under målinger. Til vanlig gjøres målingene i området 0.4 μm - 2000 μm\*. Måleområdet kan på forespørsel utvides til 0.017 μm - 2000 μm ved hjelp av den såkalte PIDS-detektoren. Dette området omfattes ikke av akkreditering. NB! Metoden normaliserer alle data i måleområdet til sum 100 % (kumulativ %), hvor den laveste målegrensen settes som nullpunkt mht. kumulativ %. *Hvis prøvene inneholder materiale finere enn det laveste målegrense, er disse ikke detekterbare og dermed ikke tatt i beregning av kumulativ %*.

### \*omfattes av akkreditering

ANALYSEUSIKKERHET: ± 10 % [kumulativ masse(volum) %] Usikkerheten er oppgitt med dekningsfaktor 2, tilsvarende et konfidensintervall på 95 % Bestemmelse av usikkerhet er basert på sammenligning av oppnådde resultater med sertifikatverdier for kvartsstandard BCR-131, samt presisjonsdata. MERK! Metoden tar utgangspunkt i antagelse om sfæriske partikler. For prøver som avviker fra dette kan usikkerheten være større.

## PRESISJON: Det analyseres rutinemessig kontrollprøver som føres i kontrolldiagram (X-diagram). Disse kan forevises om ønskelig.

Analysekontrakt nr.: 2021.0031 Prøvetype/prøvematrise: GEOLOGISK MATERIALE/sediment

Antall prøver: 121

Prøveforbehandling: Ganske mange av prøvene inneholdt mye finstoff og hadde sammenkittet materiale som var vanskelig å løsne. Disse ble bløtlagt og frysetørket på nytt. Dette gjelder prøvene med løpenr 5, 6, 12, 14-25, 28-41, 55, 58-62, 66-71, 76-87, 88-106, 107-118.

Anmerkninger: Ingen

Delrapport som består av forside med informasjon om metode ("Forside\_Coulter"), sider med analysedata ("Data") og tilleggsinformasjon ("Prove\_info"). Fullstendig analyserapport finnes kun i papirformat. Gjengivelse av analysedata skal skje på en slik måte at meningsinnholdet i rapporten ikke endres.

For informasjon om metode for databeregning (Optical Mode) og statistiske parametre henvises til arket Prove\_info.

| Forbehandlet av: | Marit Sigrid Halle | Forbehandling fullført (dato): | 07.04.2021 |
|------------------|--------------------|--------------------------------|------------|
| Rapportert av:   | Marit Sigrid Halle | Analysert fullført (dato):     | 12.04.2021 |

| File name:     | C:\LS13320\Raadata LS 1332<br>21.0031 001 Hvnne#1 04.\$I | :0 Analyse\2021\l<br>s | Jten PIDS\20210031\21.0031_001_Hynne#1_04.\$ls |
|----------------|----------------------------------------------------------|------------------------|------------------------------------------------|
| File ID:       | 21.0031_001_Hynne#1                                      |                        |                                                |
| Sample ID:     | 21.0031_Hynne_40107                                      |                        |                                                |
| Operator:      | MSH                                                      |                        |                                                |
| Run number:    | 4                                                        |                        |                                                |
|                | Control Sample                                           |                        |                                                |
| Comment 1:     | 0,154 g + disp.middel, springv                           | ann                    |                                                |
| Comment 2:     | Ultralyd Probe 2 (naken), 5 ar                           | mpl, 5 min, Leire      |                                                |
| Optical model: | Leire-1-65.rf780d                                        |                        |                                                |
| Fluid R.I.:    | 1.333                                                    | Sample R.I.:           | 1.65 i0.0099                                   |
| Residual:      | 0.24%                                                    |                        |                                                |
| LS 13 320      | Aqueous Liquid Module                                    |                        |                                                |
| Start time:    | 2021-03-19 12:00                                         | Run length:            | 60 seconds                                     |
| Pump speed:    | 45                                                       |                        |                                                |
| Obscuration:   | 10%                                                      |                        |                                                |
| Fluid:         | Water                                                    |                        |                                                |
| Software:      | 6.01                                                     | Firmware:              | 4.00                                           |



| Moan.                      |                          | 0.0       | 100.1 µm                   |
|----------------------------|--------------------------|-----------|----------------------------|
| Median:                    | 17.54 µm                 | Variance: | 11893 µm <sup>2</sup>      |
| D(3,2):                    | 7.245 µm                 | C.V.:     | 180%                       |
| Mean/Median ratio:         | 3.462                    | Skewness: | 3.389 Right skewed         |
| Mode:                      | 9.370 µm                 | Kurtosis: | 13.17 Leptokurtic          |
| Specific Surf. Area:       | 8281 cm <sup>2</sup> /mL |           | •                          |
| d <sub>10</sub> : 2.504 µm | d <sub>50</sub> : 17.54  | μm        | d <sub>90</sub> : 155.0 μm |
| <10% <25%                  | % <50%                   | <75%      | <90%                       |
| 2.504 µm 6.01              | 3 μm 17.54 μm            | 65.43 µm  | 155.0 μm                   |

| File name:     | C:\LS13320\Raadata LS 1332<br>21.0031_002_MINN#1_04.\$ls | 20 Analyse\2021\l | Jten PIDS\20210031\21.0031_002_MINN#1_04.\$Is |
|----------------|----------------------------------------------------------|-------------------|-----------------------------------------------|
| File ID:       | 21.0031_002_MINN#1_                                      |                   |                                               |
| Sample ID:     | 21.0031 MINN Split 1                                     |                   |                                               |
| Operator:      | MSH                                                      |                   |                                               |
| Run number:    | 4                                                        |                   |                                               |
|                | Control Sample                                           |                   |                                               |
| Comment 1:     | 0,334 g + disp.middel, Springv                           | vann              |                                               |
| Comment 2:     | ultralyd, probe 2 (naken), 5 an                          | npl-5 min,Fraunh  | ofer                                          |
| Optical model: | Fraunhofer.rf780d                                        |                   |                                               |
| Residual:      | 0.16%                                                    |                   |                                               |
| LS 13 320      | Aqueous Liquid Module                                    |                   |                                               |
| Start time:    | 2021-03-19 12:13                                         | Run length:       | 60 seconds                                    |
| Pump speed:    | 45                                                       |                   |                                               |
| Obscuration:   | 10%                                                      |                   |                                               |
| Fluid:         | Water                                                    |                   |                                               |
| Software:      | 6.01                                                     | Firmware:         | 4.00                                          |



| File name:     | C:\LS13320\Raadata LS 1332<br>21.0031_003_TANA#1_04.\$ls | 20 Analyse\2021\l | Jten PIDS\20210031\21.0031_003_TANA#1_04.\$Is |
|----------------|----------------------------------------------------------|-------------------|-----------------------------------------------|
| File ID:       | 21.0031_003_TANA#1_                                      |                   |                                               |
| Sample ID:     | 21.0031_TANA (2)                                         |                   |                                               |
| Operator:      | MSH                                                      |                   |                                               |
| Run number:    | 4                                                        |                   |                                               |
|                | Control Sample                                           |                   |                                               |
| Comment 1:     | 0,140 g + disp.middel, Spring                            | vann              |                                               |
| Comment 2:     | ultralyd, Probe 2 (naken), 5 ar                          | mpl-5 min         |                                               |
| Optical model: | Fraunhofer.rf780d                                        |                   |                                               |
| Residual:      | 0.26%                                                    |                   |                                               |
| LS 13 320      | Aqueous Liquid Module                                    |                   |                                               |
| Start time:    | 2021-03-19 10:37                                         | Run length:       | 60 seconds                                    |
| Pump speed:    | 45                                                       |                   |                                               |
| Obscuration:   | 10%                                                      |                   |                                               |
| Fluid:         | Water                                                    |                   |                                               |
| Software:      | 6.01                                                     | Firmware:         | 4.00                                          |



| File name:     | C:\LS13320\Raadata LS 1332<br>21.0031 004#2 04.\$ls | 0 Analyse\2021\l  | Jten PIDS\20210031\21.0031_004#2_04.\$Is |
|----------------|-----------------------------------------------------|-------------------|------------------------------------------|
| File ID:       | 21.0031_004#2_                                      |                   |                                          |
| Sample ID:     | 21.0031_188003_R2132MC0                             | 06A 0-1 cm        |                                          |
| Operator:      | MSH                                                 |                   |                                          |
| Run number:    | 4                                                   |                   |                                          |
| Comment 1:     | 0,451 g + disp.middel, springv                      | ann               |                                          |
| Comment 2:     | Ultralyd Probe 2 (naken), 5 ar                      | mpl, 5 min, Leire |                                          |
| Optical model: | Leire-1-65.rf780d                                   |                   |                                          |
| Fluid R.I.:    | 1.333                                               | Sample R.I.:      | 1.65 i0.0099                             |
| Residual:      | 0.32%                                               |                   |                                          |
| LS 13 320      | Aqueous Liquid Module                               |                   |                                          |
| Start time:    | 2021-03-19 12:41                                    | Run length:       | 60 seconds                               |
| Pump speed:    | 45                                                  |                   |                                          |
| Obscuration:   | 10%                                                 |                   |                                          |
| Fluid:         | Water                                               |                   |                                          |
| Software:      | 6.01                                                | Firmware:         | 4.00                                     |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_005#2_04.\$ls<br>21.0031_005#2_04.\$ls |              |              |
|----------------|------------------------------------------------------------------------------------------------------------|--------------|--------------|
| File ID:       | 21.0031_005#2                                                                                              |              |              |
| Sample ID:     | 21.0031_188042_R2139MC0                                                                                    | 08A 0-1 cm   |              |
| Operator:      | MSH                                                                                                        |              |              |
| Run number:    | 4                                                                                                          |              |              |
| Comment 1:     | 0,182 g + disp.middel, springvann                                                                          |              |              |
| Comment 2:     | Ultralyd Probe 2 (naken), 5 ampl, 5 min, Leire                                                             |              |              |
| Optical model: | Leire-1-65.rf780d                                                                                          |              |              |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.: | 1.65 i0.0099 |
| Residual:      | 0.19%                                                                                                      |              |              |
| LS 13 320      | Aqueous Liquid Module                                                                                      |              |              |
| Start time:    | 2021-03-19 13:12                                                                                           | Run length:  | 60 seconds   |
| Pump speed:    | 45                                                                                                         |              |              |
| Obscuration:   | 9%                                                                                                         |              |              |
| Fluid:         | Water                                                                                                      |              |              |
| Software:      | 6.01                                                                                                       | Firmware:    | 4.00         |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_006#1_04.\$ls<br>21.0031_006#1_04.\$ls |              |              |
|----------------|------------------------------------------------------------------------------------------------------------|--------------|--------------|
| File ID:       | 21.0031_006#1                                                                                              |              |              |
| Sample ID:     | 21.0031_188044_R2139MC0                                                                                    | 08A 2-3 cm   |              |
| Operator:      | MSH                                                                                                        |              |              |
| Run number:    | 4                                                                                                          |              |              |
| Comment 1:     | 0,185 g + disp.middel, springvann                                                                          |              |              |
| Comment 2:     | Ultralyd Probe 2 (naken), 5 ampl, 5 min, Leire                                                             |              |              |
| Optical model: | Leire-1-65.rf780d                                                                                          |              |              |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.: | 1.65 i0.0099 |
| Residual:      | 0.19%                                                                                                      |              |              |
| LS 13 320      | Aqueous Liquid Module                                                                                      |              |              |
| Start time:    | 2021-03-19 13:28                                                                                           | Run length:  | 60 seconds   |
| Pump speed:    | 45                                                                                                         |              |              |
| Obscuration:   | 10%                                                                                                        |              |              |
| Fluid:         | Water                                                                                                      |              |              |
| Software:      | 6.01                                                                                                       | Firmware:    | 4.00         |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_007#1_04.\$ls<br>21.0031_007#1_04.\$ls |              |              |
|----------------|------------------------------------------------------------------------------------------------------------|--------------|--------------|
| File ID:       | 21.0031_007#1_                                                                                             |              |              |
| Sample ID:     | 21.0031_188046_R2139CMC                                                                                    | 008A 4-5 cm  |              |
| Operator:      | MSH                                                                                                        |              |              |
| Run number:    | 4                                                                                                          |              |              |
| Comment 1:     | 0,185 g + disp.middel, springvann                                                                          |              |              |
| Comment 2:     | Ultralyd Probe 2 (naken), 5 ampl, 5 min, Leire                                                             |              |              |
| Optical model: | Leire-1-65.rf780d                                                                                          |              |              |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.: | 1.65 i0.0099 |
| Residual:      | 0.20%                                                                                                      |              |              |
| LS 13 320      | Aqueous Liquid Module                                                                                      |              |              |
| Start time:    | 2021-03-19 13:42                                                                                           | Run length:  | 60 seconds   |
| Pump speed:    | 45                                                                                                         |              |              |
| Obscuration:   | 10%                                                                                                        |              |              |
| Fluid:         | Water                                                                                                      |              |              |
| Software:      | 6.01                                                                                                       | Firmware:    | 4.00         |



| File name:     | N:\Lab\Korn\Coulter\Data\2021\Rådata\20210031\21.0031_008#1_04.\$ls<br>21.0031_008#1_04.\$ls |              |              |
|----------------|----------------------------------------------------------------------------------------------|--------------|--------------|
| File ID:       | 21.0031_008#1_                                                                               |              |              |
| Sample ID:     | 21.0031 188051 R2139CMC                                                                      | 008A 9-10 cm |              |
| Operator:      | MSH                                                                                          |              |              |
| Run number:    | 4                                                                                            |              |              |
| Comment 1:     | 0,186 g + disp.middel, springvann                                                            |              |              |
| Comment 2:     | Ultralyd Probe 2 (naken), 5 ampl, 5 min, Leire                                               |              |              |
| Optical model: | Leire-1-65.rf780d                                                                            |              |              |
| Fluid R.I.:    | 1.333                                                                                        | Sample R.I.: | 1.65 i0.0099 |
| Residual:      | 0.19%                                                                                        |              |              |
| LS 13 320      | Aqueous Liquid Module                                                                        |              |              |
| Start time:    | 2021-03-19 13:53                                                                             | Run length:  | 60 seconds   |
| Pump speed:    | 45                                                                                           |              |              |
| Obscuration:   | 9%                                                                                           |              |              |
| Fluid:         | Water                                                                                        |              |              |
| Software:      | 6.01                                                                                         | Firmware:    | 4.00         |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_009#1_04.\$ls<br>21.0031_009#1_04.\$ls |               |              |
|----------------|------------------------------------------------------------------------------------------------------------|---------------|--------------|
| File ID:       | 21.0031_009#1                                                                                              |               |              |
| Sample ID:     | 21.0031_188056_R2139CMC                                                                                    | 008A 14-15 cm |              |
| Operator:      | MSH                                                                                                        |               |              |
| Run number:    | 4                                                                                                          |               |              |
| Comment 1:     | 0,187 g + disp.middel, springvann                                                                          |               |              |
| Comment 2:     | Ultralyd Probe 2 (naken), 5 ampl, 5 min, Leire                                                             |               |              |
| Optical model: | Leire-1-65.rf780d                                                                                          |               |              |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.:  | 1.65 i0.0099 |
| Residual:      | 0.17%                                                                                                      |               |              |
| LS 13 320      | Aqueous Liquid Module                                                                                      |               |              |
| Start time:    | 2021-03-19 14:08                                                                                           | Run length:   | 60 seconds   |
| Pump speed:    | 45                                                                                                         |               |              |
| Obscuration:   | 9%                                                                                                         |               |              |
| Fluid:         | Water                                                                                                      |               |              |
| Software:      | 6.01                                                                                                       | Firmware:     | 4.00         |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_010#1_04.\$ls<br>21.0031_010#1_04.\$ls |               |              |
|----------------|------------------------------------------------------------------------------------------------------------|---------------|--------------|
| File ID:       | 21.0031_010#1                                                                                              |               |              |
| Sample ID:     | 21.0031_188066_R2139CMC                                                                                    | 008A 24-25 cm |              |
| Operator:      | MSH                                                                                                        |               |              |
| Run number:    | 4                                                                                                          |               |              |
| Comment 1:     | 0,189 g + disp.middel, springvann                                                                          |               |              |
| Comment 2:     | Ultralyd Probe 2 (naken), 5 ampl, 5 min, Leire                                                             |               |              |
| Optical model: | Leire-1-65.rf780d                                                                                          |               |              |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.:  | 1.65 i0.0099 |
| Residual:      | 0.18%                                                                                                      |               |              |
| LS 13 320      | Aqueous Liquid Module                                                                                      |               |              |
| Start time:    | 2021-03-19 14:22                                                                                           | Run length:   | 60 seconds   |
| Pump speed:    | 45                                                                                                         |               |              |
| Obscuration:   | 9%                                                                                                         |               |              |
| Fluid:         | Water                                                                                                      |               |              |
| Software:      | 6.01                                                                                                       | Firmware:     | 4.00         |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_011#2_04.\$ls<br>21.0031_011#2_04.\$ls |              |              |
|----------------|------------------------------------------------------------------------------------------------------------|--------------|--------------|
| File ID:       | 21.0031_011#2                                                                                              |              |              |
| Sample ID:     | 21.0031 188070 R2139CMC008A 28-29 cm                                                                       |              |              |
| Operator:      | MSH                                                                                                        |              |              |
| Run number:    | 4                                                                                                          |              |              |
| Comment 1:     | 0,191 g + disp.middel, springvann                                                                          |              |              |
| Comment 2:     | Ultralyd Probe 2 (naken), 5 ampl, 5 min, Leire                                                             |              |              |
| Optical model: | Leire-1-65.rf780d                                                                                          |              |              |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.: | 1.65 i0.0099 |
| Residual:      | 0.19%                                                                                                      |              |              |
| LS 13 320      | Aqueous Liquid Module                                                                                      |              |              |
| Start time:    | 2021-03-22 9:58                                                                                            | Run length:  | 60 seconds   |
| Pump speed:    | 45                                                                                                         |              |              |
| Obscuration:   | 9%                                                                                                         |              |              |
| Fluid:         | Water                                                                                                      |              |              |
| Software:      | 6.01                                                                                                       | Firmware:    | 4.00         |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_012#2_04.\$ls<br>21.0031_012#2_04.\$ls |              |              |
|----------------|------------------------------------------------------------------------------------------------------------|--------------|--------------|
| File ID:       | 21.0031_012#2                                                                                              |              |              |
| Sample ID:     | 21.0031_188076_R2183MC0                                                                                    | 09A 0-1 cm   |              |
| Operator:      | MSH                                                                                                        |              |              |
| Run number:    | 4                                                                                                          |              |              |
| Comment 1:     | 0,150 g + disp.middel, springvann                                                                          |              |              |
| Comment 2:     | Ultralyd Probe 2 (naken), 5 ampl, 5 min, Leire                                                             |              |              |
| Optical model: | Leire-1-65.rf780d                                                                                          |              |              |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.: | 1.65 i0.0099 |
| Residual:      | 0.22%                                                                                                      |              |              |
| LS 13 320      | Aqueous Liquid Module                                                                                      |              |              |
| Start time:    | 2021-03-22 10:23                                                                                           | Run length:  | 60 seconds   |
| Pump speed:    | 45                                                                                                         |              |              |
| Obscuration:   | 10%                                                                                                        |              |              |
| Fluid:         | Water                                                                                                      |              |              |
| Software:      | 6.01                                                                                                       | Firmware:    | 4.00         |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_013#1_04.\$ls<br>21.0031_013#1_04.\$ls |              |              |
|----------------|------------------------------------------------------------------------------------------------------------|--------------|--------------|
| File ID:       | 21.0031_013#1                                                                                              |              |              |
| Sample ID:     | 21.0031_188078_R2183MC0                                                                                    | 09A 2-3 cm   |              |
| Operator:      | MSH                                                                                                        |              |              |
| Run number:    | 4                                                                                                          |              |              |
| Comment 1:     | 0,151 g + disp.middel, springvann                                                                          |              |              |
| Comment 2:     | Ultralyd Probe 2 (naken), 5 ampl, 5 min, Leire                                                             |              |              |
| Optical model: | Leire-1-65.rf780d                                                                                          |              |              |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.: | 1.65 i0.0099 |
| Residual:      | 0.22%                                                                                                      |              |              |
| LS 13 320      | Aqueous Liquid Module                                                                                      |              |              |
| Start time:    | 2021-03-22 10:40                                                                                           | Run length:  | 60 seconds   |
| Pump speed:    | 45                                                                                                         |              |              |
| Obscuration:   | 10%                                                                                                        |              |              |
| Fluid:         | Water                                                                                                      |              |              |
| Software:      | 6.01                                                                                                       | Firmware:    | 4.00         |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_014#1_04.\$ls<br>21.0031_014#1_04.\$ls |              |              |
|----------------|------------------------------------------------------------------------------------------------------------|--------------|--------------|
| File ID:       | 21.0031_014#1                                                                                              |              |              |
| Sample ID:     | 21.0031_188080_R2183MC0                                                                                    | 09A 4-5 cm   |              |
| Operator:      | MSH                                                                                                        |              |              |
| Run number:    | 4                                                                                                          |              |              |
| Comment 1:     | 0.151 g + disp.middel, springvann                                                                          |              |              |
| Comment 2:     | Ultralyd Probe 2 (naken), 5 ampl, 5 min, Leire                                                             |              |              |
| Optical model: | Leire-1-65.rf780d                                                                                          |              |              |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.: | 1.65 i0.0099 |
| Residual:      | 0.21%                                                                                                      |              |              |
| LS 13 320      | Aqueous Liquid Module                                                                                      |              |              |
| Start time:    | 2021-03-22 10:54                                                                                           | Run length:  | 60 seconds   |
| Pump speed:    | 45                                                                                                         |              |              |
| Obscuration:   | 10%                                                                                                        |              |              |
| Fluid:         | Water                                                                                                      |              |              |
| Software:      | 6.01                                                                                                       | Firmware:    | 4.00         |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_015#1_04.\$ls<br>21.0031_015#1_04.\$ls |              |              |
|----------------|------------------------------------------------------------------------------------------------------------|--------------|--------------|
| File ID:       | 21.0031 015#1                                                                                              |              |              |
| Sample ID:     | 21.0031_188085_R2183MC0                                                                                    | 09A 9-10 cm  |              |
| Operator:      | MSH                                                                                                        |              |              |
| Run number:    | 4                                                                                                          |              |              |
| Comment 1:     | 0,151 g + disp.middel, springvann                                                                          |              |              |
| Comment 2:     | Ultralyd Probe 2 (naken), 5 ampl, 5 min, Leire                                                             |              |              |
| Optical model: | Leire-1-65.rf780d                                                                                          |              |              |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.: | 1.65 i0.0099 |
| Residual:      | 0.21%                                                                                                      |              |              |
| LS 13 320      | Aqueous Liquid Module                                                                                      |              |              |
| Start time:    | 2021-03-22 11:48                                                                                           | Run length:  | 60 seconds   |
| Pump speed:    | 45                                                                                                         |              |              |
| Obscuration:   | 10%                                                                                                        |              |              |
| Fluid:         | Water                                                                                                      |              |              |
| Software:      | 6.01                                                                                                       | Firmware:    | 4.00         |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_016#1_04.\$ls<br>21.0031_016#1_04.\$ls |                   |              |
|----------------|------------------------------------------------------------------------------------------------------------|-------------------|--------------|
| File ID:       | 21.0031_016#1                                                                                              |                   |              |
| Sample ID:     | 21.0031_188090_R2183MC0                                                                                    | 09A 14-15 cm      |              |
| Operator:      | MSH                                                                                                        |                   |              |
| Run number:    | 4                                                                                                          |                   |              |
| Comment 1:     | 0,151 g + disp.middel, springvann                                                                          |                   |              |
| Comment 2:     | Ultralyd Probe 2 (naken), 5 ar                                                                             | mpl, 5 min, Leire |              |
| Optical model: | Leire-1-65.rf780d                                                                                          |                   |              |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.:      | 1.65 i0.0099 |
| Residual:      | 0.21%                                                                                                      |                   |              |
| LS 13 320      | Aqueous Liquid Module                                                                                      |                   |              |
| Start time:    | 2021-03-22 12:01                                                                                           | Run length:       | 60 seconds   |
| Pump speed:    | 45                                                                                                         |                   |              |
| Obscuration:   | 9%                                                                                                         |                   |              |
| Fluid:         | Water                                                                                                      |                   |              |
| Software:      | 6.01                                                                                                       | Firmware:         | 4.00         |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_017#1_04.\$ls<br>21.0031_017#1_04.\$ls |              |              |
|----------------|------------------------------------------------------------------------------------------------------------|--------------|--------------|
| File ID:       | 21.0031_017#1                                                                                              |              |              |
| Sample ID:     | 21.0031 188100 R2183MC009A 24-25 cm                                                                        |              |              |
| Operator:      | MSH                                                                                                        |              |              |
| Run number:    | 4                                                                                                          |              |              |
| Comment 1:     | 0,151 g + disp.middel, springvann                                                                          |              |              |
| Comment 2:     | Ultralyd Probe 2 (naken), 5 ampl, 5 min, Leire                                                             |              |              |
| Optical model: | Leire-1-65.rf780d                                                                                          |              |              |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.: | 1.65 i0.0099 |
| Residual:      | 0.20%                                                                                                      |              |              |
| LS 13 320      | Aqueous Liquid Module                                                                                      |              |              |
| Start time:    | 2021-03-22 12:12                                                                                           | Run length:  | 60 seconds   |
| Pump speed:    | 45                                                                                                         |              |              |
| Obscuration:   | 9%                                                                                                         |              |              |
| Fluid:         | Water                                                                                                      |              |              |
| Software:      | 6.01                                                                                                       | Firmware:    | 4.00         |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_018#1_04.\$ls<br>21.0031_018#1_04.\$ls |              |              |
|----------------|------------------------------------------------------------------------------------------------------------|--------------|--------------|
| File ID:       | 21.0031_018#1_                                                                                             |              |              |
| Sample ID:     | 21.0031_188110_R2183MC0                                                                                    | 09A 34-35 cm |              |
| Operator:      | MSH                                                                                                        |              |              |
| Run number:    | 4                                                                                                          |              |              |
| Comment 1:     | 0,151 g + disp.middel, springvann                                                                          |              |              |
| Comment 2:     | Ultralyd Probe 2 (naken), 5 ampl, 5 min, Leire                                                             |              |              |
| Optical model: | Leire-1-65.rf780d                                                                                          |              |              |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.: | 1.65 i0.0099 |
| Residual:      | 0.20%                                                                                                      |              |              |
| LS 13 320      | Aqueous Liquid Module                                                                                      |              |              |
| Start time:    | 2021-03-22 12:28                                                                                           | Run length:  | 60 seconds   |
| Pump speed:    | 45                                                                                                         |              |              |
| Obscuration:   | 9%                                                                                                         |              |              |
| Fluid:         | Water                                                                                                      |              |              |
| Software:      | 6.01                                                                                                       | Firmware:    | 4.00         |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_019#2_04.\$ls<br>21.0031_019#2_04.\$ls |              |              |
|----------------|------------------------------------------------------------------------------------------------------------|--------------|--------------|
| File ID:       | 21.0031_019#2_                                                                                             |              |              |
| Sample ID:     | 21.0031_188123_R2229MC0                                                                                    | 09A 0-1 cm   |              |
| Operator:      | MSH                                                                                                        |              |              |
| Run number:    | 4                                                                                                          |              |              |
| Comment 1:     | 0,188 g + disp.middel, springvann                                                                          |              |              |
| Comment 2:     | Ultralyd Probe 2 (naken), 5 ampl, 5 min, Leire                                                             |              |              |
| Optical model: | Leire-1-65.rf780d                                                                                          |              |              |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.: | 1.65 i0.0099 |
| Residual:      | 0.18%                                                                                                      |              |              |
| LS 13 320      | Aqueous Liquid Module                                                                                      |              |              |
| Start time:    | 2021-03-22 12:52                                                                                           | Run length:  | 61 seconds   |
| Pump speed:    | 45                                                                                                         |              |              |
| Obscuration:   | 10%                                                                                                        |              |              |
| Fluid:         | Water                                                                                                      |              |              |
| Software:      | 6.01                                                                                                       | Firmware:    | 4.00         |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_020#1_04.\$ls<br>21.0031_020#1_04.\$ls |              |              |
|----------------|------------------------------------------------------------------------------------------------------------|--------------|--------------|
| File ID:       | 21.0031_020#1                                                                                              |              |              |
| Sample ID:     | 21.0031 188125 R2229MC009A 2-3 cm                                                                          |              |              |
| Operator:      | MSH                                                                                                        |              |              |
| Run number:    | 4                                                                                                          |              |              |
| Comment 1:     | 0,188 g + disp.middel, springvann                                                                          |              |              |
| Comment 2:     | Ultralyd Probe 2 (naken), 5 ampl, 5 min, Leire                                                             |              |              |
| Optical model: | Leire-1-65.rf780d                                                                                          |              |              |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.: | 1.65 i0.0099 |
| Residual:      | 0.18%                                                                                                      |              |              |
| LS 13 320      | Aqueous Liquid Module                                                                                      |              |              |
| Start time:    | 2021-03-22 13:05                                                                                           | Run length:  | 60 seconds   |
| Pump speed:    | 45                                                                                                         |              |              |
| Obscuration:   | 9%                                                                                                         |              |              |
| Fluid:         | Water                                                                                                      |              |              |
| Software:      | 6.01                                                                                                       | Firmware:    | 4.00         |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_021#1_04.\$ls<br>21.0031_021#1_04.\$ls |              |              |
|----------------|------------------------------------------------------------------------------------------------------------|--------------|--------------|
| File ID:       | 21.0031_021#1                                                                                              |              |              |
| Sample ID:     | 21.0031_188127_R2229MC0                                                                                    | 09A 4-5 cm   |              |
| Operator:      | MSH                                                                                                        |              |              |
| Run number:    | 4                                                                                                          |              |              |
| Comment 1:     | 0,190 g + disp.middel, springvann                                                                          |              |              |
| Comment 2:     | Ultralyd Probe 2 (naken), 5 ampl, 5 min, Leire                                                             |              |              |
| Optical model: | Leire-1-65.rf780d                                                                                          |              |              |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.: | 1.65 i0.0099 |
| Residual:      | 0.18%                                                                                                      |              |              |
| LS 13 320      | Aqueous Liquid Module                                                                                      |              |              |
| Start time:    | 2021-03-22 13:25                                                                                           | Run length:  | 60 seconds   |
| Pump speed:    | 45                                                                                                         |              |              |
| Obscuration:   | 10%                                                                                                        |              |              |
| Fluid:         | Water                                                                                                      |              |              |
| Software:      | 6.01                                                                                                       | Firmware:    | 4.00         |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_022#1_04.\$ls<br>21.0031_022#1_04.\$ls |              |              |
|----------------|------------------------------------------------------------------------------------------------------------|--------------|--------------|
| File ID:       | 21.0031_022#1                                                                                              |              |              |
| Sample ID:     | 21.0031 188132 R2229MC009A 9-10 cm                                                                         |              |              |
| Operator:      | MSH                                                                                                        |              |              |
| Run number:    | 4                                                                                                          |              |              |
| Comment 1:     | 0,190 g + disp.middel, springvann                                                                          |              |              |
| Comment 2:     | Ultralyd Probe 2 (naken), 5 ampl, 5 min, Leire                                                             |              |              |
| Optical model: | Leire-1-65.rf780d                                                                                          |              |              |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.: | 1.65 i0.0099 |
| Residual:      | 0.18%                                                                                                      |              |              |
| LS 13 320      | Aqueous Liquid Module                                                                                      |              |              |
| Start time:    | 2021-03-22 13:37                                                                                           | Run length:  | 61 seconds   |
| Pump speed:    | 45                                                                                                         |              |              |
| Obscuration:   | 9%                                                                                                         |              |              |
| Fluid:         | Water                                                                                                      |              |              |
| Software:      | 6.01                                                                                                       | Firmware:    | 4.00         |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_023#1_04.\$ls<br>21.0031_023#1_04.\$ls |              |              |
|----------------|------------------------------------------------------------------------------------------------------------|--------------|--------------|
| File ID:       | 21.0031_023#1                                                                                              |              |              |
| Sample ID:     | 21.0031_188137_R2229MC0                                                                                    | 09A 14-15 cm |              |
| Operator:      | MSH                                                                                                        |              |              |
| Run number:    | 4                                                                                                          |              |              |
| Comment 1:     | 0,191 g + disp.middel, springvann                                                                          |              |              |
| Comment 2:     | Ultralyd Probe 2 (naken), 5 ampl, 5 min, Leire                                                             |              |              |
| Optical model: | Leire-1-65.rf780d                                                                                          |              |              |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.: | 1.65 i0.0099 |
| Residual:      | 0.18%                                                                                                      |              |              |
| LS 13 320      | Aqueous Liquid Module                                                                                      |              |              |
| Start time:    | 2021-03-22 13:51                                                                                           | Run length:  | 60 seconds   |
| Pump speed:    | 45                                                                                                         |              |              |
| Obscuration:   | 10%                                                                                                        |              |              |
| Fluid:         | Water                                                                                                      |              |              |
| Software:      | 6.01                                                                                                       | Firmware:    | 4.00         |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_024#2_04.\$ls<br>21.0031_024#2_04.\$ls |              |              |
|----------------|------------------------------------------------------------------------------------------------------------|--------------|--------------|
| File ID:       | 21.0031_024#2                                                                                              |              |              |
| Sample ID:     | 21.0031 188147 R2229MC009A 24-25 cm                                                                        |              |              |
| Operator:      | MSH                                                                                                        |              |              |
| Run number:    | 4                                                                                                          |              |              |
| Comment 1:     | 0,241 g + disp.middel, springvann                                                                          |              |              |
| Comment 2:     | Ultralyd Probe 2 (naken), 5 ampl, 5 min, Leire                                                             |              |              |
| Optical model: | Leire-1-65.rf780d                                                                                          |              |              |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.: | 1.65 i0.0099 |
| Residual:      | 0.18%                                                                                                      |              |              |
| LS 13 320      | Aqueous Liquid Module                                                                                      |              |              |
| Start time:    | 2021-03-22 14:14                                                                                           | Run length:  | 60 seconds   |
| Pump speed:    | 45                                                                                                         |              |              |
| Obscuration:   | 10%                                                                                                        |              |              |
| Fluid:         | Water                                                                                                      |              |              |
| Software:      | 6.01                                                                                                       | Firmware:    | 4.00         |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_025#1_04.\$ls<br>21.0031_025#1_04.\$ls |              |              |
|----------------|------------------------------------------------------------------------------------------------------------|--------------|--------------|
| File ID:       | 21.0031_025#1                                                                                              |              |              |
| Sample ID:     | 21.0031_188153_R2229MC0                                                                                    | 09A 30-31 cm |              |
| Operator:      | MSH                                                                                                        |              |              |
| Run number:    | 4                                                                                                          |              |              |
| Comment 1:     | 0,240 g + disp.middel, springvann                                                                          |              |              |
| Comment 2:     | Ultralyd Probe 2 (naken), 5 ampl, 5 min, Leire                                                             |              |              |
| Optical model: | Leire-1-65.rf780d                                                                                          |              |              |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.: | 1.65 i0.0099 |
| Residual:      | 0.18%                                                                                                      |              |              |
| LS 13 320      | Aqueous Liquid Module                                                                                      |              |              |
| Start time:    | 2021-03-22 14:30                                                                                           | Run length:  | 60 seconds   |
| Pump speed:    | 45                                                                                                         |              |              |
| Obscuration:   | 8%                                                                                                         |              |              |
| Fluid:         | Water                                                                                                      |              |              |
| Software:      | 6.01                                                                                                       | Firmware:    | 4.00         |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_026_Hynne#1_04.\$ls<br>21.0031 026 Hynne#1 04.\$ls |              |              |  |
|----------------|------------------------------------------------------------------------------------------------------------------------|--------------|--------------|--|
| File ID:       | 21.0031_026_Hynne#1_                                                                                                   |              |              |  |
| Sample ID:     | 21.0031 Hynne 40107                                                                                                    |              |              |  |
| Operator:      | MSH                                                                                                                    |              |              |  |
| Run number:    | 4                                                                                                                      |              |              |  |
| Comment 1:     | 0,154 g + disp.middel, springvann                                                                                      |              |              |  |
| Comment 2:     | Ultralyd Probe 2 (naken), 5 ampl, 5 min, Leire                                                                         |              |              |  |
| Optical model: | Leire-1-65.rf780d                                                                                                      |              |              |  |
| Fluid R.I.:    | 1.333                                                                                                                  | Sample R.I.: | 1.65 i0.0099 |  |
| Residual:      | 0.23%                                                                                                                  |              |              |  |
| LS 13 320      | Aqueous Liquid Module                                                                                                  |              |              |  |
| Start time:    | 2021-03-22 14:45                                                                                                       | Run length:  | 60 seconds   |  |
| Pump speed:    | 45                                                                                                                     |              |              |  |
| Obscuration:   | 9%                                                                                                                     |              |              |  |
| Fluid:         | Water                                                                                                                  |              |              |  |
| Software:      | 6.01                                                                                                                   | Firmware:    | 4.00         |  |



| File name:     | C:\LS13320\Raadata LS 1332<br>21.0031_027_MINN#1_04.\$ls | 0 Analyse∖2021∖l | Jten PIDS\20210031\21.0031_027_MINN#1_04.\$Is |
|----------------|----------------------------------------------------------|------------------|-----------------------------------------------|
| File ID:       | 21.0031_027_MINN#1                                       |                  |                                               |
| Sample ID:     | 21.0031_MINN_Split 1                                     |                  |                                               |
| Operator:      | MSH                                                      |                  |                                               |
| Run number:    | 4                                                        |                  |                                               |
|                | Control Sample                                           |                  |                                               |
| Comment 1:     | 0,335 g + disp.middel, Springv                           | vann             |                                               |
| Comment 2:     | ultralyd, probe 2 (naken), 5 ampl-5 min,Fraunhofer       |                  |                                               |
| Optical model: | Fraunhofer.rf780d                                        |                  |                                               |
| Residual:      | 0.18%                                                    |                  |                                               |
| LS 13 320      | Aqueous Liquid Module                                    |                  |                                               |
| Start time:    | 2021-03-23 9:10                                          | Run length:      | 60 seconds                                    |
| Pump speed:    | 45                                                       |                  |                                               |
| Obscuration:   | 11%                                                      |                  |                                               |
| Fluid:         | Water                                                    |                  |                                               |
| Software:      | 6.01                                                     | Firmware:        | 4.00                                          |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_028#1_04.\$ls<br>21.0031_028#1_04.\$ls |              |              |
|----------------|------------------------------------------------------------------------------------------------------------|--------------|--------------|
| File ID:       | 21.0031_028#1                                                                                              |              |              |
| Sample ID:     | 21.0031 188164 R2242MC012A 0-1 cm                                                                          |              |              |
| Operator:      | MSH                                                                                                        |              |              |
| Run number:    | 4                                                                                                          |              |              |
| Comment 1:     | 0,157 g + disp.middel, springvann                                                                          |              |              |
| Comment 2:     | Ultralyd Probe 2 (naken), 5 ampl, 5 min, Leire                                                             |              |              |
| Optical model: | Leire-1-65.rf780d                                                                                          |              |              |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.: | 1.65 i0.0099 |
| Residual:      | 0.23%                                                                                                      |              |              |
| LS 13 320      | Aqueous Liquid Module                                                                                      |              |              |
| Start time:    | 2021-03-23 9:28                                                                                            | Run length:  | 60 seconds   |
| Pump speed:    | 45                                                                                                         |              |              |
| Obscuration:   | 11%                                                                                                        |              |              |
| Fluid:         | Water                                                                                                      |              |              |
| Software:      | 6.01                                                                                                       | Firmware:    | 4.00         |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_029#1_04.\$ls<br>21.0031_029#1_04.\$ls |              |              |
|----------------|------------------------------------------------------------------------------------------------------------|--------------|--------------|
| File ID:       | 21.0031_029#1                                                                                              |              |              |
| Sample ID:     | 21.0031_188166_R2242MC012A 2-3 cm                                                                          |              |              |
| Operator:      | MSH                                                                                                        |              |              |
| Run number:    | 4                                                                                                          |              |              |
| Comment 1:     | 0,156 g + disp.middel, springvann                                                                          |              |              |
| Comment 2:     | Ultralyd Probe 2 (naken), 5 ampl, 5 min, Leire                                                             |              |              |
| Optical model: | Leire-1-65.rf780d                                                                                          |              |              |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.: | 1.65 i0.0099 |
| Residual:      | 0.22%                                                                                                      |              |              |
| LS 13 320      | Aqueous Liquid Module                                                                                      |              |              |
| Start time:    | 2021-03-23 9:45                                                                                            | Run length:  | 60 seconds   |
| Pump speed:    | 45                                                                                                         |              |              |
| Obscuration:   | 12%                                                                                                        |              |              |
| Fluid:         | Water                                                                                                      |              |              |
| Software:      | 6.01                                                                                                       | Firmware:    | 4.00         |


| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_030#2_04.\$ls<br>21.0031_030#2_04.\$ls |              |              |
|----------------|------------------------------------------------------------------------------------------------------------|--------------|--------------|
| File ID:       | 21.0031_030#2                                                                                              |              |              |
| Sample ID:     | 21.0031_188168_R2242MC0                                                                                    | 12A 4-5 cm   |              |
| Operator:      | MSH                                                                                                        |              |              |
| Run number:    | 4                                                                                                          |              |              |
| Comment 1:     | 0,130 g + disp.middel, springvann                                                                          |              |              |
| Comment 2:     | Ultralyd Probe 2 (naken), 5 ampl, 5 min, Leire                                                             |              |              |
| Optical model: | Leire-1-65.rf780d                                                                                          |              |              |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.: | 1.65 i0.0099 |
| Residual:      | 0.22%                                                                                                      |              |              |
| LS 13 320      | Aqueous Liquid Module                                                                                      |              |              |
| Start time:    | 2021-03-23 10:08                                                                                           | Run length:  | 60 seconds   |
| Pump speed:    | 45                                                                                                         |              |              |
| Obscuration:   | 11%                                                                                                        |              |              |
| Fluid:         | Water                                                                                                      |              |              |
| Software:      | 6.01                                                                                                       | Firmware:    | 4.00         |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_031#1_04.\$ls<br>21.0031_031#1_04.\$ls |              |              |
|----------------|------------------------------------------------------------------------------------------------------------|--------------|--------------|
| File ID:       | 21.0031_031#1                                                                                              |              |              |
| Sample ID:     | 21.0031_188173_R2242MC0                                                                                    | 12A 9-10 cm  |              |
| Operator:      | MSH                                                                                                        |              |              |
| Run number:    | 4                                                                                                          |              |              |
| Comment 1:     | 0,129 g + disp.middel, springvann                                                                          |              |              |
| Comment 2:     | Ultralyd Probe 2 (naken), 5 ampl, 5 min, Leire                                                             |              |              |
| Optical model: | Leire-1-65.rf780d                                                                                          |              |              |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.: | 1.65 i0.0099 |
| Residual:      | 0.22%                                                                                                      |              |              |
| LS 13 320      | Aqueous Liquid Module                                                                                      |              |              |
| Start time:    | 2021-03-23 10:24                                                                                           | Run length:  | 61 seconds   |
| Pump speed:    | 45                                                                                                         |              |              |
| Obscuration:   | 10%                                                                                                        |              |              |
| Fluid:         | Water                                                                                                      |              |              |
| Software:      | 6.01                                                                                                       | Firmware:    | 4.00         |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_032#1_04.\$ls<br>21.0031_032#1_04.\$ls |              |              |
|----------------|------------------------------------------------------------------------------------------------------------|--------------|--------------|
| File ID:       | 21.0031_032#1                                                                                              |              |              |
| Sample ID:     | 21.0031_188178_R2242MC0                                                                                    | 12A 14-15 cm |              |
| Operator:      | MSH                                                                                                        |              |              |
| Run number:    | 4                                                                                                          |              |              |
| Comment 1:     | 0,128 g + disp.middel, springvann                                                                          |              |              |
| Comment 2:     | Ultralyd Probe 2 (naken), 5 ampl, 5 min, Leire                                                             |              |              |
| Optical model: | Leire-1-65.rf780d                                                                                          |              |              |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.: | 1.65 i0.0099 |
| Residual:      | 0.22%                                                                                                      |              |              |
| LS 13 320      | Aqueous Liquid Module                                                                                      |              |              |
| Start time:    | 2021-03-23 10:38                                                                                           | Run length:  | 60 seconds   |
| Pump speed:    | 45                                                                                                         |              |              |
| Obscuration:   | 10%                                                                                                        |              |              |
| Fluid:         | Water                                                                                                      |              |              |
| Software:      | 6.01                                                                                                       | Firmware:    | 4.00         |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_033#1_04.\$ls<br>21.0031_033#1_04.\$ls |              |              |
|----------------|------------------------------------------------------------------------------------------------------------|--------------|--------------|
| File ID:       | 21.0031_033#1                                                                                              |              |              |
| Sample ID:     | 21.0031 188188 R2242MC012A 24-25 cm                                                                        |              |              |
| Operator:      | MSH                                                                                                        |              |              |
| Run number:    | 4                                                                                                          |              |              |
| Comment 1:     | 0,129 g + disp.middel, springvann                                                                          |              |              |
| Comment 2:     | Ultralyd Probe 2 (naken), 5 ampl, 5 min, Leire                                                             |              |              |
| Optical model: | Leire-1-65.rf780d                                                                                          |              |              |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.: | 1.65 i0.0099 |
| Residual:      | 0.23%                                                                                                      |              |              |
| LS 13 320      | Aqueous Liquid Module                                                                                      |              |              |
| Start time:    | 2021-03-23 10:50                                                                                           | Run length:  | 60 seconds   |
| Pump speed:    | 45                                                                                                         |              |              |
| Obscuration:   | 10%                                                                                                        |              |              |
| Fluid:         | Water                                                                                                      |              |              |
| Software:      | 6.01                                                                                                       | Firmware:    | 4.00         |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_034#1_04.\$ls<br>21.0031_034#1_04.\$ls |              |              |
|----------------|------------------------------------------------------------------------------------------------------------|--------------|--------------|
| File ID:       | 21.0031_034#1                                                                                              |              |              |
| Sample ID:     | 21.0031_188202_R2242MC0                                                                                    | 12A 38-39 cm |              |
| Operator:      | MSH                                                                                                        |              |              |
| Run number:    | 4                                                                                                          |              |              |
| Comment 1:     | 0,128 g + disp.middel, springvann                                                                          |              |              |
| Comment 2:     | Ultralyd Probe 2 (naken), 5 ampl, 5 min, Leire                                                             |              |              |
| Optical model: | Leire-1-65.rf780d                                                                                          |              |              |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.: | 1.65 i0.0099 |
| Residual:      | 0.24%                                                                                                      |              |              |
| LS 13 320      | Aqueous Liquid Module                                                                                      |              |              |
| Start time:    | 2021-03-23 12:40                                                                                           | Run length:  | 60 seconds   |
| Pump speed:    | 45                                                                                                         |              |              |
| Obscuration:   | 10%                                                                                                        |              |              |
| Fluid:         | Water                                                                                                      |              |              |
| Software:      | 6.01                                                                                                       | Firmware:    | 4.00         |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_035#2_04.\$ls<br>21.0031_035#2_04.\$ls |              |              |
|----------------|------------------------------------------------------------------------------------------------------------|--------------|--------------|
| File ID:       | 21.0031_035#2_                                                                                             |              |              |
| Sample ID:     | 21.0031_188208_R2270MC0                                                                                    | 13A 0-1 cm   |              |
| Operator:      | MSH                                                                                                        |              |              |
| Run number:    | 4                                                                                                          |              |              |
| Comment 1:     | 0,184 g + disp.middel, springvann                                                                          |              |              |
| Comment 2:     | Ultralyd Probe 2 (naken), 5 ampl, 5 min, Leire                                                             |              |              |
| Optical model: | Leire-1-65.rf780d                                                                                          |              |              |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.: | 1.65 i0.0099 |
| Residual:      | 0.24%                                                                                                      |              |              |
| LS 13 320      | Aqueous Liquid Module                                                                                      |              |              |
| Start time:    | 2021-03-23 13:09                                                                                           | Run length:  | 60 seconds   |
| Pump speed:    | 45                                                                                                         |              |              |
| Obscuration:   | 10%                                                                                                        |              |              |
| Fluid:         | Water                                                                                                      |              |              |
| Software:      | 6.01                                                                                                       | Firmware:    | 4.00         |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_036#1_04.\$ls<br>21.0031_036#1_04.\$ls |              |              |
|----------------|------------------------------------------------------------------------------------------------------------|--------------|--------------|
| File ID:       | 21.0031_036#1                                                                                              |              |              |
| Sample ID:     | 21.0031_188210_R2270MC0                                                                                    | 13A 2-3 cm   |              |
| Operator:      | MSH                                                                                                        |              |              |
| Run number:    | 4                                                                                                          |              |              |
| Comment 1:     | 0,184 g + disp.middel, springvann                                                                          |              |              |
| Comment 2:     | Ultralyd Probe 2 (naken), 5 ampl, 5 min, Leire                                                             |              |              |
| Optical model: | Leire-1-65.rf780d                                                                                          |              |              |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.: | 1.65 i0.0099 |
| Residual:      | 0.22%                                                                                                      |              |              |
| LS 13 320      | Aqueous Liquid Module                                                                                      |              |              |
| Start time:    | 2021-03-23 13:26                                                                                           | Run length:  | 60 seconds   |
| Pump speed:    | 45                                                                                                         |              |              |
| Obscuration:   | 11%                                                                                                        |              |              |
| Fluid:         | Water                                                                                                      |              |              |
| Software:      | 6.01                                                                                                       | Firmware:    | 4.00         |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_037#1_04.\$ls<br>21.0031_037#1_04.\$ls |              |              |
|----------------|------------------------------------------------------------------------------------------------------------|--------------|--------------|
| File ID:       | 21.0031_037#1                                                                                              |              |              |
| Sample ID:     | 21.0031_188212_R2270MC0                                                                                    | 13A 4-5 cm   |              |
| Operator:      | MSH                                                                                                        |              |              |
| Run number:    | 4                                                                                                          |              |              |
| Comment 1:     | 0,184 g + disp.middel, springvann                                                                          |              |              |
| Comment 2:     | Ultralyd Probe 2 (naken), 5 ampl, 5 min, Leire                                                             |              |              |
| Optical model: | Leire-1-65.rf780d                                                                                          |              |              |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.: | 1.65 i0.0099 |
| Residual:      | 0.22%                                                                                                      |              |              |
| LS 13 320      | Aqueous Liquid Module                                                                                      |              |              |
| Start time:    | 2021-03-23 13:39                                                                                           | Run length:  | 60 seconds   |
| Pump speed:    | 45                                                                                                         |              |              |
| Obscuration:   | 11%                                                                                                        |              |              |
| Fluid:         | Water                                                                                                      |              |              |
| Software:      | 6.01                                                                                                       | Firmware:    | 4.00         |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_038#1_04.\$ls<br>21.0031_038#1_04.\$ls |              |              |
|----------------|------------------------------------------------------------------------------------------------------------|--------------|--------------|
| File ID:       | 21.0031_038#1                                                                                              |              |              |
| Sample ID:     | 21.0031 188217 R2270MC013A 9-10 cm                                                                         |              |              |
| Operator:      | MSH                                                                                                        |              |              |
| Run number:    | 4                                                                                                          |              |              |
| Comment 1:     | 0,184 g + disp.middel, springvann                                                                          |              |              |
| Comment 2:     | Ultralyd Probe 2 (naken), 5 ampl, 5 min, Leire                                                             |              |              |
| Optical model: | Leire-1-65.rf780d                                                                                          |              |              |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.: | 1.65 i0.0099 |
| Residual:      | 0.23%                                                                                                      |              |              |
| LS 13 320      | Aqueous Liquid Module                                                                                      |              |              |
| Start time:    | 2021-03-23 14:06                                                                                           | Run length:  | 60 seconds   |
| Pump speed:    | 45                                                                                                         |              |              |
| Obscuration:   | 12%                                                                                                        |              |              |
| Fluid:         | Water                                                                                                      |              |              |
| Software:      | 6.01                                                                                                       | Firmware:    | 4.00         |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_039#1_04.\$ls<br>21.0031_039#1_04.\$ls |              |              |
|----------------|------------------------------------------------------------------------------------------------------------|--------------|--------------|
| File ID:       | 21.0031_039#1                                                                                              |              |              |
| Sample ID:     | 21.0031_188222_R2270MC0                                                                                    | 13A 14-15 cm |              |
| Operator:      | MSH                                                                                                        |              |              |
| Run number:    | 4                                                                                                          |              |              |
| Comment 1:     | 0,158 g + disp.middel, springvann                                                                          |              |              |
| Comment 2:     | Ultralyd Probe 2 (naken), 5 ampl, 5 min, Leire                                                             |              |              |
| Optical model: | Leire-1-65.rf780d                                                                                          |              |              |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.: | 1.65 i0.0099 |
| Residual:      | 0.26%                                                                                                      |              |              |
| LS 13 320      | Aqueous Liquid Module                                                                                      |              |              |
| Start time:    | 2021-03-23 14:21                                                                                           | Run length:  | 60 seconds   |
| Pump speed:    | 45                                                                                                         |              |              |
| Obscuration:   | 10%                                                                                                        |              |              |
| Fluid:         | Water                                                                                                      |              |              |
| Software:      | 6.01                                                                                                       | Firmware:    | 4.00         |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_040#1_04.\$ls<br>21.0031_040#1_04.\$ls |              |              |
|----------------|------------------------------------------------------------------------------------------------------------|--------------|--------------|
| File ID:       | 21.0031_040#1                                                                                              |              |              |
| Sample ID:     | 21.0031 188232 R2270MC013A 24-25 cm                                                                        |              |              |
| Operator:      | MSH                                                                                                        |              |              |
| Run number:    | 4                                                                                                          |              |              |
| Comment 1:     | 0,159 g + disp.middel, springvann                                                                          |              |              |
| Comment 2:     | Ultralyd Probe 2 (naken), 5 ampl, 5 min, Leire                                                             |              |              |
| Optical model: | Leire-1-65.rf780d                                                                                          |              |              |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.: | 1.65 i0.0099 |
| Residual:      | 0.23%                                                                                                      |              |              |
| LS 13 320      | Aqueous Liquid Module                                                                                      |              |              |
| Start time:    | 2021-03-23 14:34                                                                                           | Run length:  | 60 seconds   |
| Pump speed:    | 45                                                                                                         |              |              |
| Obscuration:   | 12%                                                                                                        |              |              |
| Fluid:         | Water                                                                                                      |              |              |
| Software:      | 6.01                                                                                                       | Firmware:    | 4.00         |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_041#1_04.\$ls<br>21.0031_041#1_04.\$ls |              |              |
|----------------|------------------------------------------------------------------------------------------------------------|--------------|--------------|
| File ID:       | 21.0031_041#1                                                                                              |              |              |
| Sample ID:     | 21.0031_188241_R2270MC0                                                                                    | 13A 32-33 cm |              |
| Operator:      | MSH                                                                                                        |              |              |
| Run number:    | 4                                                                                                          |              |              |
| Comment 1:     | 0,125 g + disp.middel, springvann                                                                          |              |              |
| Comment 2:     | Ultralyd Probe 2 (naken), 5 ampl, 5 min, Leire                                                             |              |              |
| Optical model: | Leire-1-65.rf780d                                                                                          |              |              |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.: | 1.65 i0.0099 |
| Residual:      | 0.23%                                                                                                      |              |              |
| LS 13 320      | Aqueous Liquid Module                                                                                      |              |              |
| Start time:    | 2021-03-24 8:44                                                                                            | Run length:  | 60 seconds   |
| Pump speed:    | 45                                                                                                         |              |              |
| Obscuration:   | 11%                                                                                                        |              |              |
| Fluid:         | Water                                                                                                      |              |              |
| Software:      | 6.01                                                                                                       | Firmware:    | 4.00         |



| 21.0031_042#1                                  |  |  |  |
|------------------------------------------------|--|--|--|
|                                                |  |  |  |
|                                                |  |  |  |
|                                                |  |  |  |
| 0,155 g + disp.middel, springvann              |  |  |  |
| Ultralyd Probe 2 (naken), 5 ampl, 5 min, Leire |  |  |  |
|                                                |  |  |  |
|                                                |  |  |  |
|                                                |  |  |  |
|                                                |  |  |  |
|                                                |  |  |  |
|                                                |  |  |  |
|                                                |  |  |  |
|                                                |  |  |  |
|                                                |  |  |  |
|                                                |  |  |  |



| File name:     | C:\LS13320\Raadata LS 1332<br>21.0031 043#1 04.\$Is | 0 Analyse∖2021∖l | Jten PIDS\20210031\21.0031_043#1_04.\$Is |  |
|----------------|-----------------------------------------------------|------------------|------------------------------------------|--|
| File ID:       | 21.0031_043#1                                       |                  |                                          |  |
| Sample ID:     | 21.0031 188248 R2276MC014A 2-3 cm                   |                  |                                          |  |
| Operator:      | MSH                                                 |                  |                                          |  |
| Run number:    | 4                                                   |                  |                                          |  |
| Comment 1:     | 0,153 g + disp.middel, springvann                   |                  |                                          |  |
| Comment 2:     | Ultralyd Probe 2 (naken), 5 ampl, 5 min, Leire      |                  |                                          |  |
| Optical model: | Leire-1-65.rf780d                                   |                  |                                          |  |
| Fluid R.I.:    | 1.333                                               | Sample R.I.:     | 1.65 i0.0099                             |  |
| Residual:      | 0.22%                                               |                  |                                          |  |
| LS 13 320      | Aqueous Liquid Module                               |                  |                                          |  |
| Start time:    | 2021-03-24 9:14                                     | Run length:      | 60 seconds                               |  |
| Pump speed:    | 45                                                  |                  |                                          |  |
| Obscuration:   | 11%                                                 |                  |                                          |  |
| Fluid:         | Water                                               |                  |                                          |  |
| Software:      | 6.01                                                | Firmware:        | 4.00                                     |  |



| File name:     | C:\LS13320\Raadata LS 1332<br>21.0031 044#1 04.\$Is | 0 Analyse\2021\l | Jten PIDS\20210031\21.0031_044#1_04.\$Is |  |
|----------------|-----------------------------------------------------|------------------|------------------------------------------|--|
| File ID:       | 21.0031_044#1                                       |                  |                                          |  |
| Sample ID:     | 21.0031 188250 R2276MC014A 4-5 cm                   |                  |                                          |  |
| Operator:      | MSH                                                 |                  |                                          |  |
| Run number:    | 4                                                   |                  |                                          |  |
| Comment 1:     | 0,150 g + disp.middel, springvann                   |                  |                                          |  |
| Comment 2:     | Ultralyd Probe 2 (naken), 5 ampl, 5 min, Leire      |                  |                                          |  |
| Optical model: | Leire-1-65.rf780d                                   |                  |                                          |  |
| Fluid R.I.:    | 1.333                                               | Sample R.I.:     | 1.65 i0.0099                             |  |
| Residual:      | 0.22%                                               |                  |                                          |  |
| LS 13 320      | Aqueous Liquid Module                               |                  |                                          |  |
| Start time:    | 2021-03-24 9:38                                     | Run length:      | 60 seconds                               |  |
| Pump speed:    | 45                                                  |                  |                                          |  |
| Obscuration:   | 12%                                                 |                  |                                          |  |
| Fluid:         | Water                                               |                  |                                          |  |
| Software:      | 6.01                                                | Firmware:        | 4.00                                     |  |



| File name:     | C:\LS13320\Raadata LS 1332<br>21.0031 045#1 04.\$ls | 0 Analyse\2021\l | Jten PIDS\20210031\21.0031_045#1_04.\$Is |  |
|----------------|-----------------------------------------------------|------------------|------------------------------------------|--|
| File ID:       | 21.0031_045#1                                       |                  |                                          |  |
| Sample ID:     | 21.0031 <sup></sup> 188255 R2276MC014A 9-10 cm      |                  |                                          |  |
| Operator:      | MSH                                                 |                  |                                          |  |
| Run number:    | 4                                                   |                  |                                          |  |
| Comment 1:     | 0,147 g + disp.middel, springvann                   |                  |                                          |  |
| Comment 2:     | Ultralyd Probe 2 (naken), 5 ampl, 5 min, Leire      |                  |                                          |  |
| Optical model: | Leire-1-65.rf780d                                   |                  |                                          |  |
| Fluid R.I.:    | 1.333                                               | Sample R.I.:     | 1.65 i0.0099                             |  |
| Residual:      | 0.23%                                               |                  |                                          |  |
| LS 13 320      | Aqueous Liquid Module                               |                  |                                          |  |
| Start time:    | 2021-03-24 9:57                                     | Run length:      | 60 seconds                               |  |
| Pump speed:    | 45                                                  |                  |                                          |  |
| Obscuration:   | 11%                                                 |                  |                                          |  |
| Fluid:         | Water                                               |                  |                                          |  |
| Software:      | 6.01                                                | Firmware:        | 4.00                                     |  |



| File ID: 21.0031_046#1   Sample ID: 21.0031_188260_R2276MC014A 14-15 cm   Operator: MSH |                                     |  |  |  |
|-----------------------------------------------------------------------------------------|-------------------------------------|--|--|--|
| Sample ID: 21.0031_188260_R2276MC014A 14-15 cm<br>Operator: MSH                         | 21.0031_046#1                       |  |  |  |
| Operator: MSH                                                                           | 21.0031 188260 R2276MC014A 14-15 cm |  |  |  |
|                                                                                         |                                     |  |  |  |
| Run number: 4                                                                           |                                     |  |  |  |
| Comment 1: 0,144 g + disp.middel, springvann                                            | 0,144 g + disp.middel, springvann   |  |  |  |
| Comment 2: Ultralyd Probe 2 (naken), 5 ampl, 5 min, Leire                               |                                     |  |  |  |
| Optical model: Leire-1-65.rf780d                                                        |                                     |  |  |  |
| Fluid R.I.: 1.333 Sample R.I.: 1.65 i0.0099                                             |                                     |  |  |  |
| Residual: 0.22%                                                                         |                                     |  |  |  |
| LS 13 320 Aqueous Liquid Module                                                         |                                     |  |  |  |
| Start time: 2021-03-24 10:12 Run length: 60 seconds                                     |                                     |  |  |  |
| Pump speed: 45                                                                          |                                     |  |  |  |
| Obscuration: 11%                                                                        |                                     |  |  |  |
| Fluid: Water                                                                            |                                     |  |  |  |
| Software: 6.01 Firmware: 4.00                                                           |                                     |  |  |  |



| File name:     | C:\LS13320\Raadata LS 1332<br>21.0031 047#1 04.\$Is | 0 Analyse\2021\l | Jten PIDS\20210031\21.0031_047#1_04.\$Is |  |
|----------------|-----------------------------------------------------|------------------|------------------------------------------|--|
| File ID:       | 21.0031_047#1                                       |                  |                                          |  |
| Sample ID:     | 21.0031 188270 R2276MC014A 24-25 cm                 |                  |                                          |  |
| Operator:      | MSH                                                 |                  |                                          |  |
| Run number:    | 4                                                   |                  |                                          |  |
| Comment 1:     | 0,140 g + disp.middel, springvann                   |                  |                                          |  |
| Comment 2:     | Ultralyd Probe 2 (naken), 5 ampl, 5 min, Leire      |                  |                                          |  |
| Optical model: | Leire-1-65.rf780d                                   |                  |                                          |  |
| Fluid R.I.:    | 1.333                                               | Sample R.I.:     | 1.65 i0.0099                             |  |
| Residual:      | 0.25%                                               |                  |                                          |  |
| LS 13 320      | Aqueous Liquid Module                               |                  |                                          |  |
| Start time:    | 2021-03-24 10:51                                    | Run length:      | 60 seconds                               |  |
| Pump speed:    | 45                                                  |                  |                                          |  |
| Obscuration:   | 11%                                                 |                  |                                          |  |
| Fluid:         | Water                                               |                  |                                          |  |
| Software:      | 6.01                                                | Firmware:        | 4.00                                     |  |



| File name:     | C:\LS13320\Raadata LS 1332<br>21.0031 048#1 04.\$ls | 20 Analyse∖2021∖l | Jten PIDS\20210031\21.0031_048#1_04.\$Is |  |
|----------------|-----------------------------------------------------|-------------------|------------------------------------------|--|
| File ID:       | 21.0031_048#1                                       |                   |                                          |  |
| Sample ID:     | 21.0031 188289 R2276MC014A 43-44 cm                 |                   |                                          |  |
| Operator:      | MSH                                                 |                   |                                          |  |
| Run number:    | 4                                                   |                   |                                          |  |
| Comment 1:     | 0,136 g + disp.middel, springvann                   |                   |                                          |  |
| Comment 2:     | Ultralyd Probe 2 (naken), 5 ampl, 5 min, Leire      |                   |                                          |  |
| Optical model: | Leire-1-65.rf780d                                   |                   |                                          |  |
| Fluid R.I.:    | 1.333                                               | Sample R.I.:      | 1.65 i0.0099                             |  |
| Residual:      | 0.25%                                               |                   |                                          |  |
| LS 13 320      | Aqueous Liquid Module                               |                   |                                          |  |
| Start time:    | 2021-03-24 12:04                                    | Run length:       | 60 seconds                               |  |
| Pump speed:    | 45                                                  |                   |                                          |  |
| Obscuration:   | 12%                                                 |                   |                                          |  |
| Fluid:         | Water                                               |                   |                                          |  |
| Software:      | 6.01                                                | Firmware:         | 4.00                                     |  |



| File name:     | C:\LS13320\Raadata LS 1332<br>21.0031 049#2 04.\$ls | 0 Analyse\2021\l | Jten PIDS\20210031\21.0031_049#2_04.\$Is |  |
|----------------|-----------------------------------------------------|------------------|------------------------------------------|--|
| File ID:       | 21.0031_049#2                                       |                  |                                          |  |
| Sample ID:     | 21.0031 188293 R2279BC060 0-1 cm                    |                  |                                          |  |
| Operator:      | MSH                                                 |                  |                                          |  |
| Run number:    | 4                                                   |                  |                                          |  |
| Comment 1:     | 0,183 g + disp.middel, springvann                   |                  |                                          |  |
| Comment 2:     | Ultralyd Probe 2 (naken), 5 ampl, 5 min, Leire      |                  |                                          |  |
| Optical model: | Leire-1-65.rf780d                                   |                  |                                          |  |
| Fluid R.I.:    | 1.333                                               | Sample R.I.:     | 1.65 i0.0099                             |  |
| Residual:      | 0.25%                                               |                  |                                          |  |
| LS 13 320      | Aqueous Liquid Module                               |                  |                                          |  |
| Start time:    | 2021-03-24 12:28                                    | Run length:      | 61 seconds                               |  |
| Pump speed:    | 45                                                  |                  |                                          |  |
| Obscuration:   | 10%                                                 |                  |                                          |  |
| Fluid:         | Water                                               |                  |                                          |  |
| Software:      | 6.01                                                | Firmware:        | 4.00                                     |  |



| File name:     | C:\LS13320\Raadata LS 1332<br>21.0031 050#2 04.\$Is | 0 Analyse\2021\l | Jten PIDS\20210031\21.0031_050#2_04.\$Is |  |
|----------------|-----------------------------------------------------|------------------|------------------------------------------|--|
| File ID:       | 21.0031_050#2                                       |                  |                                          |  |
| Sample ID:     | 21.0031 188294 R2289MC015A 0-1 cm                   |                  |                                          |  |
| Operator:      | MSH                                                 |                  |                                          |  |
| Run number:    | 4                                                   |                  |                                          |  |
| Comment 1:     | 0,153 g + disp.middel, springvann                   |                  |                                          |  |
| Comment 2:     | Ultralyd Probe 2 (naken), 5 ampl, 5 min, Leire      |                  |                                          |  |
| Optical model: | Leire-1-65.rf780d                                   |                  |                                          |  |
| Fluid R.I.:    | 1.333                                               | Sample R.I.:     | 1.65 i0.0099                             |  |
| Residual:      | 0.24%                                               |                  |                                          |  |
| LS 13 320      | Aqueous Liquid Module                               |                  |                                          |  |
| Start time:    | 2021-03-24 12:53                                    | Run length:      | 60 seconds                               |  |
| Pump speed:    | 45                                                  |                  |                                          |  |
| Obscuration:   | 10%                                                 |                  |                                          |  |
| Fluid:         | Water                                               |                  |                                          |  |
| Software:      | 6.01                                                | Firmware:        | 4.00                                     |  |



| File name:     | C:\LS13320\Raadata LS 1332<br>21.0031 051 Hynne#1 04.\$I | ?0 Analyse∖2021∖l<br>s | Jten PIDS\20210031\21.0031_051_Hynne#1_04.\$ls |  |
|----------------|----------------------------------------------------------|------------------------|------------------------------------------------|--|
| File ID:       | 21.0031_051_Hynne#1                                      |                        |                                                |  |
| Sample ID:     | 21.0031_Hynne_40107                                      |                        |                                                |  |
| Operator:      | MSH                                                      |                        |                                                |  |
| Run number:    | 4                                                        |                        |                                                |  |
| Comment 1:     | 0,154 g + disp.middel, springv                           | rann                   |                                                |  |
| Comment 2:     | Ultralyd Probe 2 (naken), 5 ampl, 5 min, Leire           |                        |                                                |  |
| Optical model: | Leire-1-65.rf780d                                        |                        |                                                |  |
| Fluid R.I.:    | 1.333                                                    | Sample R.I.:           | 1.65 i0.0099                                   |  |
| Residual:      | 0.25%                                                    |                        |                                                |  |
| LS 13 320      | Aqueous Liquid Module                                    |                        |                                                |  |
| Start time:    | 2021-03-24 13:07                                         | Run length:            | 60 seconds                                     |  |
| Pump speed:    | 45                                                       |                        |                                                |  |
| Obscuration:   | 10%                                                      |                        |                                                |  |
| Fluid:         | Water                                                    |                        |                                                |  |
| Software:      | 6.01                                                     | Firmware:              | 4.00                                           |  |



| File name:     | C:\LS13320\Raadata LS 1332<br>21.0031 052 MINN#1 04.\$ls | 20 Analyse\2021\I | Jten PIDS\20210031\21.0031_052_MINN#1_04.\$Is |
|----------------|----------------------------------------------------------|-------------------|-----------------------------------------------|
| File ID:       | 21.0031_052_MINN#1_                                      |                   |                                               |
| Sample ID:     | 21.0031_MINN_Split 1                                     |                   |                                               |
| Operator:      | MSH                                                      |                   |                                               |
| Run number:    | 4                                                        |                   |                                               |
| Comment 1:     | 0,334 g + disp.middel, springv                           | /ann              |                                               |
| Comment 2:     | Ultralyd Probe 2 (naken), 5 ai                           | mpl, 5 min, Leire |                                               |
| Optical model: | Fraunhofer.rf780d                                        |                   |                                               |
| Residual:      | 0.17%                                                    |                   |                                               |
| LS 13 320      | Aqueous Liquid Module                                    |                   |                                               |
| Start time:    | 2021-03-24 13:22                                         | Run length:       | 60 seconds                                    |
| Pump speed:    | 45                                                       |                   |                                               |
| Obscuration:   | 11%                                                      |                   |                                               |
| Fluid:         | Water                                                    |                   |                                               |
| Software:      | 6.01                                                     | Firmware:         | 4.00                                          |



| Volume Statistics (Ari                                                                        | thmetic)                                                                                  | 21.0031_052                                           | 2_MINN#1_04.\$ls                                                                    |
|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------|
| Calculations from 0.3                                                                         | 75 µm to 2000 µm                                                                          |                                                       |                                                                                     |
| Volume:<br>Mean:<br>Median:<br>D(3,2):<br>Mean/Median ratio:<br>Mode:<br>Specific Surf. Area: | 100%<br>57.75 μm<br>42.40 μm<br>14.18 μm<br>1.362<br>55.14 μm<br>4232 cm <sup>2</sup> /mL | S.D.:<br>Variance:<br>C.V.:<br>Skewness:<br>Kurtosis: | 58.34 μm<br>3403 μm <sup>2</sup><br>101%<br>2.763 Right skewed<br>11.60 Leptokurtic |
| d <sub>10</sub> : 8.089 μm                                                                    | d <sub>50</sub> : 42.4                                                                    | 0 µm                                                  | d <sub>90</sub> : 121.6 μm                                                          |
| <10% <25%<br>8.089 µm 19.75 µ                                                                 | <50%<br>um 42.40 μm                                                                       | <75%<br>76.15 μm                                      | <90%<br>121.6 μm                                                                    |

| File name:     | C:\LS13320\Raadata LS 1332<br>21.0031_053_TANA#1_04.\$ls | 20 Analyse∖2021∖l<br>s | Jten PIDS\20210031\21.0031_053_TANA#1_04.\$Is |
|----------------|----------------------------------------------------------|------------------------|-----------------------------------------------|
| File ID:       | 21.0031_053_TANA#1                                       |                        |                                               |
| Sample ID:     | 21.0031_TANA (4)                                         |                        |                                               |
| Operator:      | MSH                                                      |                        |                                               |
| Run number:    | 4                                                        |                        |                                               |
|                | Control Sample                                           |                        |                                               |
| Comment 1:     | 0,140 g + disp.middel, Springv                           | vann                   |                                               |
| Comment 2:     | ultralyd, Probe 2 (naken), 5 ampl-5 min                  |                        |                                               |
| Optical model: | Fraunhofer.rf780d                                        |                        |                                               |
| Residual:      | 0.36%                                                    |                        |                                               |
| LS 13 320      | Aqueous Liquid Module                                    |                        |                                               |
| Start time:    | 2021-03-24 8:27                                          | Run length:            | 60 seconds                                    |
| Pump speed:    | 45                                                       |                        |                                               |
| Obscuration:   | 10%                                                      |                        |                                               |
| Fluid:         | Water                                                    |                        |                                               |
| Software:      | 6.01                                                     | Firmware:              | 4.00                                          |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_054#1_04.\$ls<br>21.0031_054#1_04.\$ls |              |              |
|----------------|------------------------------------------------------------------------------------------------------------|--------------|--------------|
| File ID:       | 21.0031_054#1_                                                                                             |              |              |
| Sample ID:     | 21.0031 188339 R2326GR104 0-1 cm                                                                           |              |              |
| Operator:      | MSH                                                                                                        |              |              |
| Run number:    | 4                                                                                                          |              |              |
| Comment 1:     | 0,141 g + disp.middel, springvann                                                                          |              |              |
| Comment 2:     | Ultralyd Probe 2 (naken), 5 ampl, 5 min, Leire                                                             |              |              |
| Optical model: | Leire-1-65.rf780d                                                                                          |              |              |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.: | 1.65 i0.0099 |
| Residual:      | 0.22%                                                                                                      |              |              |
| LS 13 320      | Aqueous Liquid Module                                                                                      |              |              |
| Start time:    | 2021-03-24 13:36                                                                                           | Run length:  | 61 seconds   |
| Pump speed:    | 45                                                                                                         |              |              |
| Obscuration:   | 11%                                                                                                        |              |              |
| Fluid:         | Water                                                                                                      |              |              |
| Software:      | 6.01                                                                                                       | Firmware:    | 4.00         |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_055#1_04.\$ls<br>21.0031_055#1_04.\$ls |              |              |
|----------------|------------------------------------------------------------------------------------------------------------|--------------|--------------|
| File ID:       | 21.0031_055#1_                                                                                             |              |              |
| Sample ID:     | 21.0031 188340 R2331MC0                                                                                    | 16A 0-1 cm   |              |
| Operator:      | MSH                                                                                                        |              |              |
| Run number:    | 4                                                                                                          |              |              |
| Comment 1:     | 0,136 g + disp.middel, springvann                                                                          |              |              |
| Comment 2:     | Ultralyd Probe 2 (naken), 5 ampl, 5 min, Leire                                                             |              |              |
| Optical model: | Leire-1-65.rf780d                                                                                          |              |              |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.: | 1.65 i0.0099 |
| Residual:      | 0.23%                                                                                                      |              |              |
| LS 13 320      | Aqueous Liquid Module                                                                                      |              |              |
| Start time:    | 2021-03-24 14:03                                                                                           | Run length:  | 60 seconds   |
| Pump speed:    | 45                                                                                                         |              |              |
| Obscuration:   | 10%                                                                                                        |              |              |
| Fluid:         | Water                                                                                                      |              |              |
| Software:      | 6.01                                                                                                       | Firmware:    | 4.00         |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_056#1_04.\$ls<br>21.0031_056#1_04.\$ls |              |              |
|----------------|------------------------------------------------------------------------------------------------------------|--------------|--------------|
| File ID:       | 21.0031_056#1                                                                                              |              |              |
| Sample ID:     | 21.0031_188381_R2338MC0                                                                                    | 17A 0-1 cm   |              |
| Operator:      | MSH                                                                                                        |              |              |
| Run number:    | 4                                                                                                          |              |              |
| Comment 1:     | 0,137 g + disp.middel, springvann                                                                          |              |              |
| Comment 2:     | Ultralyd Probe 2 (naken), 5 ampl, 5 min, Leire                                                             |              |              |
| Optical model: | Leire-1-65.rf780d                                                                                          |              |              |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.: | 1.65 i0.0099 |
| Residual:      | 0.23%                                                                                                      |              |              |
| LS 13 320      | Aqueous Liquid Module                                                                                      |              |              |
| Start time:    | 2021-03-24 14:17                                                                                           | Run length:  | 60 seconds   |
| Pump speed:    | 45                                                                                                         |              |              |
| Obscuration:   | 11%                                                                                                        |              |              |
| Fluid:         | Water                                                                                                      |              |              |
| Software:      | 6.01                                                                                                       | Firmware:    | 4.00         |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_057#1_04.\$ls<br>21.0031_057#1_04.\$ls |              |              |
|----------------|------------------------------------------------------------------------------------------------------------|--------------|--------------|
| File ID:       | 21.0031_057#1                                                                                              |              |              |
| Sample ID:     | 21.0031 188383 R2338MC017A 2-3 cm                                                                          |              |              |
| Operator:      | MSH                                                                                                        |              |              |
| Run number:    | 4                                                                                                          |              |              |
| Comment 1:     | 0,133 g + disp.middel, springvann                                                                          |              |              |
| Comment 2:     | Ultralyd Probe 2 (naken), 5 ampl, 5 min, Leire                                                             |              |              |
| Optical model: | Leire-1-65.rf780d                                                                                          |              |              |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.: | 1.65 i0.0099 |
| Residual:      | 0.22%                                                                                                      |              |              |
| LS 13 320      | Aqueous Liquid Module                                                                                      |              |              |
| Start time:    | 2021-03-24 14:28                                                                                           | Run length:  | 60 seconds   |
| Pump speed:    | 45                                                                                                         |              |              |
| Obscuration:   | 11%                                                                                                        |              |              |
| Fluid:         | Water                                                                                                      |              |              |
| Software:      | 6.01                                                                                                       | Firmware:    | 4.00         |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_058#1_04.\$ls<br>21.0031_058#1_04.\$ls |              |              |
|----------------|------------------------------------------------------------------------------------------------------------|--------------|--------------|
| File ID:       | 21.0031_058#1                                                                                              |              |              |
| Sample ID:     | 21.0031_188385_R2338MC0                                                                                    | 17A 4-5 cm   |              |
| Operator:      | MSH                                                                                                        |              |              |
| Run number:    | 4                                                                                                          |              |              |
| Comment 1:     | 0,129 g + disp.middel, springvann                                                                          |              |              |
| Comment 2:     | Ultralyd Probe 2 (naken), 5 ampl, 5 min, Leire                                                             |              |              |
| Optical model: | Leire-1-65.rf780d                                                                                          |              |              |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.: | 1.65 i0.0099 |
| Residual:      | 0.22%                                                                                                      |              |              |
| LS 13 320      | Aqueous Liquid Module                                                                                      |              |              |
| Start time:    | 2021-03-25 11:09                                                                                           | Run length:  | 60 seconds   |
| Pump speed:    | 45                                                                                                         |              |              |
| Obscuration:   | 11%                                                                                                        |              |              |
| Fluid:         | Water                                                                                                      |              |              |
| Software:      | 6.01                                                                                                       | Firmware:    | 4.00         |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_059#1_04.\$ls<br>21.0031_059#1_04.\$ls |              |              |
|----------------|------------------------------------------------------------------------------------------------------------|--------------|--------------|
| File ID:       | 21.0031_059#1                                                                                              |              |              |
| Sample ID:     | 21.0031 188390 R2338MC017A 9-10 cm                                                                         |              |              |
| Operator:      | MSH                                                                                                        |              |              |
| Run number:    | 4                                                                                                          |              |              |
| Comment 1:     | 0,124 g + disp.middel, springvann                                                                          |              |              |
| Comment 2:     | Ultralyd Probe 2 (naken), 5 ampl, 5 min, Leire                                                             |              |              |
| Optical model: | Leire-1-65.rf780d                                                                                          |              |              |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.: | 1.65 i0.0099 |
| Residual:      | 0.22%                                                                                                      |              |              |
| LS 13 320      | Aqueous Liquid Module                                                                                      |              |              |
| Start time:    | 2021-03-25 11:53                                                                                           | Run length:  | 60 seconds   |
| Pump speed:    | 45                                                                                                         |              |              |
| Obscuration:   | 11%                                                                                                        |              |              |
| Fluid:         | Water                                                                                                      |              |              |
| Software:      | 6.01                                                                                                       | Firmware:    | 4.00         |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_060#1_04.\$ls<br>21.0031_060#1_04.\$ls |              |              |
|----------------|------------------------------------------------------------------------------------------------------------|--------------|--------------|
| File ID:       | 21.0031_060#1_                                                                                             |              |              |
| Sample ID:     | 21.0031_188395_R2338MC0                                                                                    | 17A 14-15 cm |              |
| Operator:      | MSH                                                                                                        |              |              |
| Run number:    | 4                                                                                                          |              |              |
| Comment 1:     | 0,119 g + disp.middel, springvann                                                                          |              |              |
| Comment 2:     | Ultralyd Probe 2 (naken), 5 ampl, 5 min, Leire                                                             |              |              |
| Optical model: | Leire-1-65.rf780d                                                                                          |              |              |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.: | 1.65 i0.0099 |
| Residual:      | 0.22%                                                                                                      |              |              |
| LS 13 320      | Aqueous Liquid Module                                                                                      |              |              |
| Start time:    | 2021-03-25 12:06                                                                                           | Run length:  | 60 seconds   |
| Pump speed:    | 45                                                                                                         |              |              |
| Obscuration:   | 10%                                                                                                        |              |              |
| Fluid:         | Water                                                                                                      |              |              |
| Software:      | 6.01                                                                                                       | Firmware:    | 4.00         |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_061#1_04.\$ls<br>21.0031_061#1_04.\$ls |              |              |
|----------------|------------------------------------------------------------------------------------------------------------|--------------|--------------|
| File ID:       | 21.0031_061#1                                                                                              |              |              |
| Sample ID:     | 21.0031_188405_R2338MC0                                                                                    | 17A 24-25 cm |              |
| Operator:      | MSH                                                                                                        |              |              |
| Run number:    | 4                                                                                                          |              |              |
| Comment 1:     | 0,119 g + disp.middel, springvann                                                                          |              |              |
| Comment 2:     | Ultralyd Probe 2 (naken), 5 ampl, 5 min, Leire                                                             |              |              |
| Optical model: | Leire-1-65.rf780d                                                                                          |              |              |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.: | 1.65 i0.0099 |
| Residual:      | 0.22%                                                                                                      |              |              |
| LS 13 320      | Aqueous Liquid Module                                                                                      |              |              |
| Start time:    | 2021-03-25 12:20                                                                                           | Run length:  | 60 seconds   |
| Pump speed:    | 45                                                                                                         |              |              |
| Obscuration:   | 10%                                                                                                        |              |              |
| Fluid:         | Water                                                                                                      |              |              |
| Software:      | 6.01                                                                                                       | Firmware:    | 4.00         |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_062#1_04.\$ls<br>21.0031_062#1_04.\$ls |              |              |
|----------------|------------------------------------------------------------------------------------------------------------|--------------|--------------|
| File ID:       | 21.0031_062#1                                                                                              |              |              |
| Sample ID:     | 21.0031_188428_R2338MC0                                                                                    | 17A 47-48 cm |              |
| Operator:      | MSH                                                                                                        |              |              |
| Run number:    | 4                                                                                                          |              |              |
| Comment 1:     | 0,120 g + disp.middel, springvann                                                                          |              |              |
| Comment 2:     | Ultralyd Probe 2 (naken), 5 ampl, 5 min, Leire                                                             |              |              |
| Optical model: | Leire-1-65.rf780d                                                                                          |              |              |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.: | 1.65 i0.0099 |
| Residual:      | 0.21%                                                                                                      |              |              |
| LS 13 320      | Aqueous Liquid Module                                                                                      |              |              |
| Start time:    | 2021-03-25 12:37                                                                                           | Run length:  | 60 seconds   |
| Pump speed:    | 45                                                                                                         |              |              |
| Obscuration:   | 10%                                                                                                        |              |              |
| Fluid:         | Water                                                                                                      |              |              |
| Software:      | 6.01                                                                                                       | Firmware:    | 4.00         |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_063#1_04.\$ls<br>21.0031_063#1_04.\$ls |              |              |
|----------------|------------------------------------------------------------------------------------------------------------|--------------|--------------|
| File ID:       | 21.0031_063#1                                                                                              |              |              |
| Sample ID:     | 21.0031_188486_R2354GR12                                                                                   | 25 0-1 cm    |              |
| Operator:      | MSH                                                                                                        |              |              |
| Run number:    | 4                                                                                                          |              |              |
| Comment 1:     | 0,123 g + disp.middel, springvann                                                                          |              |              |
| Comment 2:     | Ultralyd Probe 2 (naken), 5 ampl, 5 min, Leire                                                             |              |              |
| Optical model: | Leire-1-65.rf780d                                                                                          |              |              |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.: | 1.65 i0.0099 |
| Residual:      | 0.25%                                                                                                      |              |              |
| LS 13 320      | Aqueous Liquid Module                                                                                      |              |              |
| Start time:    | 2021-03-25 12:55                                                                                           | Run length:  | 60 seconds   |
| Pump speed:    | 45                                                                                                         |              |              |
| Obscuration:   | 9%                                                                                                         |              |              |
| Fluid:         | Water                                                                                                      |              |              |
| Software:      | 6.01                                                                                                       | Firmware:    | 4.00         |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_064#1_04.\$ls<br>21.0031_064#1_04.\$ls |              |              |
|----------------|------------------------------------------------------------------------------------------------------------|--------------|--------------|
| File ID:       | 21.0031_064#1                                                                                              |              |              |
| Sample ID:     | 21.0031_188487_R2359GR1                                                                                    | 29 0-1 cm    |              |
| Operator:      | MSH                                                                                                        |              |              |
| Run number:    | 4                                                                                                          |              |              |
| Comment 1:     | 0,126 g + disp.middel, springvann                                                                          |              |              |
| Comment 2:     | Ultralyd Probe 2 (naken), 5 ampl, 5 min, Leire                                                             |              |              |
| Optical model: | Leire-1-65.rf780d                                                                                          |              |              |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.: | 1.65 i0.0099 |
| Residual:      | 0.25%                                                                                                      |              |              |
| LS 13 320      | Aqueous Liquid Module                                                                                      |              |              |
| Start time:    | 2021-03-25 13:13                                                                                           | Run length:  | 60 seconds   |
| Pump speed:    | 45                                                                                                         |              |              |
| Obscuration:   | 9%                                                                                                         |              |              |
| Fluid:         | Water                                                                                                      |              |              |
| Software:      | 6.01                                                                                                       | Firmware:    | 4.00         |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_065#1_04.\$ls<br>21.0031_065#1_04.\$ls |              |              |
|----------------|------------------------------------------------------------------------------------------------------------|--------------|--------------|
| File ID:       | 21.0031_065#1_                                                                                             |              |              |
| Sample ID:     | 21.0031_188488_R2363MC019A 0-1 cm                                                                          |              |              |
| Operator:      | MSH                                                                                                        |              |              |
| Run number:    | 4                                                                                                          |              |              |
| Comment 1:     | 0,130 g + disp.middel, springvann                                                                          |              |              |
| Comment 2:     | Ultralyd Probe 2 (naken), 5 ampl, 5 min, Leire                                                             |              |              |
| Optical model: | Leire-1-65.rf780d                                                                                          |              |              |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.: | 1.65 i0.0099 |
| Residual:      | 0.23%                                                                                                      |              |              |
| LS 13 320      | Aqueous Liquid Module                                                                                      |              |              |
| Start time:    | 2021-03-25 13:32                                                                                           | Run length:  | 60 seconds   |
| Pump speed:    | 45                                                                                                         |              |              |
| Obscuration:   | 8%                                                                                                         |              |              |
| Fluid:         | Water                                                                                                      |              |              |
| Software:      | 6.01                                                                                                       | Firmware:    | 4.00         |


| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_066#1_04.\$ls<br>21.0031_066#1_04.\$ls |              |              |
|----------------|------------------------------------------------------------------------------------------------------------|--------------|--------------|
| File ID:       | 21.0031_066#1                                                                                              |              |              |
| Sample ID:     | 21.0031_188490_R2363MC0                                                                                    | 19A 2-3 cm   |              |
| Operator:      | MSH                                                                                                        |              |              |
| Run number:    | 4                                                                                                          |              |              |
| Comment 1:     | 0,141 g + disp.middel, springvann                                                                          |              |              |
| Comment 2:     | Ultralyd Probe 2 (naken), 5 ampl, 5 min, Leire                                                             |              |              |
| Optical model: | Leire-1-65.rf780d                                                                                          |              |              |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.: | 1.65 i0.0099 |
| Residual:      | 0.23%                                                                                                      |              |              |
| LS 13 320      | Aqueous Liquid Module                                                                                      |              |              |
| Start time:    | 2021-03-25 13:55                                                                                           | Run length:  | 60 seconds   |
| Pump speed:    | 45                                                                                                         |              |              |
| Obscuration:   | 10%                                                                                                        |              |              |
| Fluid:         | Water                                                                                                      |              |              |
| Software:      | 6.01                                                                                                       | Firmware:    | 4.00         |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_067#1_04.\$ls<br>21.0031_067#1_04.\$ls |              |              |
|----------------|------------------------------------------------------------------------------------------------------------|--------------|--------------|
| File ID:       | 21.0031_067#1                                                                                              |              |              |
| Sample ID:     | 21.0031_188492_R2363MC0                                                                                    | 19A 4-5 cm   |              |
| Operator:      | MSH                                                                                                        |              |              |
| Run number:    | 4                                                                                                          |              |              |
| Comment 1:     | 0,143 g + disp.middel, springvann                                                                          |              |              |
| Comment 2:     | Ultralyd Probe 2 (naken), 5 ampl, 5 min, Leire                                                             |              |              |
| Optical model: | Leire-1-65.rf780d                                                                                          |              |              |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.: | 1.65 i0.0099 |
| Residual:      | 0.22%                                                                                                      |              |              |
| LS 13 320      | Aqueous Liquid Module                                                                                      |              |              |
| Start time:    | 2021-03-25 14:11                                                                                           | Run length:  | 60 seconds   |
| Pump speed:    | 45                                                                                                         |              |              |
| Obscuration:   | 10%                                                                                                        |              |              |
| Fluid:         | Water                                                                                                      |              |              |
| Software:      | 6.01                                                                                                       | Firmware:    | 4.00         |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_068#1_04.\$ls<br>21.0031_068#1_04.\$ls |              |              |
|----------------|------------------------------------------------------------------------------------------------------------|--------------|--------------|
| File ID:       | 21.0031_068#1                                                                                              |              |              |
| Sample ID:     | 21.0031_188497_R2363MC0                                                                                    | 19A 9-10 cm  |              |
| Operator:      | MSH                                                                                                        |              |              |
| Run number:    | 4                                                                                                          |              |              |
| Comment 1:     | 0,143 g + disp.middel, springvann                                                                          |              |              |
| Comment 2:     | Ultralyd Probe 2 (naken), 5 ampl, 5 min, Leire                                                             |              |              |
| Optical model: | Leire-1-65.rf780d                                                                                          |              |              |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.: | 1.65 i0.0099 |
| Residual:      | 0.22%                                                                                                      |              |              |
| LS 13 320      | Aqueous Liquid Module                                                                                      |              |              |
| Start time:    | 2021-03-25 14:27                                                                                           | Run length:  | 60 seconds   |
| Pump speed:    | 45                                                                                                         |              |              |
| Obscuration:   | 10%                                                                                                        |              |              |
| Fluid:         | Water                                                                                                      |              |              |
| Software:      | 6.01                                                                                                       | Firmware:    | 4.00         |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_069#1_04.\$ls<br>21.0031_069#1_04.\$ls |              |              |
|----------------|------------------------------------------------------------------------------------------------------------|--------------|--------------|
| File ID:       | 21.0031_069#1_                                                                                             |              |              |
| Sample ID:     | 21.0031_188502_R2363MC0                                                                                    | 19A 14-15 cm |              |
| Operator:      | MSH                                                                                                        |              |              |
| Run number:    | 4                                                                                                          |              |              |
| Comment 1:     | 0,144 g + disp.middel, springvann                                                                          |              |              |
| Comment 2:     | Ultralyd Probe 2 (naken), 5 ampl, 5 min, Leire                                                             |              |              |
| Optical model: | Leire-1-65.rf780d                                                                                          |              |              |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.: | 1.65 i0.0099 |
| Residual:      | 0.23%                                                                                                      |              |              |
| LS 13 320      | Aqueous Liquid Module                                                                                      |              |              |
| Start time:    | 2021-03-25 14:38                                                                                           | Run length:  | 60 seconds   |
| Pump speed:    | 45                                                                                                         |              |              |
| Obscuration:   | 9%                                                                                                         |              |              |
| Fluid:         | Water                                                                                                      |              |              |
| Software:      | 6.01                                                                                                       | Firmware:    | 4.00         |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_070#1_04.\$ls<br>21.0031_070#1_04.\$ls |              |              |
|----------------|------------------------------------------------------------------------------------------------------------|--------------|--------------|
| File ID:       | 21.0031_070#1                                                                                              |              |              |
| Sample ID:     | 21.0031_188512_R2363MC0                                                                                    | 19A 24-25 cm |              |
| Operator:      | MSH                                                                                                        |              |              |
| Run number:    | 4                                                                                                          |              |              |
| Comment 1:     | 0,146 g + disp.middel, springvann                                                                          |              |              |
| Comment 2:     | Ultralyd Probe 2 (naken), 5 ampl, 5 min, Leire                                                             |              |              |
| Optical model: | Leire-1-65.rf780d                                                                                          |              |              |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.: | 1.65 i0.0099 |
| Residual:      | 0.25%                                                                                                      |              |              |
| LS 13 320      | Aqueous Liquid Module                                                                                      |              |              |
| Start time:    | 2021-03-26 10:21                                                                                           | Run length:  | 60 seconds   |
| Pump speed:    | 45                                                                                                         |              |              |
| Obscuration:   | 10%                                                                                                        |              |              |
| Fluid:         | Water                                                                                                      |              |              |
| Software:      | 6.01                                                                                                       | Firmware:    | 4.00         |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_071#1_04.\$ls<br>21.0031_071#1_04.\$ls |              |              |
|----------------|------------------------------------------------------------------------------------------------------------|--------------|--------------|
| File ID:       | 21.0031_071#1                                                                                              |              |              |
| Sample ID:     | 21.0031_188525_R2363MC0                                                                                    | 19A 37-38 cm |              |
| Operator:      | MSH                                                                                                        |              |              |
| Run number:    | 4                                                                                                          |              |              |
| Comment 1:     | 0,147 g + disp.middel, springvann                                                                          |              |              |
| Comment 2:     | Ultralyd Probe 2 (naken), 5 ampl, 5 min, Leire                                                             |              |              |
| Optical model: | Leire-1-65.rf780d                                                                                          |              |              |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.: | 1.65 i0.0099 |
| Residual:      | 0.26%                                                                                                      |              |              |
| LS 13 320      | Aqueous Liquid Module                                                                                      |              |              |
| Start time:    | 2021-03-26 10:34                                                                                           | Run length:  | 60 seconds   |
| Pump speed:    | 45                                                                                                         |              |              |
| Obscuration:   | 11%                                                                                                        |              |              |
| Fluid:         | Water                                                                                                      |              |              |
| Software:      | 6.01                                                                                                       | Firmware:    | 4.00         |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_072#1_04.\$ls<br>21.0031_072#1_04.\$ls |              |              |
|----------------|------------------------------------------------------------------------------------------------------------|--------------|--------------|
| File ID:       | 21.0031_072#1                                                                                              |              |              |
| Sample ID:     | 21.0031_188531_R2365GR14                                                                                   | 41 0-1 cm    |              |
| Operator:      | MSH                                                                                                        |              |              |
| Run number:    | 4                                                                                                          |              |              |
| Comment 1:     | 0,147 g + disp.middel, springvann                                                                          |              |              |
| Comment 2:     | Ultralyd Probe 2 (naken), 5 ampl, 5 min, Leire                                                             |              |              |
| Optical model: | Leire-1-65.rf780d                                                                                          |              |              |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.: | 1.65 i0.0099 |
| Residual:      | 0.23%                                                                                                      |              |              |
| LS 13 320      | Aqueous Liquid Module                                                                                      |              |              |
| Start time:    | 2021-03-26 10:57                                                                                           | Run length:  | 60 seconds   |
| Pump speed:    | 45                                                                                                         |              |              |
| Obscuration:   | 10%                                                                                                        |              |              |
| Fluid:         | Water                                                                                                      |              |              |
| Software:      | 6.01                                                                                                       | Firmware:    | 4.00         |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_073_Hynne#1_04.\$ls<br>21.0031_073_Hynne#1_04.\$ls |              |              |
|----------------|------------------------------------------------------------------------------------------------------------------------|--------------|--------------|
| File ID:       | 21.0031_073_Hynne#1_                                                                                                   |              |              |
| Sample ID:     | 21.0031_Hynne_40107                                                                                                    |              |              |
| Operator:      | MSH                                                                                                                    |              |              |
| Run number:    | 4                                                                                                                      |              |              |
| Comment 1:     | 0,154 g + disp.middel, springvann                                                                                      |              |              |
| Comment 2:     | Ultralyd Probe 2 (naken), 5 ampl, 5 min, Leire                                                                         |              |              |
| Optical model: | Leire-1-65.rf780d                                                                                                      |              |              |
| Fluid R.I.:    | 1.333                                                                                                                  | Sample R.I.: | 1.65 i0.0099 |
| Residual:      | 0.24%                                                                                                                  |              |              |
| LS 13 320      | Aqueous Liquid Module                                                                                                  |              |              |
| Start time:    | 2021-03-26 11:40                                                                                                       | Run length:  | 60 seconds   |
| Pump speed:    | 45                                                                                                                     |              |              |
| Obscuration:   | 10%                                                                                                                    |              |              |
| Fluid:         | Water                                                                                                                  |              |              |
| Software:      | 6.01                                                                                                                   | Firmware:    | 4.00         |



| File name:     | C:\LS13320\Raadata LS 1332<br>21.0031_074_MINN#1_04.\$ls | ?0 Analyse∖2021∖l | Jten PIDS\20210031\21.0031_074_MINN#1_04.\$Is |
|----------------|----------------------------------------------------------|-------------------|-----------------------------------------------|
| File ID:       | 21.0031_074_MINN#1                                       |                   |                                               |
| Sample ID:     | 21.0031 MINN Split 1                                     |                   |                                               |
| Operator:      | MSH                                                      |                   |                                               |
| Run number:    | 4                                                        |                   |                                               |
|                | Control Sample                                           |                   |                                               |
| Comment 1:     | 0,334 g + disp.middel, Springv                           | /ann              |                                               |
| Comment 2:     | ultralyd, probe 2 (naken), 5 an                          | npl-5 min,Fraunh  | ofer                                          |
| Optical model: | Fraunhofer.rf780d                                        | -                 |                                               |
| Residual:      | 0.17%                                                    |                   |                                               |
| LS 13 320      | Aqueous Liquid Module                                    |                   |                                               |
| Start time:    | 2021-03-26 11:53                                         | Run length:       | 60 seconds                                    |
| Pump speed:    | 45                                                       |                   |                                               |
| Obscuration:   | 10%                                                      |                   |                                               |
| Fluid:         | Water                                                    |                   |                                               |
| Software:      | 6.01                                                     | Firmware:         | 4.00                                          |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_075#1_04.\$ls<br>21.0031_075#1_04.\$ls |              |              |
|----------------|------------------------------------------------------------------------------------------------------------|--------------|--------------|
| File ID:       | 21.0031_075#1                                                                                              |              |              |
| Sample ID:     | 21.0031_188433_R2339MC0                                                                                    | 18A 0-1 cm   |              |
| Operator:      | MSH                                                                                                        |              |              |
| Run number:    | 4                                                                                                          |              |              |
| Comment 1:     | 0,145 g + disp.middel, springvann                                                                          |              |              |
| Comment 2:     | Ultralyd Probe 2 (naken), 5 ampl, 5 min, Leire                                                             |              |              |
| Optical model: | Leire-1-65.rf780d                                                                                          |              |              |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.: | 1.65 i0.0099 |
| Residual:      | 0.22%                                                                                                      |              |              |
| LS 13 320      | Aqueous Liquid Module                                                                                      |              |              |
| Start time:    | 2021-03-26 12:12                                                                                           | Run length:  | 60 seconds   |
| Pump speed:    | 45                                                                                                         |              |              |
| Obscuration:   | 12%                                                                                                        |              |              |
| Fluid:         | Water                                                                                                      |              |              |
| Software:      | 6.01                                                                                                       | Firmware:    | 4.00         |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_076#1_04.\$ls<br>21.0031_076#1_04.\$ls |                   |              |
|----------------|------------------------------------------------------------------------------------------------------------|-------------------|--------------|
| File ID:       | 21.0031_076#1                                                                                              |                   |              |
| Sample ID:     | 21.0031_188434_R2339MC0                                                                                    | 18A 1-2 cm        |              |
| Operator:      | MSH                                                                                                        |                   |              |
| Run number:    | 4                                                                                                          |                   |              |
| Comment 1:     | 0,122 g + disp.middel, springvann                                                                          |                   |              |
| Comment 2:     | Ultralyd Probe 2 (naken), 5 ai                                                                             | mpl, 5 min, Leire |              |
| Optical model: | Leire-1-65.rf780d                                                                                          |                   |              |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.:      | 1.65 i0.0099 |
| Residual:      | 0.22%                                                                                                      |                   |              |
| LS 13 320      | Aqueous Liquid Module                                                                                      |                   |              |
| Start time:    | 2021-03-26 12:26                                                                                           | Run length:       | 60 seconds   |
| Pump speed:    | 45                                                                                                         |                   |              |
| Obscuration:   | 10%                                                                                                        |                   |              |
| Fluid:         | Water                                                                                                      |                   |              |
| Software:      | 6.01                                                                                                       | Firmware:         | 4.00         |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_077#1_04.\$ls<br>21.0031_077#1_04.\$ls |              |              |
|----------------|------------------------------------------------------------------------------------------------------------|--------------|--------------|
| File ID:       | 21.0031_077#1                                                                                              |              |              |
| Sample ID:     | 21.0031_188435_R2339MC0                                                                                    | 18A 2-3 cm   |              |
| Operator:      | MSH                                                                                                        |              |              |
| Run number:    | 4                                                                                                          |              |              |
| Comment 1:     | 0,122 g + disp.middel, springvann                                                                          |              |              |
| Comment 2:     | Ultralyd Probe 2 (naken), 5 ampl, 5 min, Leire                                                             |              |              |
| Optical model: | Leire-1-65.rf780d                                                                                          |              |              |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.: | 1.65 i0.0099 |
| Residual:      | 0.22%                                                                                                      |              |              |
| LS 13 320      | Aqueous Liquid Module                                                                                      |              |              |
| Start time:    | 2021-03-26 12:39                                                                                           | Run length:  | 60 seconds   |
| Pump speed:    | 45                                                                                                         |              |              |
| Obscuration:   | 11%                                                                                                        |              |              |
| Fluid:         | Water                                                                                                      |              |              |
| Software:      | 6.01                                                                                                       | Firmware:    | 4.00         |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_078#1_04.\$ls<br>21.0031_078#1_04.\$ls |              |              |
|----------------|------------------------------------------------------------------------------------------------------------|--------------|--------------|
| File ID:       | 21.0031_078#1                                                                                              |              |              |
| Sample ID:     | 21.0031 188436 R2339MC018A 3-4 cm                                                                          |              |              |
| Operator:      | MSH                                                                                                        |              |              |
| Run number:    | 4                                                                                                          |              |              |
| Comment 1:     | 0,120 g + disp.middel, springvann                                                                          |              |              |
| Comment 2:     | Ultralyd Probe 2 (naken), 5 ampl, 5 min, Leire                                                             |              |              |
| Optical model: | Leire-1-65.rf780d                                                                                          |              |              |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.: | 1.65 i0.0099 |
| Residual:      | 0.23%                                                                                                      |              |              |
| LS 13 320      | Aqueous Liquid Module                                                                                      |              |              |
| Start time:    | 2021-03-26 12:57                                                                                           | Run length:  | 60 seconds   |
| Pump speed:    | 45                                                                                                         |              |              |
| Obscuration:   | 11%                                                                                                        |              |              |
| Fluid:         | Water                                                                                                      |              |              |
| Software:      | 6.01                                                                                                       | Firmware:    | 4.00         |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_079#1_04.\$ls<br>21.0031_079#1_04.\$ls |              |              |
|----------------|------------------------------------------------------------------------------------------------------------|--------------|--------------|
| File ID:       | 21.0031_079#1                                                                                              |              |              |
| Sample ID:     | 21.0031_188437_R2339MC0                                                                                    | 18A 4-5 cm   |              |
| Operator:      | MSH                                                                                                        |              |              |
| Run number:    | 4                                                                                                          |              |              |
| Comment 1:     | 0,110 g + disp.middel, springvann                                                                          |              |              |
| Comment 2:     | Ultralyd Probe 2 (naken), 5 ampl, 5 min, Leire                                                             |              |              |
| Optical model: | Leire-1-65.rf780d                                                                                          |              |              |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.: | 1.65 i0.0099 |
| Residual:      | 0.22%                                                                                                      |              |              |
| LS 13 320      | Aqueous Liquid Module                                                                                      |              |              |
| Start time:    | 2021-03-26 13:12                                                                                           | Run length:  | 60 seconds   |
| Pump speed:    | 45                                                                                                         |              |              |
| Obscuration:   | 9%                                                                                                         |              |              |
| Fluid:         | Water                                                                                                      |              |              |
| Software:      | 6.01                                                                                                       | Firmware:    | 4.00         |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_080#1_04.\$ls<br>21.0031_080#1_04.\$ls |              |              |
|----------------|------------------------------------------------------------------------------------------------------------|--------------|--------------|
| File ID:       | 21.0031_080#1                                                                                              |              |              |
| Sample ID:     | 21.0031_188438_R2339MC0                                                                                    | 18A 5-6 cm   |              |
| Operator:      | MSH                                                                                                        |              |              |
| Run number:    | 4                                                                                                          |              |              |
| Comment 1:     | 0,114 g + disp.middel, springvann                                                                          |              |              |
| Comment 2:     | Ultralyd Probe 2 (naken), 5 ampl, 5 min, Leire                                                             |              |              |
| Optical model: | Leire-1-65.rf780d                                                                                          |              |              |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.: | 1.65 i0.0099 |
| Residual:      | 0.22%                                                                                                      |              |              |
| LS 13 320      | Aqueous Liquid Module                                                                                      |              |              |
| Start time:    | 2021-03-26 13:29                                                                                           | Run length:  | 60 seconds   |
| Pump speed:    | 45                                                                                                         |              |              |
| Obscuration:   | 10%                                                                                                        |              |              |
| Fluid:         | Water                                                                                                      |              |              |
| Software:      | 6.01                                                                                                       | Firmware:    | 4.00         |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_081#1_04.\$ls<br>21.0031_081#1_04.\$ls |              |              |
|----------------|------------------------------------------------------------------------------------------------------------|--------------|--------------|
| File ID:       | 21.0031_081#1                                                                                              |              |              |
| Sample ID:     | 21.0031 188439 R2339MC018A 6-7 cm                                                                          |              |              |
| Operator:      | MSH                                                                                                        |              |              |
| Run number:    | 4                                                                                                          |              |              |
| Comment 1:     | 0,114 g + disp.middel, springvann                                                                          |              |              |
| Comment 2:     | Ultralyd Probe 2 (naken), 5 ampl, 5 min, Leire                                                             |              |              |
| Optical model: | Leire-1-65.rf780d                                                                                          |              |              |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.: | 1.65 i0.0099 |
| Residual:      | 0.22%                                                                                                      |              |              |
| LS 13 320      | Aqueous Liquid Module                                                                                      |              |              |
| Start time:    | 2021-03-26 13:48                                                                                           | Run length:  | 60 seconds   |
| Pump speed:    | 45                                                                                                         |              |              |
| Obscuration:   | 10%                                                                                                        |              |              |
| Fluid:         | Water                                                                                                      |              |              |
| Software:      | 6.01                                                                                                       | Firmware:    | 4.00         |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_082#1_04.\$ls<br>21.0031_082#1_04.\$ls |              |              |
|----------------|------------------------------------------------------------------------------------------------------------|--------------|--------------|
| File ID:       | 21.0031_082#1                                                                                              |              |              |
| Sample ID:     | 21.0031 188440 R2339MC018A 7-8 cm                                                                          |              |              |
| Operator:      | MSH                                                                                                        |              |              |
| Run number:    | 4                                                                                                          |              |              |
| Comment 1:     | 0,114 g + disp.middel, springvann                                                                          |              |              |
| Comment 2:     | Ultralyd Probe 2 (naken), 5 ampl, 5 min, Leire                                                             |              |              |
| Optical model: | Leire-1-65.rf780d                                                                                          |              |              |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.: | 1.65 i0.0099 |
| Residual:      | 0.22%                                                                                                      |              |              |
| LS 13 320      | Aqueous Liquid Module                                                                                      |              |              |
| Start time:    | 2021-03-26 14:09                                                                                           | Run length:  | 60 seconds   |
| Pump speed:    | 45                                                                                                         |              |              |
| Obscuration:   | 10%                                                                                                        |              |              |
| Fluid:         | Water                                                                                                      |              |              |
| Software:      | 6.01                                                                                                       | Firmware:    | 4.00         |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_083#1_04.\$ls<br>21.0031_083#1_04.\$ls |                                   |              |  |
|----------------|------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------|--|
| File ID:       | 21.0031_083#1                                                                                              |                                   |              |  |
| Sample ID:     | 21.0031_188441_R2339MC0                                                                                    | 21.0031 188441 R2339MC018A 8-9 cm |              |  |
| Operator:      | MSH                                                                                                        |                                   |              |  |
| Run number:    | 4                                                                                                          |                                   |              |  |
| Comment 1:     | 0,114 g + disp.middel, springvann                                                                          |                                   |              |  |
| Comment 2:     | Ultralyd Probe 2 (naken), 5 ampl, 5 min, Leire                                                             |                                   |              |  |
| Optical model: | Leire-1-65.rf780d                                                                                          |                                   |              |  |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.:                      | 1.65 i0.0099 |  |
| Residual:      | 0.22%                                                                                                      |                                   |              |  |
| LS 13 320      | Aqueous Liquid Module                                                                                      |                                   |              |  |
| Start time:    | 2021-03-26 14:25                                                                                           | Run length:                       | 60 seconds   |  |
| Pump speed:    | 45                                                                                                         |                                   |              |  |
| Obscuration:   | 10%                                                                                                        |                                   |              |  |
| Fluid:         | Water                                                                                                      |                                   |              |  |
| Software:      | 6.01                                                                                                       | Firmware:                         | 4.00         |  |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_084#1_04.\$ls<br>21.0031_084#1_04.\$ls |              |              |
|----------------|------------------------------------------------------------------------------------------------------------|--------------|--------------|
| File ID:       | 21.0031_084#1                                                                                              |              |              |
| Sample ID:     | 21.0031_188442_R2339MC0                                                                                    | 18A 9-10 cm  |              |
| Operator:      | MSH                                                                                                        |              |              |
| Run number:    | 4                                                                                                          |              |              |
| Comment 1:     | 0,114 g + disp.middel, springvann                                                                          |              |              |
| Comment 2:     | Ultralyd Probe 2 (naken), 5 ampl, 5 min, Leire                                                             |              |              |
| Optical model: | Leire-1-65.rf780d                                                                                          |              |              |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.: | 1.65 i0.0099 |
| Residual:      | 0.22%                                                                                                      |              |              |
| LS 13 320      | Aqueous Liquid Module                                                                                      |              |              |
| Start time:    | 2021-03-26 14:37                                                                                           | Run length:  | 60 seconds   |
| Pump speed:    | 45                                                                                                         |              |              |
| Obscuration:   | 10%                                                                                                        |              |              |
| Fluid:         | Water                                                                                                      |              |              |
| Software:      | 6.01                                                                                                       | Firmware:    | 4.00         |
|                |                                                                                                            |              |              |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_085#1_04.\$ls<br>21.0031_085#1_04.\$ls |              |              |
|----------------|------------------------------------------------------------------------------------------------------------|--------------|--------------|
| File ID:       | 21.0031_085#1_                                                                                             |              |              |
| Sample ID:     | 21.0031_188443_R2339MC0                                                                                    | 18A 10-11 cm |              |
| Operator:      | MSH                                                                                                        |              |              |
| Run number:    | 4                                                                                                          |              |              |
| Comment 1:     | 0,114 g + disp.middel, springvann                                                                          |              |              |
| Comment 2:     | Ultralyd Probe 2 (naken), 5 ampl, 5 min, Leire                                                             |              |              |
| Optical model: | Leire-1-65.rf780d                                                                                          |              |              |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.: | 1.65 i0.0099 |
| Residual:      | 0.23%                                                                                                      |              |              |
| LS 13 320      | Aqueous Liquid Module                                                                                      |              |              |
| Start time:    | 2021-04-06 11:51                                                                                           | Run length:  | 60 seconds   |
| Pump speed:    | 45                                                                                                         |              |              |
| Obscuration:   | 10%                                                                                                        |              |              |
| Fluid:         | Water                                                                                                      |              |              |
| Software:      | 6.01                                                                                                       | Firmware:    | 4.00         |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_086#1_04.\$ls<br>21.0031_086#1_04.\$ls |              |              |
|----------------|------------------------------------------------------------------------------------------------------------|--------------|--------------|
| File ID:       | 21.0031_086#1                                                                                              |              |              |
| Sample ID:     | 21.0031_188444_R2339MC0                                                                                    | 18A 11-12 cm |              |
| Operator:      | MSH                                                                                                        |              |              |
| Run number:    | 4                                                                                                          |              |              |
| Comment 1:     | 0,114 g + disp.middel, springvann                                                                          |              |              |
| Comment 2:     | Ultralyd Probe 2 (naken), 5 ampl, 5 min, Leire                                                             |              |              |
| Optical model: | Leire-1-65.rf780d                                                                                          |              |              |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.: | 1.65 i0.0099 |
| Residual:      | 0.22%                                                                                                      |              |              |
| LS 13 320      | Aqueous Liquid Module                                                                                      |              |              |
| Start time:    | 2021-04-06 12:05                                                                                           | Run length:  | 60 seconds   |
| Pump speed:    | 45                                                                                                         |              |              |
| Obscuration:   | 10%                                                                                                        |              |              |
| Fluid:         | Water                                                                                                      |              |              |
| Software:      | 6.01                                                                                                       | Firmware:    | 4.00         |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_087#1_04.\$ls<br>21.0031_087#1_04.\$ls |              |              |
|----------------|------------------------------------------------------------------------------------------------------------|--------------|--------------|
| File ID:       | 21.0031_087#1                                                                                              |              |              |
| Sample ID:     | 21.0031_188445_R2339MC0                                                                                    | 18A 12-13 cm |              |
| Operator:      | MSH                                                                                                        |              |              |
| Run number:    | 4                                                                                                          |              |              |
| Comment 1:     | 0,114 g + disp.middel, springvann                                                                          |              |              |
| Comment 2:     | Ultralyd Probe 2 (naken), 5 ampl, 5 min, Leire                                                             |              |              |
| Optical model: | Leire-1-65.rf780d                                                                                          |              |              |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.: | 1.65 i0.0099 |
| Residual:      | 0.22%                                                                                                      |              |              |
| LS 13 320      | Aqueous Liquid Module                                                                                      |              |              |
| Start time:    | 2021-04-06 12:19                                                                                           | Run length:  | 60 seconds   |
| Pump speed:    | 45                                                                                                         |              |              |
| Obscuration:   | 10%                                                                                                        |              |              |
| Fluid:         | Water                                                                                                      |              |              |
| Software:      | 6.01                                                                                                       | Firmware:    | 4.00         |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_088#1_04.\$ls<br>21.0031_088#1_04.\$ls |              |              |
|----------------|------------------------------------------------------------------------------------------------------------|--------------|--------------|
| File ID:       | 21.0031_088#1                                                                                              |              |              |
| Sample ID:     | 21.0031 188446 R2339MC018A 13-14 cm                                                                        |              |              |
| Operator:      | MSH                                                                                                        |              |              |
| Run number:    | 4                                                                                                          |              |              |
| Comment 1:     | 0,114 g + disp.middel, springvann                                                                          |              |              |
| Comment 2:     | Ultralyd Probe 2 (naken), 5 ampl, 5 min, Leire                                                             |              |              |
| Optical model: | Leire-1-65.rf780d                                                                                          |              |              |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.: | 1.65 i0.0099 |
| Residual:      | 0.23%                                                                                                      |              |              |
| LS 13 320      | Aqueous Liquid Module                                                                                      |              |              |
| Start time:    | 2021-04-06 13:03                                                                                           | Run length:  | 60 seconds   |
| Pump speed:    | 45                                                                                                         |              |              |
| Obscuration:   | 10%                                                                                                        |              |              |
| Fluid:         | Water                                                                                                      |              |              |
| Software:      | 6.01                                                                                                       | Firmware:    | 4.00         |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_089#1_04.\$ls<br>21.0031_089#1_04.\$ls |              |              |
|----------------|------------------------------------------------------------------------------------------------------------|--------------|--------------|
| File ID:       | 21.0031_089#1_                                                                                             |              |              |
| Sample ID:     | 21.0031_188447_R2339MC0                                                                                    | 18A 14-15 cm |              |
| Operator:      | MSH                                                                                                        |              |              |
| Run number:    | 4                                                                                                          |              |              |
| Comment 1:     | 0,114 g + disp.middel, springvann                                                                          |              |              |
| Comment 2:     | Ultralyd Probe 2 (naken), 5 ampl, 5 min, Leire                                                             |              |              |
| Optical model: | Leire-1-65.rf780d                                                                                          |              |              |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.: | 1.65 i0.0099 |
| Residual:      | 0.24%                                                                                                      |              |              |
| LS 13 320      | Aqueous Liquid Module                                                                                      |              |              |
| Start time:    | 2021-04-06 13:19                                                                                           | Run length:  | 60 seconds   |
| Pump speed:    | 45                                                                                                         |              |              |
| Obscuration:   | 10%                                                                                                        |              |              |
| Fluid:         | Water                                                                                                      |              |              |
| Software:      | 6.01                                                                                                       | Firmware:    | 4.00         |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_090#1_04.\$ls<br>21.0031_090#1_04.\$ls |              |              |
|----------------|------------------------------------------------------------------------------------------------------------|--------------|--------------|
| File ID:       | 21.0031_090#1                                                                                              |              |              |
| Sample ID:     | 21.0031_188448_R2339MC0                                                                                    | 18A 15-16 cm |              |
| Operator:      | MSH                                                                                                        |              |              |
| Run number:    | 4                                                                                                          |              |              |
| Comment 1:     | 0,114 g + disp.middel, springvann                                                                          |              |              |
| Comment 2:     | Ultralyd Probe 2 (naken), 5 ampl, 5 min, Leire                                                             |              |              |
| Optical model: | Leire-1-65.rf780d                                                                                          |              |              |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.: | 1.65 i0.0099 |
| Residual:      | 0.23%                                                                                                      |              |              |
| LS 13 320      | Aqueous Liquid Module                                                                                      |              |              |
| Start time:    | 2021-04-06 13:37                                                                                           | Run length:  | 60 seconds   |
| Pump speed:    | 45                                                                                                         |              |              |
| Obscuration:   | 10%                                                                                                        |              |              |
| Fluid:         | Water                                                                                                      |              |              |
| Software:      | 6.01                                                                                                       | Firmware:    | 4.00         |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_091#1_04.\$ls<br>21.0031_091#1_04.\$ls |              |              |
|----------------|------------------------------------------------------------------------------------------------------------|--------------|--------------|
| File ID:       | 21.0031_091#1                                                                                              |              |              |
| Sample ID:     | 21.0031_188449_R2339MC0                                                                                    | 18A 16-17 cm |              |
| Operator:      | MSH                                                                                                        |              |              |
| Run number:    | 4                                                                                                          |              |              |
| Comment 1:     | 0,114 g + disp.middel, springvann                                                                          |              |              |
| Comment 2:     | Ultralyd Probe 2 (naken), 5 ampl, 5 min, Leire                                                             |              |              |
| Optical model: | Leire-1-65.rf780d                                                                                          |              |              |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.: | 1.65 i0.0099 |
| Residual:      | 0.23%                                                                                                      |              |              |
| LS 13 320      | Aqueous Liquid Module                                                                                      |              |              |
| Start time:    | 2021-04-06 13:59                                                                                           | Run length:  | 60 seconds   |
| Pump speed:    | 45                                                                                                         |              |              |
| Obscuration:   | 10%                                                                                                        |              |              |
| Fluid:         | Water                                                                                                      |              |              |
| Software:      | 6.01                                                                                                       | Firmware:    | 4.00         |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031 092#1 04.\$ls |              |              |
|----------------|-----------------------------------------------------------------------------------|--------------|--------------|
|                | 21.0031 092#1 04.\$ls                                                             | •            |              |
| File ID:       | 21.0031_092#1                                                                     |              |              |
|                | 21.0001_002#1                                                                     | 404 47 40    |              |
| Sample ID:     | 21.0031_188450_R2339MC0                                                           | 18A 17-18 CM |              |
| Operator:      | MSH                                                                               |              |              |
| Run number:    | 4                                                                                 |              |              |
| Comment 1:     | 0,114 g + disp.middel, springvann                                                 |              |              |
| Comment 2:     | Ultralyd Probe 2 (naken), 5 ampl, 5 min, Leire                                    |              |              |
| Optical model: | Leire-1-65.rf780d                                                                 |              |              |
| Fluid R.I.:    | 1.333                                                                             | Sample R.I.: | 1.65 i0.0099 |
| Residual:      | 0.23%                                                                             |              |              |
| LS 13 320      | Aqueous Liquid Module                                                             |              |              |
| Start time:    | 2021-04-06 14:15                                                                  | Run length:  | 60 seconds   |
| Pump speed:    | 45                                                                                |              |              |
| Obscuration:   | 10%                                                                               |              |              |
| Fluid:         | Water                                                                             |              |              |
| Software:      | 6.01                                                                              | Firmware:    | 4.00         |
|                |                                                                                   |              |              |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_093#1_04.\$ls<br>21.0031_093#1_04.\$ls |              |              |
|----------------|------------------------------------------------------------------------------------------------------------|--------------|--------------|
| File ID:       | 21.0031_093#1                                                                                              |              |              |
| Sample ID:     | 21.0031_188451_R2339MC0                                                                                    | 18A 18-19 cm |              |
| Operator:      | MSH                                                                                                        |              |              |
| Run number:    | 4                                                                                                          |              |              |
| Comment 1:     | 0,114 g + disp.middel, springvann                                                                          |              |              |
| Comment 2:     | Ultralyd Probe 2 (naken), 5 ampl, 5 min, Leire                                                             |              |              |
| Optical model: | Leire-1-65.rf780d                                                                                          |              |              |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.: | 1.65 i0.0099 |
| Residual:      | 0.22%                                                                                                      |              |              |
| LS 13 320      | Aqueous Liquid Module                                                                                      |              |              |
| Start time:    | 2021-04-06 14:31                                                                                           | Run length:  | 60 seconds   |
| Pump speed:    | 45                                                                                                         |              |              |
| Obscuration:   | 10%                                                                                                        |              |              |
| Fluid:         | Water                                                                                                      |              |              |
| Software:      | 6.01                                                                                                       | Firmware:    | 4.00         |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_094#1_04.\$ls<br>21.0031_094#1_04.\$ls |              |              |
|----------------|------------------------------------------------------------------------------------------------------------|--------------|--------------|
| File ID:       | 21.0031_094#1                                                                                              |              |              |
| Sample ID:     | 21.0031_188452_R2339MC0                                                                                    | 18A 19-20 cm |              |
| Operator:      | MSH                                                                                                        |              |              |
| Run number:    | 4                                                                                                          |              |              |
| Comment 1:     | 0,114 g + disp.middel, springvann                                                                          |              |              |
| Comment 2:     | UL- Probe 2 (naken), 5 ampl, 5 min, Leire                                                                  |              |              |
| Optical model: | Leire-1-65.rf780d                                                                                          |              |              |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.: | 1.65 i0.0099 |
| Residual:      | 0.22%                                                                                                      |              |              |
| LS 13 320      | Aqueous Liquid Module                                                                                      |              |              |
| Start time:    | 2021-04-09 8:51                                                                                            | Run length:  | 60 seconds   |
| Pump speed:    | 45                                                                                                         |              |              |
| Obscuration:   | 10%                                                                                                        |              |              |
| Fluid:         | Water                                                                                                      |              |              |
| Software:      | 6.01                                                                                                       | Firmware:    | 4.00         |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_095#1_04.\$ls<br>21.0031_095#1_04.\$ls |              |              |
|----------------|------------------------------------------------------------------------------------------------------------|--------------|--------------|
| File ID:       | 21.0031_095#1                                                                                              |              |              |
| Sample ID:     | 21.0031_188453_R2339MC0                                                                                    | 18A 20-21 cm |              |
| Operator:      | MSH                                                                                                        |              |              |
| Run number:    | 4                                                                                                          |              |              |
| Comment 1:     | 0,114 g + disp.middel, spr.vann                                                                            |              |              |
| Comment 2:     | UL- Probe 2 (naken), 5 ampl, 5 min, Leire                                                                  |              |              |
| Optical model: | Leire-1-65.rf780d                                                                                          |              |              |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.: | 1.65 i0.0099 |
| Residual:      | 0.23%                                                                                                      |              |              |
| LS 13 320      | Aqueous Liquid Module                                                                                      |              |              |
| Start time:    | 2021-04-09 9:05                                                                                            | Run length:  | 60 seconds   |
| Pump speed:    | 45                                                                                                         |              |              |
| Obscuration:   | 10%                                                                                                        |              |              |
| Fluid:         | Water                                                                                                      |              |              |
| Software:      | 6.01                                                                                                       | Firmware:    | 4.00         |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_096#1_04.\$ls<br>21.0031_096#1_04.\$ls |              |              |
|----------------|------------------------------------------------------------------------------------------------------------|--------------|--------------|
| File ID:       | 21.0031_096#1                                                                                              |              |              |
| Sample ID:     | 21.0031_188454_R2339MC0                                                                                    | 18A 21-22 cm |              |
| Operator:      | MSH                                                                                                        |              |              |
| Run number:    | 4                                                                                                          |              |              |
| Comment 1:     | 0,114 g + disp.middel, spr.vann                                                                            |              |              |
| Comment 2:     | UL- Probe 2 (naken), 5 ampl,                                                                               | 5 min, Leire |              |
| Optical model: | Leire-1-65.rf780d                                                                                          |              |              |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.: | 1.65 i0.0099 |
| Residual:      | 0.22%                                                                                                      |              |              |
| LS 13 320      | Aqueous Liquid Module                                                                                      |              |              |
| Start time:    | 2021-04-09 9:22                                                                                            | Run length:  | 60 seconds   |
| Pump speed:    | 45                                                                                                         |              |              |
| Obscuration:   | 10%                                                                                                        |              |              |
| Fluid:         | Water                                                                                                      |              |              |
| Software:      | 6.01                                                                                                       | Firmware:    | 4.00         |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_097#1_04.\$ls<br>21.0031_097#1_04.\$ls |              |              |
|----------------|------------------------------------------------------------------------------------------------------------|--------------|--------------|
| File ID:       | 21.0031_097#1                                                                                              |              |              |
| Sample ID:     | 21.0031_188455_R2339MC0                                                                                    | 18A 22-23 cm |              |
| Operator:      | MSH                                                                                                        |              |              |
| Run number:    | 4                                                                                                          |              |              |
| Comment 1:     | 0,114 g + disp.middel, spr.vann                                                                            |              |              |
| Comment 2:     | UL- Probe 2 (naken), 5 ampl, 5 min, Leire                                                                  |              |              |
| Optical model: | Leire-1-65.rf780d                                                                                          |              |              |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.: | 1.65 i0.0099 |
| Residual:      | 0.22%                                                                                                      |              |              |
| LS 13 320      | Aqueous Liquid Module                                                                                      |              |              |
| Start time:    | 2021-04-09 9:36                                                                                            | Run length:  | 60 seconds   |
| Pump speed:    | 45                                                                                                         |              |              |
| Obscuration:   | 10%                                                                                                        |              |              |
| Fluid:         | Water                                                                                                      |              |              |
| Software:      | 6.01                                                                                                       | Firmware:    | 4.00         |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_098#1_04.\$ls<br>21.0031_098#1_04.\$ls |              |              |
|----------------|------------------------------------------------------------------------------------------------------------|--------------|--------------|
| File ID:       | 21.0031_098#1                                                                                              |              |              |
| Sample ID:     | 21.0031_188456_R2339MC0                                                                                    | 18A 23-24 cm |              |
| Operator:      | MSH                                                                                                        |              |              |
| Run number:    | 4                                                                                                          |              |              |
| Comment 1:     | 0,114 g + disp.middel, spr.vann                                                                            |              |              |
| Comment 2:     | UL- Probe 2 (naken), 5 ampl, 5 min, Leire                                                                  |              |              |
| Optical model: | Leire-1-65.rf780d                                                                                          |              |              |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.: | 1.65 i0.0099 |
| Residual:      | 0.22%                                                                                                      |              |              |
| LS 13 320      | Aqueous Liquid Module                                                                                      |              |              |
| Start time:    | 2021-04-09 9:50                                                                                            | Run length:  | 60 seconds   |
| Pump speed:    | 45                                                                                                         |              |              |
| Obscuration:   | 10%                                                                                                        |              |              |
| Fluid:         | Water                                                                                                      |              |              |
| Software:      | 6.01                                                                                                       | Firmware:    | 4.00         |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_099#1_04.\$ls<br>21.0031_099#1_04.\$ls |              |              |
|----------------|------------------------------------------------------------------------------------------------------------|--------------|--------------|
| File ID:       | 21.0031_099#1                                                                                              |              |              |
| Sample ID:     | 21.0031_188457_R2339MC0                                                                                    | 18A 24-25 cm |              |
| Operator:      | MSH                                                                                                        |              |              |
| Run number:    | 4                                                                                                          |              |              |
| Comment 1:     | 0,114 g + disp.middel, spr.vann                                                                            |              |              |
| Comment 2:     | UL- Probe 2 (naken), 5 ampl, 5 min, Leire                                                                  |              |              |
| Optical model: | Leire-1-65.rf780d                                                                                          |              |              |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.: | 1.65 i0.0099 |
| Residual:      | 0.25%                                                                                                      |              |              |
| LS 13 320      | Aqueous Liquid Module                                                                                      |              |              |
| Start time:    | 2021-04-09 12:12                                                                                           | Run length:  | 60 seconds   |
| Pump speed:    | 45                                                                                                         |              |              |
| Obscuration:   | 9%                                                                                                         |              |              |
| Fluid:         | Water                                                                                                      |              |              |
| Software:      | 6.01                                                                                                       | Firmware:    | 4.00         |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_100#1_04.\$ls<br>21.0031_100#1_04.\$ls |              |              |
|----------------|------------------------------------------------------------------------------------------------------------|--------------|--------------|
| File ID:       | 21.0031 100#1                                                                                              |              |              |
| Sample ID:     | 21.0031 188458 R2339MC018A 25-26 cm                                                                        |              |              |
| Operator:      | MSH                                                                                                        |              |              |
| Run number:    | 4                                                                                                          |              |              |
| Comment 1:     | 0,114 g + disp.middel, vann type III                                                                       |              |              |
| Comment 2:     | Ultralyd Probe 2 (naken), 5 ampl, 5 min, Leire                                                             |              |              |
| Optical model: | Leire-1-65.rf780d                                                                                          |              |              |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.: | 1.65 i0.0099 |
| Residual:      | 0.24%                                                                                                      |              |              |
| LS 13 320      | Aqueous Liquid Module                                                                                      |              |              |
| Start time:    | 2021-04-09 12:54                                                                                           | Run length:  | 60 seconds   |
| Pump speed:    | 45                                                                                                         |              |              |
| Obscuration:   | 10%                                                                                                        |              |              |
| Fluid:         | Water                                                                                                      |              |              |
| Software:      | 6.01                                                                                                       | Firmware:    | 4.00         |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_101#1_04.\$ls<br>21.0031_101#1_04.\$ls |              |              |
|----------------|------------------------------------------------------------------------------------------------------------|--------------|--------------|
| File ID:       | 21.0031 101#1                                                                                              |              |              |
| Sample ID:     | 21.0031_188459_R2339MC0                                                                                    | 18A 26-27 cm |              |
| Operator:      | MSH                                                                                                        |              |              |
| Run number:    | 4                                                                                                          |              |              |
| Comment 1:     | 0,114 g + disp.middel, spr.vann                                                                            |              |              |
| Comment 2:     | UL- Probe 2 (naken), 5 ampl, 5 min, Leire                                                                  |              |              |
| Optical model: | Leire-1-65.rf780d                                                                                          |              |              |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.: | 1.65 i0.0099 |
| Residual:      | 0.23%                                                                                                      |              |              |
| LS 13 320      | Aqueous Liquid Module                                                                                      |              |              |
| Start time:    | 2021-04-09 13:09                                                                                           | Run length:  | 60 seconds   |
| Pump speed:    | 45                                                                                                         |              |              |
| Obscuration:   | 10%                                                                                                        |              |              |
| Fluid:         | Water                                                                                                      |              |              |
| Software:      | 6.01                                                                                                       | Firmware:    | 4.00         |


| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_102#1_04.\$ls<br>21.0031_102#1_04.\$ls |              |              |  |
|----------------|------------------------------------------------------------------------------------------------------------|--------------|--------------|--|
| File ID:       | 21.0031 102#1                                                                                              |              |              |  |
| Sample ID:     | 21.0031_188460_R2339MC0                                                                                    | 18A 27-28 cm |              |  |
| Operator:      | MSH                                                                                                        |              |              |  |
| Run number:    | 4                                                                                                          |              |              |  |
| Comment 1:     | 0,114 g + disp.middel, spr.vann                                                                            |              |              |  |
| Comment 2:     | UL- Probe 2 (naken), 5 ampl,                                                                               | 5 min, Leire |              |  |
| Optical model: | Leire-1-65.rf780d                                                                                          |              |              |  |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.: | 1.65 i0.0099 |  |
| Residual:      | 0.22%                                                                                                      |              |              |  |
| LS 13 320      | Aqueous Liquid Module                                                                                      |              |              |  |
| Start time:    | 2021-04-09 13:28                                                                                           | Run length:  | 60 seconds   |  |
| Pump speed:    | 45                                                                                                         |              |              |  |
| Obscuration:   | 10%                                                                                                        |              |              |  |
| Fluid:         | Water                                                                                                      |              |              |  |
| Software:      | 6.01                                                                                                       | Firmware:    | 4.00         |  |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_103#1_04.\$ls<br>21.0031_103#1_04.\$ls |              |              |  |
|----------------|------------------------------------------------------------------------------------------------------------|--------------|--------------|--|
| File ID:       | 21.0031 103#1                                                                                              |              |              |  |
| Sample ID:     | 21.0031_188461_R2339MC0                                                                                    | 18A 28-29 cm |              |  |
| Operator:      | MSH                                                                                                        |              |              |  |
| Run number:    | 4                                                                                                          |              |              |  |
| Comment 1:     | 0,114 g + disp.middel, spr.vann                                                                            |              |              |  |
| Comment 2:     | UL- Probe 2 (naken), 5 ampl,                                                                               | 5 min, Leire |              |  |
| Optical model: | Leire-1-65.rf780d                                                                                          |              |              |  |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.: | 1.65 i0.0099 |  |
| Residual:      | 0.23%                                                                                                      |              |              |  |
| LS 13 320      | Aqueous Liquid Module                                                                                      |              |              |  |
| Start time:    | 2021-04-09 13:44                                                                                           | Run length:  | 60 seconds   |  |
| Pump speed:    | 45                                                                                                         |              |              |  |
| Obscuration:   | 10%                                                                                                        |              |              |  |
| Fluid:         | Water                                                                                                      |              |              |  |
| Software:      | 6.01                                                                                                       | Firmware:    | 4.00         |  |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_104#1_04.\$ls<br>21.0031_104#1_04.\$ls |              |              |  |
|----------------|------------------------------------------------------------------------------------------------------------|--------------|--------------|--|
| File ID:       | 21.0031 104#1                                                                                              |              |              |  |
| Sample ID:     | 21.0031_188462_R2339MC0                                                                                    | 18A 29-30 cm |              |  |
| Operator:      | MSH                                                                                                        |              |              |  |
| Run number:    | 4                                                                                                          |              |              |  |
| Comment 1:     | 0,115 g + disp.middel, spr.vann                                                                            |              |              |  |
| Comment 2:     | UL- Probe 2 (naken), 5 ampl,                                                                               | 5 min, Leire |              |  |
| Optical model: | Leire-1-65.rf780d                                                                                          |              |              |  |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.: | 1.65 i0.0099 |  |
| Residual:      | 0.22%                                                                                                      |              |              |  |
| LS 13 320      | Aqueous Liquid Module                                                                                      |              |              |  |
| Start time:    | 2021-04-09 14:04                                                                                           | Run length:  | 60 seconds   |  |
| Pump speed:    | 45                                                                                                         |              |              |  |
| Obscuration:   | 10%                                                                                                        |              |              |  |
| Fluid:         | Water                                                                                                      |              |              |  |
| Software:      | 6.01                                                                                                       | Firmware:    | 4.00         |  |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_105#1_04.\$ls<br>21.0031_105#1_04.\$ls |              |              |
|----------------|------------------------------------------------------------------------------------------------------------|--------------|--------------|
| File ID:       | 21.0031 105#1                                                                                              |              |              |
| Sample ID:     | 21.0031_188463_R2339MC0                                                                                    | 18A 30-31 cm |              |
| Operator:      | MSH                                                                                                        |              |              |
| Run number:    | 4                                                                                                          |              |              |
| Comment 1:     | 0,115 g + disp.middel, spr.vann                                                                            |              |              |
| Comment 2:     | UL- Probe 2 (naken), 5 ampl, 5 min, Leire                                                                  |              |              |
| Optical model: | Leire-1-65.rf780d                                                                                          |              |              |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.: | 1.65 i0.0099 |
| Residual:      | 0.22%                                                                                                      |              |              |
| LS 13 320      | Aqueous Liquid Module                                                                                      |              |              |
| Start time:    | 2021-04-09 14:19                                                                                           | Run length:  | 60 seconds   |
| Pump speed:    | 45                                                                                                         |              |              |
| Obscuration:   | 10%                                                                                                        |              |              |
| Fluid:         | Water                                                                                                      |              |              |
| Software:      | 6.01                                                                                                       | Firmware:    | 4.00         |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_106#1_04.\$ls<br>21.0031_106#1_04.\$ls |              |              |
|----------------|------------------------------------------------------------------------------------------------------------|--------------|--------------|
| File ID:       | 21.0031 106#1                                                                                              |              |              |
| Sample ID:     | 21.0031 118464 R2339018A                                                                                   | 31-32 cm     |              |
| Operator:      | MSH                                                                                                        |              |              |
| Run number:    | 4                                                                                                          |              |              |
| Comment 1:     | 0,115 g + disp.middel, springvann                                                                          |              |              |
| Comment 2:     | UL Probe 2 (naken), 5 ampl, 5 min, Leire                                                                   |              |              |
| Optical model: | Leire-1-65.rf780d                                                                                          |              |              |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.: | 1.65 i0.0099 |
| Residual:      | 0.23%                                                                                                      |              |              |
| LS 13 320      | Aqueous Liquid Module                                                                                      |              |              |
| Start time:    | 2021-04-12 8:55                                                                                            | Run length:  | 60 seconds   |
| Pump speed:    | 45                                                                                                         |              |              |
| Obscuration:   | 10%                                                                                                        |              |              |
| Fluid:         | Water                                                                                                      |              |              |
| Software:      | 6.01                                                                                                       | Firmware:    | 4.00         |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_107#1_04.\$ls<br>21.0031_107#1_04.\$ls |              |              |
|----------------|------------------------------------------------------------------------------------------------------------|--------------|--------------|
| File ID:       | 21.0031 107#1                                                                                              |              |              |
| Sample ID:     | 21.0031_118465_R2339018A                                                                                   | 32-33 cm     |              |
| Operator:      | MSH                                                                                                        |              |              |
| Run number:    | 4                                                                                                          |              |              |
| Comment 1:     | 0,116 g + disp.middel, springvann                                                                          |              |              |
| Comment 2:     | UL Probe 2 (naken), 5 ampl, 5 min, Leire                                                                   |              |              |
| Optical model: | Leire-1-65.rf780d                                                                                          |              |              |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.: | 1.65 i0.0099 |
| Residual:      | 0.22%                                                                                                      |              |              |
| LS 13 320      | Aqueous Liquid Module                                                                                      |              |              |
| Start time:    | 2021-04-12 9:11                                                                                            | Run length:  | 60 seconds   |
| Pump speed:    | 45                                                                                                         |              |              |
| Obscuration:   | 10%                                                                                                        |              |              |
| Fluid:         | Water                                                                                                      |              |              |
| Software:      | 6.01                                                                                                       | Firmware:    | 4.00         |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_108#1_04.\$ls<br>21.0031_108#1_04.\$ls |              |              |
|----------------|------------------------------------------------------------------------------------------------------------|--------------|--------------|
| File ID:       | 21.0031 108#1                                                                                              |              |              |
| Sample ID:     | 21.0031 188466 R2339018A                                                                                   | 33-34 cm     |              |
| Operator:      | MSH                                                                                                        |              |              |
| Run number:    | 4                                                                                                          |              |              |
| Comment 1:     | 0,116 g + disp.middel, springvann                                                                          |              |              |
| Comment 2:     | UL Probe 2 (naken), 5 ampl, 5 min, Leire                                                                   |              |              |
| Optical model: | Leire-1-65.rf780d                                                                                          |              |              |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.: | 1.65 i0.0099 |
| Residual:      | 0.23%                                                                                                      |              |              |
| LS 13 320      | Aqueous Liquid Module                                                                                      |              |              |
| Start time:    | 2021-04-12 9:32                                                                                            | Run length:  | 60 seconds   |
| Pump speed:    | 45                                                                                                         |              |              |
| Obscuration:   | 10%                                                                                                        |              |              |
| Fluid:         | Water                                                                                                      |              |              |
| Software:      | 6.01                                                                                                       | Firmware:    | 4.00         |
|                |                                                                                                            |              |              |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_109#1_04.\$ls<br>21.0031_109#1_04.\$ls |              |              |
|----------------|------------------------------------------------------------------------------------------------------------|--------------|--------------|
| File ID:       | 21.0031 109#1                                                                                              |              |              |
| Sample ID:     | 21.0031_188467_R2339018A                                                                                   | 34-35 cm     |              |
| Operator:      | MSH                                                                                                        |              |              |
| Run number:    | 4                                                                                                          |              |              |
| Comment 1:     | 0,116 g + disp.middel, springvann                                                                          |              |              |
| Comment 2:     | UL Probe 2 (naken), 5 ampl, 5 min, Leire                                                                   |              |              |
| Optical model: | Leire-1-65.rf780d                                                                                          |              |              |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.: | 1.65 i0.0099 |
| Residual:      | 0.22%                                                                                                      |              |              |
| LS 13 320      | Aqueous Liquid Module                                                                                      |              |              |
| Start time:    | 2021-04-12 9:48                                                                                            | Run length:  | 60 seconds   |
| Pump speed:    | 45                                                                                                         |              |              |
| Obscuration:   | 10%                                                                                                        |              |              |
| Fluid:         | Water                                                                                                      |              |              |
| Software:      | 6.01                                                                                                       | Firmware:    | 4.00         |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_110#1_04.\$ls<br>21.0031_110#1_04.\$ls |              |              |
|----------------|------------------------------------------------------------------------------------------------------------|--------------|--------------|
| File ID:       | 21.0031 110#1                                                                                              |              |              |
| Sample ID:     | 21.0031_188468_R2339018A                                                                                   | 35-36 cm     |              |
| Operator:      | MSH                                                                                                        |              |              |
| Run number:    | 4                                                                                                          |              |              |
| Comment 1:     | 0,116 g + disp.middel, springvann                                                                          |              |              |
| Comment 2:     | UL Probe 2 (naken), 5 ampl, 5 min, Leire                                                                   |              |              |
| Optical model: | Leire-1-65.rf780d                                                                                          |              |              |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.: | 1.65 i0.0099 |
| Residual:      | 0.23%                                                                                                      |              |              |
| LS 13 320      | Aqueous Liquid Module                                                                                      |              |              |
| Start time:    | 2021-04-12 10:04                                                                                           | Run length:  | 60 seconds   |
| Pump speed:    | 45                                                                                                         |              |              |
| Obscuration:   | 10%                                                                                                        |              |              |
| Fluid:         | Water                                                                                                      |              |              |
| Software:      | 6.01                                                                                                       | Firmware:    | 4.00         |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_111#1_04.\$ls<br>21.0031_111#1_04.\$ls |              |              |
|----------------|------------------------------------------------------------------------------------------------------------|--------------|--------------|
| File ID:       | 21.0031 111#1                                                                                              |              |              |
| Sample ID:     | 21.0031_188469_R2339018A                                                                                   | 36-37 cm     |              |
| Operator:      | MSH                                                                                                        |              |              |
| Run number:    | 4                                                                                                          |              |              |
| Comment 1:     | 0,116 g + disp.middel, springvann                                                                          |              |              |
| Comment 2:     | UL Probe 2 (naken), 5 ampl, 5 min, Leire                                                                   |              |              |
| Optical model: | Leire-1-65.rf780d                                                                                          |              |              |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.: | 1.65 i0.0099 |
| Residual:      | 0.22%                                                                                                      |              |              |
| LS 13 320      | Aqueous Liquid Module                                                                                      |              |              |
| Start time:    | 2021-04-12 10:18                                                                                           | Run length:  | 60 seconds   |
| Pump speed:    | 45                                                                                                         |              |              |
| Obscuration:   | 10%                                                                                                        |              |              |
| Fluid:         | Water                                                                                                      |              |              |
| Software:      | 6.01                                                                                                       | Firmware:    | 4.00         |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_112#1_04.\$ls<br>21.0031_112#1_04.\$ls |              |              |
|----------------|------------------------------------------------------------------------------------------------------------|--------------|--------------|
| File ID:       | 21.0031 112#1                                                                                              |              |              |
| Sample ID:     | 21.0031_188470_R2339018A                                                                                   | 37-38 cm     |              |
| Operator:      | MSH                                                                                                        |              |              |
| Run number:    | 4                                                                                                          |              |              |
| Comment 1:     | 0,116 g + disp.middel, springvann                                                                          |              |              |
| Comment 2:     | UL Probe 2 (naken), 5 ampl, 5 min, Leire                                                                   |              |              |
| Optical model: | Leire-1-65.rf780d                                                                                          |              |              |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.: | 1.65 i0.0099 |
| Residual:      | 0.22%                                                                                                      |              |              |
| LS 13 320      | Aqueous Liquid Module                                                                                      |              |              |
| Start time:    | 2021-04-12 10:38                                                                                           | Run length:  | 60 seconds   |
| Pump speed:    | 45                                                                                                         |              |              |
| Obscuration:   | 10%                                                                                                        |              |              |
| Fluid:         | Water                                                                                                      |              |              |
| Software:      | 6.01                                                                                                       | Firmware:    | 4.00         |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_113#1_04.\$ls<br>21.0031_113#1_04.\$ls |              |              |
|----------------|------------------------------------------------------------------------------------------------------------|--------------|--------------|
| File ID:       | 21.0031 113#1                                                                                              |              |              |
| Sample ID:     | 21.0031_188471_R2339018A                                                                                   | 38-39 cm     |              |
| Operator:      | MSH                                                                                                        |              |              |
| Run number:    | 4                                                                                                          |              |              |
| Comment 1:     | 0,116 g + disp.middel, springvann                                                                          |              |              |
| Comment 2:     | UL Probe 2 (naken), 5 ampl,                                                                                | 5 min, Leire |              |
| Optical model: | Leire-1-65.rf780d                                                                                          |              |              |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.: | 1.65 i0.0099 |
| Residual:      | 0.23%                                                                                                      |              |              |
| LS 13 320      | Aqueous Liquid Module                                                                                      |              |              |
| Start time:    | 2021-04-12 11:58                                                                                           | Run length:  | 60 seconds   |
| Pump speed:    | 45                                                                                                         |              |              |
| Obscuration:   | 10%                                                                                                        |              |              |
| Fluid:         | Water                                                                                                      |              |              |
| Software:      | 6.01                                                                                                       | Firmware:    | 4.00         |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_114#1_04.\$ls<br>21.0031_114#1_04.\$ls |              |              |  |  |
|----------------|------------------------------------------------------------------------------------------------------------|--------------|--------------|--|--|
| File ID:       | 21.0031_114#1                                                                                              |              |              |  |  |
| Sample ID:     | 21.0031_188472_R2339018A                                                                                   | 39-40 cm     |              |  |  |
| Operator:      | MSH                                                                                                        |              |              |  |  |
| Run number:    | 4                                                                                                          |              |              |  |  |
| Comment 1:     | 0,116 g + disp.middel, springv                                                                             | rann         |              |  |  |
| Comment 2:     | UL Probe 2 (naken), 5 ampl, 5 min, Leire                                                                   |              |              |  |  |
| Optical model: | Leire-1-65.rf780d                                                                                          |              |              |  |  |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.: | 1.65 i0.0099 |  |  |
| Residual:      | 0.22%                                                                                                      |              |              |  |  |
| LS 13 320      | Aqueous Liquid Module                                                                                      |              |              |  |  |
| Start time:    | 2021-04-12 12:17                                                                                           | Run length:  | 60 seconds   |  |  |
| Pump speed:    | 45                                                                                                         |              |              |  |  |
| Obscuration:   | 10%                                                                                                        |              |              |  |  |
| Fluid:         | Water                                                                                                      |              |              |  |  |
| Software:      | 6.01                                                                                                       | Firmware:    | 4.00         |  |  |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_115#1_04.\$ls<br>21.0031_115#1_04.\$ls |              |              |  |  |
|----------------|------------------------------------------------------------------------------------------------------------|--------------|--------------|--|--|
| File ID:       | 21.0031_115#1                                                                                              |              |              |  |  |
| Sample ID:     | 21.0031_188473_R2339018A                                                                                   | 40-41 cm     |              |  |  |
| Operator:      | MSH                                                                                                        |              |              |  |  |
| Run number:    | 4                                                                                                          |              |              |  |  |
| Comment 1:     | 0,116 g + disp.middel, springv                                                                             | ann          |              |  |  |
| Comment 2:     | UL Probe 2 (naken), 5 ampl,                                                                                | 5 min, Leire |              |  |  |
| Optical model: | Leire-1-65.rf780d                                                                                          |              |              |  |  |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.: | 1.65 i0.0099 |  |  |
| Residual:      | 0.22%                                                                                                      |              |              |  |  |
| LS 13 320      | Aqueous Liquid Module                                                                                      |              |              |  |  |
| Start time:    | 2021-04-12 12:35                                                                                           | Run length:  | 60 seconds   |  |  |
| Pump speed:    | 45                                                                                                         |              |              |  |  |
| Obscuration:   | 10%                                                                                                        |              |              |  |  |
| Fluid:         | Water                                                                                                      |              |              |  |  |
| Software:      | 6.01                                                                                                       | Firmware:    | 4.00         |  |  |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_116#1_04.\$ls<br>21.0031_116#1_04.\$ls |              |              |  |  |
|----------------|------------------------------------------------------------------------------------------------------------|--------------|--------------|--|--|
| File ID:       | 21.0031_116#1                                                                                              |              |              |  |  |
| Sample ID:     | 21.0031_188474_R2339018A                                                                                   | 41-42 cm     |              |  |  |
| Operator:      | MSH                                                                                                        |              |              |  |  |
| Run number:    | 4                                                                                                          |              |              |  |  |
| Comment 1:     | 0,116 g + disp.middel, springv                                                                             | ann          |              |  |  |
| Comment 2:     | UL Probe 2 (naken), 5 ampl,                                                                                | 5 min, Leire |              |  |  |
| Optical model: | Leire-1-65.rf780d                                                                                          |              |              |  |  |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.: | 1.65 i0.0099 |  |  |
| Residual:      | 0.22%                                                                                                      |              |              |  |  |
| LS 13 320      | Aqueous Liquid Module                                                                                      |              |              |  |  |
| Start time:    | 2021-04-12 12:48                                                                                           | Run length:  | 60 seconds   |  |  |
| Pump speed:    | 45                                                                                                         |              |              |  |  |
| Obscuration:   | 10%                                                                                                        |              |              |  |  |
| Fluid:         | Water                                                                                                      |              |              |  |  |
| Software:      | 6.01                                                                                                       | Firmware:    | 4.00         |  |  |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_117#1_04.\$ls<br>21.0031_117#1_04.\$ls |              |              |  |  |
|----------------|------------------------------------------------------------------------------------------------------------|--------------|--------------|--|--|
| File ID:       | 21.0031_117#1                                                                                              |              |              |  |  |
| Sample ID:     | 21.0031_188475_R2339018A                                                                                   | 42-43 cm     |              |  |  |
| Operator:      | MSH                                                                                                        |              |              |  |  |
| Run number:    | 4                                                                                                          |              |              |  |  |
| Comment 1:     | 0,116 g + disp.middel, springv                                                                             | ann          |              |  |  |
| Comment 2:     | UL Probe 2 (naken), 5 ampl,                                                                                | 5 min, Leire |              |  |  |
| Optical model: | Leire-1-65.rf780d                                                                                          |              |              |  |  |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.: | 1.65 i0.0099 |  |  |
| Residual:      | 0.22%                                                                                                      |              |              |  |  |
| LS 13 320      | Aqueous Liquid Module                                                                                      |              |              |  |  |
| Start time:    | 2021-04-12 13:09                                                                                           | Run length:  | 61 seconds   |  |  |
| Pump speed:    | 45                                                                                                         |              |              |  |  |
| Obscuration:   | 11%                                                                                                        |              |              |  |  |
| Fluid:         | Water                                                                                                      |              |              |  |  |
| Software:      | 6.01                                                                                                       | Firmware:    | 4.00         |  |  |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_118#1_04.\$ls<br>21.0031_118#1_04.\$ls |              |              |  |  |
|----------------|------------------------------------------------------------------------------------------------------------|--------------|--------------|--|--|
| File ID:       | 21.0031_118#1_                                                                                             |              |              |  |  |
| Sample ID:     | 21.0031_188476_R2339018A                                                                                   | 43-44 cm     |              |  |  |
| Operator:      | MSH                                                                                                        |              |              |  |  |
| Run number:    | 4                                                                                                          |              |              |  |  |
| Comment 1:     | 0,116 g + disp.middel, springv                                                                             | ann          |              |  |  |
| Comment 2:     | UL Probe 2 (naken), 5 ampl,                                                                                | 5 min, Leire |              |  |  |
| Optical model: | Leire-1-65.rf780d                                                                                          |              |              |  |  |
| Fluid R.I.:    | 1.333                                                                                                      | Sample R.I.: | 1.65 i0.0099 |  |  |
| Residual:      | 0.22%                                                                                                      |              |              |  |  |
| LS 13 320      | Aqueous Liquid Module                                                                                      |              |              |  |  |
| Start time:    | 2021-04-12 13:22                                                                                           | Run length:  | 61 seconds   |  |  |
| Pump speed:    | 45                                                                                                         |              |              |  |  |
| Obscuration:   | 10%                                                                                                        |              |              |  |  |
| Fluid:         | Water                                                                                                      |              |              |  |  |
| Software:      | 6.01                                                                                                       | Firmware:    | 4.00         |  |  |



| File name:     | C:\LS13320\Raadata LS 13320 Analyse\2021\Uten PIDS\20210031\21.0031_119_Hynne#1_04.\$ls<br>21.0031_119_Hynne#1_04.\$ls |              |              |
|----------------|------------------------------------------------------------------------------------------------------------------------|--------------|--------------|
| File ID:       | 21.0031_119_Hynne#1                                                                                                    |              |              |
| Sample ID:     | 21.0031 Hynne 40107                                                                                                    |              |              |
| Operator:      | MSH                                                                                                                    |              |              |
| Run number:    | 4                                                                                                                      |              |              |
| Comment 1:     | 0,154 g + disp.middel, springv                                                                                         | vann         |              |
| Comment 2:     | UL Probe 2 (naken), 5 ampl,                                                                                            | 5 min, Leire |              |
| Optical model: | Leire-1-65.rf780d                                                                                                      |              |              |
| Fluid R.I.:    | 1.333                                                                                                                  | Sample R.I.: | 1.65 i0.0099 |
| Residual:      | 0.24%                                                                                                                  |              |              |
| LS 13 320      | Aqueous Liquid Module                                                                                                  |              |              |
| Start time:    | 2021-04-12 13:35                                                                                                       | Run length:  | 60 seconds   |
| Pump speed:    | 45                                                                                                                     |              |              |
| Obscuration:   | 10%                                                                                                                    |              |              |
| Fluid:         | Water                                                                                                                  |              |              |
| Software:      | 6.01                                                                                                                   | Firmware:    | 4.00         |



| File name:     | C:\LS13320\Raadata LS 1332<br>21.0031 120 MINN#1 04.\$ls | 20 Analyse\2021\l | Jten PIDS\20210031\21.0031_120_MINN#1_04.\$ls |
|----------------|----------------------------------------------------------|-------------------|-----------------------------------------------|
| File ID:       | 21.0031_120_MINN#1_                                      |                   |                                               |
| Sample ID:     | 21.0031_MINN_Split 1                                     |                   |                                               |
| Operator:      | MSH                                                      |                   |                                               |
| Run number:    | 4                                                        |                   |                                               |
| Comment 1:     | 0,334 g + disp.middel, Springv                           | vann              |                                               |
| Comment 2:     | UL probe 2 (naken), 5 ampl-5 min,Fraunhofer              |                   |                                               |
| Optical model: | Fraunhofer.rf780d                                        |                   |                                               |
| Residual:      | 0.18%                                                    |                   |                                               |
| LS 13 320      | Aqueous Liquid Module                                    |                   |                                               |
| Start time:    | 2021-04-12 14:05                                         | Run length:       | 60 seconds                                    |
| Pump speed:    | 45                                                       |                   |                                               |
| Obscuration:   | 10%                                                      |                   |                                               |
| Fluid:         | Water                                                    |                   |                                               |
| Software:      | 6.01                                                     | Firmware:         | 4.00                                          |



| Volume Statistics (Arithmetic) 21.0031_120                                                    |                                                                                           | 21.0031_120                                           | )_MINN#1_04.\$ls                                                                     |
|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------|
| Calculations from 0.3                                                                         | 375 µm to 2000 µm                                                                         |                                                       |                                                                                      |
| Volume:<br>Mean:<br>Median:<br>D(3,2):<br>Mean/Median ratio:<br>Mode:<br>Specific Surf. Area: | 100%<br>68.68 μm<br>42.61 μm<br>14.37 μm<br>1.612<br>55.14 μm<br>4174 cm <sup>2</sup> /mL | S.D.:<br>Variance:<br>C.V.:<br>Skewness:<br>Kurtosis: | 103.2 μm<br>10646 μm <sup>2</sup><br>150%<br>5.146 Right skewed<br>35.11 Leptokurtic |
| d <sub>10</sub> : 8.161 µm                                                                    | d <sub>50</sub> : 42.6                                                                    | 1 µm                                                  | d <sub>90</sub> : 133.8 μm                                                           |
| <10% <25%<br>8.161 µm 19.80                                                                   | <50%<br>μm 42.61 μm                                                                       | <75%<br>77.94 μm                                      | <90%<br>133.8 μm                                                                     |

| File name:     | C:\LS13320\Raadata LS 1332<br>21.0031_121_TANA#1_04.\$ls | ?0 Analyse∖2021∖l<br>s | Jten PIDS\20210031\21.0031_121_TANA#1_04.\$Is |  |
|----------------|----------------------------------------------------------|------------------------|-----------------------------------------------|--|
| File ID:       | 21.0031_121_TANA#1_                                      |                        |                                               |  |
| Sample ID:     | 21.0031 TANA (3)                                         |                        |                                               |  |
| Operator:      | MSH                                                      |                        |                                               |  |
| Run number:    | 4                                                        |                        |                                               |  |
|                | Control Sample                                           |                        |                                               |  |
| Comment 1:     | 0,140 g + disp.middel, Springvann                        |                        |                                               |  |
| Comment 2:     | ultralyd, Probe 2 (naken), 5 ampl-5 min                  |                        |                                               |  |
| Optical model: | Fraunhofer.rf780d                                        |                        |                                               |  |
| Residual:      | 0.26%                                                    |                        |                                               |  |
| LS 13 320      | Aqueous Liquid Module                                    |                        |                                               |  |
| Start time:    | 2021-04-12 8:38                                          | Run length:            | 60 seconds                                    |  |
| Pump speed:    | 45                                                       |                        |                                               |  |
| Obscuration:   | 10%                                                      |                        |                                               |  |
| Fluid:         | Water                                                    |                        |                                               |  |
| Software:      | 6.01                                                     | Firmware:              | 4.00                                          |  |







### INSTRUMENT: Forbrenningsovn Leco SC-632

METODER: Bestemmelse av totalt karbon (TC) (LABdok\_G03) Bestemmelse av totalt organisk karbon (TOC) (LABdok\_G04) Bestemmelse av totalt svovel (TS) (LABdok\_G05)

### I) TOTALT KARBON (TC)

| Analyseusikkerhet     |              |  |  |  |
|-----------------------|--------------|--|--|--|
| Måleområde Usikkerhet |              |  |  |  |
| 0.06 - 0.4 vekt%      | ± 0.06 vekt% |  |  |  |
| 0.4 - 60 vekt%        | ± 15 % rel.  |  |  |  |
| 60 - 100 vekt%*       | ± 15 % rel.* |  |  |  |

# II) TOTALT SVOVEL (TS)

Nedre bestemmelsesgrense [vekt% TS]: 0.02

| Analyseusikkerhet     |             |  |  |  |
|-----------------------|-------------|--|--|--|
| Måleområde Usikkerhet |             |  |  |  |
| 0.02 - 2.0 vekt%      | ± 30 % rel. |  |  |  |
| 2.0 - 52 vekt%        | ± 20 % rel. |  |  |  |

### III) TOTALT ORGANISK KARBON (TOC)

Nedre bestemmelsesgrense [vekt% TOC]: 0.1

| Analyseusikker  | het          |
|-----------------|--------------|
| Måleområde      | Usikkerhet   |
| 0.1 - 3.0 vekt% | ± 25 % rel.  |
| 3.0 - 60 vekt%  | ± 20 % rel.  |
| 60 - 100 vekt%* | ± 20 % rel.* |

\*Metoden som benyttes for konsentrasjonsområdet 60 - 100 vekt% karbon omfattes ikke av akkrediteringen. For andre unntak se Anmerkninger

# Oppgitte usikkerheter har dekningsfaktor 2 (2 standardavvik), noe som tilsvarer et konfidensintervall på 95 %.

PRESISJON: Det analyseres rutinemessig kontrollprøver som føres i kontrolldiagram (X-diagram). Disse kan forevises om ønskelig.

Analysekontrakt nr.: 2021.0031 Prøvematerial: GEOLOGISK MATERIALE

Antall prøver: 121

Anmerkninger: Svovel (TS) ble reanalysert grunnet et instrumentproblem (jfr. Avvik 1137)

Delrapport med forside ("Forside\_TC-TS-TOC") og sider med analysedata ("TC-TS-TOC"). Fullstendig analyserapport finnes kun i papirformat. Gjengivelse av analysedata skal skje på en slik måte at meningsinnholdet i rapporten ikke endres.

Merk! Data i rapporten er skrivebeskyttet

Analyser fullført dato: 03.05.2021

**Operatør:** Anne Nordtømme / Clea Fabian



· NGU -

Leiv Eirikssons vei 39 NO - 7040 Trondheim

Tlf.: 73 90 40 00 E-post: lab@ngu.no



|        |                       | TS      | тс      | TOC     |
|--------|-----------------------|---------|---------|---------|
| NGU-nr | Prøve ID              | [vekt%] | [vekt%] | [vekt%] |
| Hynne  | Hynne                 | 0.0561  | 0.926   | 0.430   |
| Minn   | Minn                  | < 0.02  | 0.738   | 0.394   |
| Tana   | Tana                  | < 0.02  | < 0.06  | < 0.1   |
| 188003 | R2132MC006A 0-1 cm    | 0.0479  | 1.18    | 0.317   |
| 188042 | R2139MC008A 0-1 cm    | 0.110   | 2.24    | 0.563   |
| 188044 | R2139MC008A 2-3 cm    | 0.0854  | 2.33    | 0.599   |
| 188046 | R2139CMC008A 4-5 cm   | 0.0835  | 2.29    | 0.562   |
| 188051 | R2139CMC008A 9-10 cm  | 0.0672  | 2.34    | 0.515   |
| 188056 | R2139CMC008A 14-15 cm | 0.0522  | 2.26    | 0.431   |
| 188066 | R2139CMC008A 24-25 cm | 0.0770  | 2.47    | 0.425   |
| 188070 | R2139CMC008A 28-29 cm | 0.0698  | 2.28    | 0.370   |
| 188076 | R2183MC009A 0-1 cm    | 0.158   | 2.71    | 0.897   |
| 188078 | R2183MC009A 2-3 cm    | 0.108   | 2.67    | 0.831   |
| 188080 | R2183MC009A 4-5 cm    | 0.0920  | 2.74    | 0.754   |
| 188085 | R2183MC009A 9-10 cm   | 0.0911  | 2.70    | 0.747   |
| 188090 | R2183MC009A 14-15 cm  | 0.0761  | 2.68    | 0.699   |
| 188100 | R2183MC009A 24-25 cm  | 0.0794  | 2.53    | 0.580   |
| 188110 | R2183MC009A 34-35 cm  | 0.0863  | 2.67    | 0.570   |
| 188123 | R2229MC010A 0-1 cm    | 0.106   | 2.50    | 0.629   |
| 188125 | R2229MC010A 2-3 cm    | 0.0743  | 2.29    | 0.543   |
| 188127 | R2229MC010A 4-5 cm    | 0.0768  | 2.34    | 0.506   |
| 188132 | R2229MC010A 9-10 cm   | 0.0687  | 2.56    | 0.533   |
| 188137 | R2229MC010A 14-15 cm  | 0.0583  | 2.41    | 0.455   |
| 188147 | R2229MC010A 24-25 cm  | 0.0623  | 1.90    | 0.332   |
| 188153 | R2229MC010A 30-31 cm  | 0.0567  | 1.45    | 0.239   |
| Hynne  | Hynne                 | 0.0494  | 0.900   | 0.492   |
| Minn   | Minn                  | < 0.02  | 0.715   | 0.395   |
| 188164 | R2242MC012A 0-1 cm    | 0.163   | 3.36    | 0.742   |
| 188166 | R2242MC012A 2-3 cm    | 0.123   | 3.30    | 0.679   |
| 188168 | R2242MC012A 4-5 cm    | 0.113   | 3.30    | 0.662   |
| 188173 | R2242MC012A 9-10 cm   | 0.115   | 3.44    | 0.602   |
| 188178 | R2242MC012A 14-15 cm  | 0.0865  | 3.30    | 0.545   |
| 188188 | R2242MC012A 24-25 cm  | 0.0826  | 2.87    | 0.500   |
| 188202 | R2242MC012A 38-39 cm  | 0.0737  | 2.23    | 0.408   |



· NGU -

Leiv Eirikssons vei 39 NO - 7040 Trondheim

NORGES GEOLOGISKE UNDERSØKELSE TIf.: 73 90 40 00 E-post: lab@ngu.no



|        |                      | TS      | тс      | TOC     |
|--------|----------------------|---------|---------|---------|
| NGU-nr | Prøve ID             | [vekt%] | [vekt%] | [vekt%] |
| 188208 | R2270MC013A 0-1 cm   | 0.138   | 2.59    | 0.577   |
| 188210 | R2270MC013A 2-3 cm   | 0.0941  | 2.44    | 0.543   |
| 188212 | R2270MC013A 4-5 cm   | 0.0771  | 2.30    | 0.472   |
| 188217 | R2270MC013A 9-10 cm  | 0.120   | 1.61    | 0.480   |
| 188222 | R2270MC013A 14-15 cm | 0.0938  | 1.44    | 0.422   |
| 188232 | R2270MC013A 24-25 cm | 0.161   | 1.24    | 0.529   |
| 188241 | R2270MC013A 32-33 cm | 0.252   | 1.32    | 0.674   |
| 188246 | R2276MC014A 0-1 cm   | 0.146   | 3.17    | 0.711   |
| 188248 | R2276MC014A 2-3 cm   | 0.116   | 3.06    | 0.690   |
| 188250 | R2276MC014A 4-5 cm   | 0.112   | 3.01    | 0.658   |
| 188255 | R2276MC014A 9-10 cm  | 0.0951  | 3.25    | 0.683   |
| 188260 | R2276MC014A 14-15 cm | 0.105   | 3.13    | 0.680   |
| 188270 | R2276MC014A 24-25 cm | 0.0943  | 3.08    | 0.609   |
| 188289 | R2276MC014A 43-44 cm | 0.0855  | 2.68    | 0.511   |
| 188293 | R2279BC060 0-1 cm    | 0.114   | 2.65    | 0.648   |
| 188294 | R2289MC015A 0-1 cm   | 0.156   | 3.08    | 0.765   |
| Hynne  | Hynne                | 0.0385  | 0.999   | 0.417   |
| Minn   | Minn                 | < 0.02  | 0.712   | 0.405   |
| Tana   | Tana                 | < 0.02  | < 0.06  | < 0.1   |
| 188339 | R2326GR104 0-1 cm    | 0.142   | 3.25    | 0.799   |
| 188340 | R2331MC016A 0-1 cm   | 0.186   | 3.29    | 0.909   |
| 188381 | R2338MC017A 0-1 cm   | 0.165   | 3.14    | 0.750   |
| 188383 | R2338MC017A 2-3 cm   | 0.112   | 2.95    | 0.667   |
| 188385 | R2338MC017A 4-5 cm   | 0.108   | 3.09    | 0.700   |
| 188390 | R2338MC017A 9-10 cm  | 0.0944  | 3.08    | 0.692   |
| 188395 | R2338MC017A 14-15 cm | 0.0973  | 3.15    | 0.681   |
| 188405 | R2338MC017A 24-25 cm | 0.0874  | 3.09    | 0.651   |
| 188428 | R2338MC017A 47-48 cm | 0.0947  | 2.80    | 0.547   |
| 188486 | R2354GR125 0-1 cm    | 0.154   | 2.84    | 0.632   |
| 188487 | R2359GR129 0-1 cm    | 0.120   | 3.03    | 0.585   |
| 188488 | R2363MC019A 0-1 cm   | 0.134   | 3.21    | 0.573   |
| 188490 | R2363MC019A 2-3 cm   | 0.0978  | 3.13    | 0.538   |
| 188492 | R2363MC019A 4-5 cm   | 0.0856  | 3.19    | 0.525   |
| 188497 | R2363MC019A 9-10 cm  | 0.0689  | 3.14    | 0.491   |



Leiv Eirikssons vei 39 NO - 7040 Trondheim

Tlf.: 73 90 40 00 E-post: lab@ngu.no



|        |                      | TS      | тс      | тос     |
|--------|----------------------|---------|---------|---------|
| NGU-nr | Prøve ID             | [vekt%] | [vekt%] | [vekt%] |
| 188502 | R2363MC019A 14-15 cm | 0.0743  | 3.18    | 0.444   |
| 188512 | R2363MC019A 24-25 cm | 0.0793  | 2.37    | 0.433   |
| 188525 | R2363MC019A 37-38 cm | 0.161   | 1.47    | 0.580   |
| 188531 | R2365GR141 0-1 cm    | 0.144   | 3.36    | 0.663   |
| Hynne  | Hynne                | 0.0517  | 0.977   | 0.405   |
| Minn   | Minn                 | < 0.02  | 0.742   | 0.409   |
| 188433 | R2339MC018A 0-1 cm   | 0.153   | 3.12    | 0.757   |
| 188434 | R2339MC018A 1-2 cm   | 0.143   | 3.01    | 0.730   |
| 188435 | R2339MC018A 2-3 cm   | 0.118   | 2.95    | 0.732   |
| 188436 | R2339MC018A 3-4 cm   | 0.132   | 3.08    | 0.728   |
| 188437 | R2339MC018A 4-5 cm   | 0.140   | 2.93    | 0.714   |
| 188438 | R2339MC018A 5-6 cm   | 0.124   | 2.92    | 0.696   |
| 188439 | R2339MC018A 6-7 cm   | 0.122   | 3.04    | 0.706   |
| 188440 | R2339MC018A 7-8 cm   | 0.115   | 3.10    | 0.675   |
| 188441 | R2339MC018A 8-9 cm   | 0.108   | 3.14    | 0.672   |
| 188442 | R2339MC018A 9-10 cm  | 0.107   | 3.10    | 0.665   |
| 188443 | R2339MC018A 10-11 cm | 0.103   | 3.33    | 0.668   |
| 188444 | R2339MC018A 11-12 cm | 0.105   | 3.22    | 0.677   |
| 188445 | R2339MC018A 12-13 cm | 0.109   | 3.21    | 0.664   |
| 188446 | R2339MC018A 13-14 cm | 0.100   | 3.36    | 0.656   |
| 188447 | R2339MC018A 14-15 cm | 0.102   | 3.21    | 0.546   |
| 188448 | R2339MC018A 15-16 cm | 0.0954  | 3.15    | 0.625   |
| 188449 | R2339MC018A 16-17 cm | 0.103   | 3.15    | 0.621   |
| 188450 | R2339MC018A 17-18 cm | 0.105   | 3.02    | 0.645   |
| 188451 | R2339MC018A 18-19 cm | 0.113   | 3.04    | 0.645   |
| 188452 | R2339MC018A 19-20 cm | 0.114   | 3.03    | 0.638   |
| 188453 | R2339MC018A 20-21 cm | 0.111   | 3.07    | 0.634   |
| 188454 | R2339MC018A 21-22 cm | 0.121   | 3.09    | 0.630   |
| 188455 | R2339MC018A 22-23 cm | 0.115   | 3.08    | 0.618   |
| 188456 | R2339MC018A 23-24 cm | 0.127   | 3.02    | 0.614   |
| 188457 | R2339MC018A 24-25 cm | 0.125   | 3.08    | 0.607   |
| 188458 | R2339MC018A 25-26 cm | 0.104   | 3.11    | 0.612   |
| 188459 | R2339MC018A 26-27 cm | 0.105   | 3.03    | 0.611   |
| 188460 | R2339MC018A 27-28 cm | 0.110   | 3.03    | 0.620   |



· NGU -

Leiv Eirikssons vei 39 NO - 7040 Trondheim

Tlf.: 73 90 40 00 E-post: lab@ngu.no



|        |                      | TS      | тс      | TOC     |
|--------|----------------------|---------|---------|---------|
| NGU-nr | Prøve ID             | [vekt%] | [vekt%] | [vekt%] |
| 188461 | R2339MC018A 28-29 cm | 0.111   | 3.07    | 0.624   |
| 188462 | R2339MC018A 29-30 cm | 0.103   | 3.10    | 0.627   |
| 188463 | R2339MC018A 30-31 cm | 0.103   | 3.19    | 0.624   |
| 188464 | R2339MC018A 31-32 cm | 0.103   | 3.07    | 0.601   |
| 188465 | R2339MC018A 32-33 cm | 0.106   | 3.07    | 0.610   |
| 188466 | R2339MC018A 33-34 cm | 0.104   | 3.07    | 0.613   |
| 188467 | R2339MC018A 34-35 cm | 0.0829  | 3.04    | 0.596   |
| 188468 | R2339MC018A 35-36 cm | 0.101   | 3.01    | 0.603   |
| 188469 | R2339MC018A 36-37 cm | 0.109   | 3.03    | 0.599   |
| 188470 | R2339MC018A 37-38 cm | 0.114   | 2.99    | 0.569   |
| 188471 | R2339MC018A 38-39 cm | 0.101   | 2.97    | 0.558   |
| 188472 | R2339MC018A 39-40 cm | 0.0984  | 2.99    | 0.565   |
| 188473 | R2339MC018A 40-41 cm | 0.0979  | 2.96    | 0.562   |
| 188474 | R2339MC018A 41-42 cm | 0.103   | 3.05    | 0.588   |
| 188475 | R2339MC018A 42-43 cm | 0.0957  | 3.07    | 0.595   |
| 188476 | R2339MC018A 43-44 cm | 0.110   | 2.98    | 0.590   |
| Hynne  | Hynne                | 0.0643  | 0.915   | 0.406   |
| Minn   | Minn                 | < 0.02  | 0.720   | 0.411   |
| Tana   | Tana                 | < 0.02  | < 0.06  | < 0.1   |



GEOLOGISKE

UNDERSØKELSE

Leiv Eirikssons vei 39 NO - 7040 Trondheim Tlf.: 73 90 40 00 E-post: lab@ngu.no

#### **INSTRUMENT: ICP-OES Agilent 5110 VDV**

METODE: LABdok\_G09: Analyse av kationer i geologiske materialer basert på ICP-OES metode og oppslutning i autoklav etter NS-4770 Prøveframstilling følger prosedyre i LABdok\_P03: Framstilling av analyseløsninger etter partiell oppslutning i salpetersyre iht. NS-4770. Merk! Dette er en partielloppslutningsmetode og rapporterte verdier representerer ikke totalt innhold i prøvene.

|                                          | Al                   | As      | В                    | Ba                   | Be      | Са          | Cd       | Ce      | Со      | Cr       | Cu     | Fe                   | K                    | La     | Li                   |
|------------------------------------------|----------------------|---------|----------------------|----------------------|---------|-------------|----------|---------|---------|----------|--------|----------------------|----------------------|--------|----------------------|
| LLQ prøve <sup>1)</sup> (mg/kg)          | 20                   | 2       | 10                   | 1                    | 0.1     | 200         | 0.1      | 3       | 1       | 1        | 1      | 3                    | 100                  | 0.5    | 0.5                  |
| Høyeste målegrense <sup>1)</sup> (mg/kg) | 30000                | 1000    | 1000                 | 2000                 | 500     | 300000      | 200      | 1000    | 1000    | 1000     | 1000   | 50000                | 20000                | 1000   | 1000                 |
| Måleområde <sup>1)</sup> 1 (mg/kg)       | 20-100               | 2-10    | 10-50                | 1-5                  | 0.1-1   | 200-1000    | 0.1-1    | 3-30    | 1-5     | 1-5      | 1-5    | 3-30                 | 100-500              | 0.5-5  | 0.5-2.5              |
| Analyseusikkerhet <sup>2)</sup> 1 (rel.) | 25 %                 | 50 %    | 25 %                 | 25 %                 | 25 %    | 25 %        | 25 %     | 25 %    | 50 %    | 25 %     | 25 %   | 25 %                 | 25 %                 | 25 %   | 25 %                 |
| Måleområde <sup>1)</sup> 2 (mg/kg)       | 100-30000            | 10-1000 | 50-1000              | 5-2000               | 1-500   | 1000-300000 | 1-200    | 30-1000 | 5-1000  | 5-1000   | 5-1000 | 30-50000             | 500-20000            | 5-1000 | 2.5-1000             |
| Analyseusikkerhet <sup>2)</sup> 2 (rel.) | 10 %                 | 20 %    | 10 %                 | 10 %                 | 10 %    | 10 %        | 10 %     | 10 %    | 20 %    | 10 %     | 10 %   | 10 %                 | 10 %                 | 10 %   | 10 %                 |
| Omfattes av akkreditering <sup>3)</sup>  | JA                   | JA      | JA                   | Delvis <sup>3)</sup> | JA      | JA          | JA       | JA      | JA      | JA       | JA     | JA                   | Delvis <sup>3)</sup> | JA     | JA                   |
|                                          | Mn                   | Мо      | Na                   | Ni                   | Р       | Pb          | S        | Sc      | Se      | Si       | Sr     | Ti                   | V                    | Y      | Zn                   |
| LLQ prøve <sup>1)</sup> (mg/kg)          | 0.5                  | 1       | 200                  | 1                    | 10      | 2           | 10       | 0.1     | 10      | 200      | 1      | 1                    | 1                    | 0.1    | 4                    |
| Høyeste målegrense <sup>1)</sup> (mg/kg) | 4000                 | 1000    | 50000                | 1000                 | 2000    | 1000        | 10000    | 1000    | 1000    | 5000     | 1000   | 4000                 | 1000                 | 1000   | 2000                 |
| Måleområde <sup>1)</sup> 1 (mg/kg)       | 0.5-2.5              | 1-5     | 200-1000             | 1-5                  | 10-50   | 2-10        | 10-50    | 0.1-1   | 10-50   | 200-500  | 1-5    | 1-5                  | 1-5                  | 0.1-1  | 4-20                 |
| Analyseusikkerhet <sup>2)</sup> 1 (rel.) | 25 %                 | 50 %    | 25 %                 | 25 %                 | 50 %    | 25 %        | 50 %     | 25 %    | 50 %    | 25 %     | 25 %   | 50 %                 | 50 %                 | 25 %   | 37.5 %               |
| Måleområde <sup>1)</sup> 2 (mg/kg)       | 2.5-4000             | 5-1000  | 1000-50000           | 5-1000               | 50-2000 | 10-1000     | 50-10000 | 1-1000  | 50-1000 | 500-5000 | 5-1000 | 5-4000               | 5-1000               | 1-1000 | 20-2000              |
| Analyseusikkerhet <sup>2)</sup> 2 (rel.) | 10 %                 | 20 %    | 10 %                 | 10 %                 | 20 %    | 10 %        | 10 %     | 10 %    | 20 %    | 10 %     | 10 %   | 20 %                 | 20 %                 | 10 %   | 15 %                 |
| Omfattes av akkreditering <sup>3)</sup>  | Delvis <sup>3)</sup> | JA      | Delvis <sup>3)</sup> | JA                   | JA      | JA          | nei      | JA      | nei     | nei      | JA     | Delvis <sup>3)</sup> | JA                   | JA     | Delvis <sup>3)</sup> |

# Nedre bestemmelsesgrenser (LLQ<sup>1)</sup>), måleområder<sup>1)</sup> og analyseusikkerheter<sup>2)</sup>

<sup>7</sup> Angitte LLQ-verdier og måleområder er for fortynningsgrad 100X. For analyser med andre fortynningsfaktorer blir deteksjonsgrensene automatisk omregnet.

<sup>2)</sup> Oppgitte usikkerheter har dekningsfaktor 2 (2 standardavvik), noe som tilsvarer et konfidensintervall på 95 %.

<sup>3)</sup> Akkreditert måleområde (mg/kg) er hhv: 1000 (Ba, Mn, Ti, Zn); 10000 (K) og 20000 (Mg og Na). For andre unntak se Anmerkninger

Presisjon: Kontrollprøver analyseres rutinemessig. For utfyllende informasjon om rutinene for kvalitetssikring kontaktes laboratoriet.

Analysekontrakt nr.: 2021.0031

Prøvematerial: GEOLOGISK MATERIALE

Antall prøver: 121

Anmerkninger: Ingen

Delrapport med forside ("Forside\_ICP-OES") og sider med analysedata ("Data\_ICP-OES"). Fullstendig analyserapport finnes kun i papirformat. Gjengivelse av analysedata skal skje på en slik måte at meningsinnholdet i rapporten ikke endres.

Merk! Data i rapporten er skrivebeskyttet!

**Oppslutning fullført dato:** 09,04,2021

Oppslutning fullført av: Clea Fabian



GEOLOGISKE

UNDERSØKELSE

Leiv Eirikssons vei 39 NO - 7040 Trondheim Tlf.: 73 90 40 00 E-post: lab@ngu.no

# **INSTRUMENT: ICP-OES Agilent 5110 VDV**

METODE: LABdok\_G09: Analyse av kationer i geologiske materialer basert på ICP-OES metode og oppslutning i autoklav etter NS-4770

Prøveframstilling følger prosedyre i LABdok\_P03: Framstilling av analyseløsninger etter partiell oppslutning i salpetersyre iht. NS-4770. Analyser fullført dato: 05,05,2021 Analyser og rapportert av: Ruikai Xie



Bestemmelse av kationer, ICP-OES metode (LABdok\_G09) GEOLOGISK MATERIALE ANALYSEKONTRAKTNR. 2021.0031





Bestemmelse av kationer, ICP-OES metode (LABdok\_G09) GEOLOGISK MATERIALE ANALYSEKONTRAKTNR. 2021.0031



· NGU -

Leiv Eirikssons vei 39

 NO - 7040 Trondheim

 NORGES
 Tlf.: 73 90 40 00

 GEOLOGISKE
 E-post: lab@ngu.no

### Bestemmelse av kationer, ICP-OES metode (LABdok\_G09) GEOLOGISK MATERIALE ANALYSEKONTRAKTNR. 2021.0031



| Hynne         Hynne <th< th=""><th>NGU_nr</th><th>IPrøve ID</th><th>Al<br/>ma/ka</th><th>As<br/>ma/ka</th><th>B<br/>ma/ka</th><th>Ba<br/>mg/kg</th><th>Be<br/>ma/kal</th><th>Ca<br/>mg/kgl</th><th>Cd<br/>ma/ka</th><th>Ce<br/>ma/ka</th><th>Co<br/>ma/ka</th><th>Cr<br/>ma/ka</th><th>Cu<br/>ma/kal</th><th>Fe<br/>ma/kal</th><th>K<br/>ma/kal</th><th>La<br/>mg/kgl</th><th>Li<br/>ma/kal</th><th>Mg<br/>ma/ka</th></th<>                                                                                                         | NGU_nr | IPrøve ID             | Al<br>ma/ka | As<br>ma/ka | B<br>ma/ka | Ba<br>mg/kg | Be<br>ma/kal | Ca<br>mg/kgl | Cd<br>ma/ka | Ce<br>ma/ka | Co<br>ma/ka | Cr<br>ma/ka  | Cu<br>ma/kal | Fe<br>ma/kal | K<br>ma/kal | La<br>mg/kgl | Li<br>ma/kal | Mg<br>ma/ka |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------|-------------|-------------|------------|-------------|--------------|--------------|-------------|-------------|-------------|--------------|--------------|--------------|-------------|--------------|--------------|-------------|
| Min         Min         Trano         Los         Los </td <td>Hynne</td> <td>Hyppe</td> <td>21100</td> <td>1.6</td> <td>20</td> <td>8/1 1</td> <td>0.56</td> <td>10/00</td> <td>&lt;0 1</td> <td>50 1</td> <td>12.0</td> <td>62 Q</td> <td>20.8</td> <td>30600</td> <td>7560</td> <td>25.0</td> <td>27.5</td> <td>15100</td>                                                                                                                                                                                                                                                                                                           | Hynne  | Hyppe                 | 21100       | 1.6         | 20         | 8/1 1       | 0.56         | 10/00        | <0 1        | 50 1        | 12.0        | 62 Q         | 20.8         | 30600        | 7560        | 25.0         | 27.5         | 15100       |
| Tane         Tane <th< td=""><td>Minn</td><td>Minn</td><td>17900</td><td>4.0<br/>&lt;2</td><td>&lt;10</td><td>57.2</td><td>0.30</td><td>1150</td><td>&lt;0.1</td><td>28.1</td><td>10.5</td><td>23.8</td><td>20.0</td><td>32400</td><td>6110</td><td>25.0<br/>15.6</td><td>16.5</td><td>6480</td></th<>                                                                                                                                                                                                                                                                | Minn   | Minn                  | 17900       | 4.0<br><2   | <10        | 57.2        | 0.30         | 1150         | <0.1        | 28.1        | 10.5        | 23.8         | 20.0         | 32400        | 6110        | 25.0<br>15.6 | 16.5         | 6480        |
| Ham         Particity         Partity         Partity         Partity<                                                                                                                                                                                                                                                                                                                                                                                    | Tana   | Tana                  | 17000       | -2          | <10        | 155         | 1 55         | 2070         | <0.1        | 80.5        | 15.5        | 13.3         | 4.6          | 21100        | 6330        | 10.0         | 22.6         | 10200       |
| Dackson                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 188003 | R2132MC006A 0-1 cm    | 6190        | 27          | 25         | 50.0        | 0.34         | 31600        | <0.1        | 32.6        | 4.0         | 40.0<br>15.4 | 4.0          | 11100        | 2490        | 14 1         | 7 78         | 4320        |
| Non-construction       Non-construction <th< td=""><td>188042</td><td>B2139MC008A 0-1 cm</td><td>12300</td><td>3.8</td><td>43</td><td>97.6</td><td>0.58</td><td>58100</td><td>&lt;0.1</td><td>43.2</td><td>4.0<br/>6.6</td><td>26.6</td><td>9.7</td><td>17200</td><td>4720</td><td>18.8</td><td>16.9</td><td>8450</td></th<> | 188042 | B2139MC008A 0-1 cm    | 12300       | 3.8         | 43         | 97.6        | 0.58         | 58100        | <0.1        | 43.2        | 4.0<br>6.6  | 26.6         | 9.7          | 17200        | 4720        | 18.8         | 16.9         | 8450        |
| BaseAie         P2139CMC008A 4-5 cm         1200         2.5         4.4         90.8         0.7         77.8         8.3         31.1         2000         52.1         20.5         19.5         881           188066         R2139CMC008A 4-5 cm         12000         2.2         4.1         62.0         0.61         59700         4.1         45.5         5.2         2.7         9.4         1600         4330         13.4         1000         5020         2.0.5         17.7         7.7           188066         R2139CMC008A 24-25 cm         12400         3.5         3.7         53.1         0.58         64100         0.10         47.4         6.8         2.8.0         9.4         17400         5020         2.0         2.7         11.1         17400         5.0         2.0         2.1         5.2.7         11.1         17400         5.0         1.0.8         1.0.8         1.0.1         6200         0.11         52.0         1.0.5         4.0.8         0.0.1         5.0         1.0.8         1.0.8         1.0.8         1.0.8         1.0.8         1.0.8         1.0.8         1.0.8         1.0.8         1.0.8         1.0.8         1.0.8         1.0.8         1.0.8         1.0.8         1.0.8 <td>188044</td> <td>R2139MC008A 2-3 cm</td> <td>13500</td> <td>5.0</td> <td>40</td> <td>135</td> <td>0.00</td> <td>59200</td> <td>&lt;0.1</td> <td>46.8</td> <td>7.7</td> <td>20.0</td> <td>11 1</td> <td>19200</td> <td>5070</td> <td>20.0</td> <td>19.0</td> <td>8790</td>                                                                                                                                                                                                                                                         | 188044 | R2139MC008A 2-3 cm    | 13500       | 5.0         | 40         | 135         | 0.00         | 59200        | <0.1        | 46.8        | 7.7         | 20.0         | 11 1         | 19200        | 5070        | 20.0         | 19.0         | 8790        |
| Name         Res         Res <td>188046</td> <td>R2139CMC008A 4-5 cm</td> <td>14000</td> <td>5.5</td> <td>44</td> <td>90.8</td> <td>0.00</td> <td>57800</td> <td>&lt;0.1</td> <td>40.0</td> <td>8.8</td> <td>30.3</td> <td>11.4</td> <td>20000</td> <td>5210</td> <td>20.0</td> <td>19.5</td> <td>8910</td>                                                                                                                                                                                                                                                                                                     | 188046 | R2139CMC008A 4-5 cm   | 14000       | 5.5         | 44         | 90.8        | 0.00         | 57800        | <0.1        | 40.0        | 8.8         | 30.3         | 11.4         | 20000        | 5210        | 20.0         | 19.5         | 8910        |
| Name         Result         Result <td>188051</td> <td>R2139CMC008A 9-10 cm</td> <td>12900</td> <td>2.2</td> <td>41</td> <td>62.0</td> <td>0.61</td> <td>59700</td> <td>&lt;0.1</td> <td>45.8</td> <td>6.0</td> <td>28.2</td> <td>10.2</td> <td>18000</td> <td>5010</td> <td>19.4</td> <td>18.1</td> <td>8360</td>                                                                                                                                                                                        | 188051 | R2139CMC008A 9-10 cm  | 12900       | 2.2         | 41         | 62.0        | 0.61         | 59700        | <0.1        | 45.8        | 6.0         | 28.2         | 10.2         | 18000        | 5010        | 19.4         | 18.1         | 8360        |
| Name       Relage MC008A 24-25 cm       1240       35       37       53.1       0.00       0.10       4.1       6.0       1.10       0.00       1.10       0.00       1.10       0.00       1.10       0.00       1.10       0.00       1.10       0.00       0.00       0.00       0.10       4.1       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 188056 | R2139CMC008A 14-15 cm | 12000       | 2.2         | 38         | 53.9        | 0.58         | 61100        | 0.12        | 45.5        | 5.9         | 26.2         | 9.4          | 16600        | 4830        | 19.4         | 17.5         | 771         |
| Name       R2139CMC008A 28-29 cm       12900       3.0       3.7       54.5       0.6       1200       0.0       1740       502       1200       18.2       8111         188076       R2133MC009A 4.5 cm       11200       5.8       5.9       113       0.81       62100       0.11       52.0       10.5       40.8       15.1       24400       6940       22.0       2.4.7       12100         188076       R2133MC009A 4.5 cm       11800       8.5       5.8       112       0.82       63400       0.11       53.0       8.9       1.1       15.4       26100       7090       23.2       25.3       1130         188086       R2183MC009A 4.5 cm       1700       2.6       54       83.2       0.81       68300       -0.1       52.1       8.6       39.6       1.4.1       24.40       6930       22.3       2.3       2.4       10500         188000       R2183MC009A 34.35 cm       1700       2.9       49       67.7       0.75       66500       -0.1       52.7       8.3       38.5       13.3       22400       670       22.3       2.3       2.3       10301         18810       R2183MC009A 34.35 cm       17400       2.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 188066 | R2139CMC008A 24-25 cm | 12400       | 3.5         | 37         | 53.1        | 0.58         | 64100        | <0.1        | 46.2        | 6.6         | 27.2         | 9.1          | 17200        | 4840        | 19.7         | 17.5         | 7800        |
| Ratio       R2183MC009A 0-1 cm       18200       5.8       6.10       6.10       6.10       6.10       6.10       6.10       6.10       6.10       6.10       6.10       6.10       6.10       6.10       6.10       6.10       6.10       6.10       6.10       6.10       6.10       6.10       6.10       6.10       6.10       6.10       6.10       6.10       6.10       6.10       6.10       6.10       6.10       6.10       6.10       6.10       6.10       6.10       6.10       6.10       6.10       6.10       6.10       6.10       6.10       6.10       6.10       6.10       6.10       6.10       6.10       6.10       6.10       6.10       6.10       6.10       6.10       6.10       6.10       6.10       6.10       6.10       6.10       6.10       6.10       6.10       6.10       6.10       6.10       6.10       6.10       6.10       6.10       6.10       6.10       6.10       6.10       6.10       6.10       6.10       6.10       6.10       6.10       6.10       6.10       6.10       6.10       6.10       6.10       6.10       6.10       6.10       6.10       6.10       6.10       6.10       6.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 188070 | R2139CMC008A 28-29 cm | 12900       | 3.0         | 37         | 54.5        | 0.60         | 62700        | 0.10        | 47.4        | 6.8         | 28.0         | 94           | 17400        | 5020        | 20.5         | 18.2         | 8110        |
| R2183MC009A 2-3 cm       18600       8.5       53       112       0.84       62800       -0.1       54.0       11.9       42.1       15.4       26100       7090       23.2       25.9       11800         1880800       R2183MC009A 4-5 cm       18100       4.4       55       102       0.82       63400       -0.11       55.6       8.9       41.1       14.8       24300       7060       22.3       25.3       11300         188090       R2183MC009A 14-15 cm       17200       2.6       54       83.2       0.81       63800       -0.1       55.7       8.3       38.5       13.3       22400       6670       22.1       24.1       10500         188100       R2183MC009A 34.35 cm       1700       2.9       50       71.3       0.79       66800       0.12       53.4       8.5       39.1       12.3       2200       6670       22.8       24.2       10400         188125       R223MC010A 0.1 cm       13200       4.7       41       83.9       0.57       59100       <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 188076 | R2183MC009A 0-1 cm    | 18200       | 5.8         | 59         | 113         | 0.81         | 61200        | 0.10        | 52.0        | 10.5        | 40.8         | 15.1         | 24400        | 6940        | 22.0         | 24.7         | 1210        |
| B8080       R2183MC009A 4-5 cm       1800       4.4       55       102       0.82       6340       0.1       53.6       8.9       41.1       14.8       2430       7660       22.3       24.9       10000         188085       R2183MC009A 4-15 cm       17200       2.6       54       83.2       0.81       63800       <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 188078 | R2183MC009A 2-3 cm    | 18600       | 8.5         | 58         | 112         | 0.84         | 62800        | <0.1        | 54.0        | 11.9        | 42.1         | 15.4         | 26100        | 7090        | 23.2         | 25.9         | 1180        |
| Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 188080 | R2183MC009A 4-5 cm    | 18100       | 4 4         | 55         | 102         | 0.82         | 63400        | 0.11        | 53.6        | 8.9         | 41.1         | 14.8         | 24300        | 7060        | 22.3         | 25.3         | 1130        |
| Resonance                                                                                                                                                                                                                                                                                                                                                                                                                                               | 188085 | R2183MC009A 9-10 cm   | 17800       | 2.6         | 54         | 83.2        | 0.81         | 63800        | <0.1        | 52.1        | 8.6         | 39.6         | 14.1         | 23400        | 6930        | 22.3         | 24.9         | 1090        |
| 188100       R2183MC009A 24-25 cm       16700       2.9       49       67.7       0.75       65500       <0.1       52.7       8.3       37.7       12.1       22400       6550       22.8       23.7       13000         188110       R2183MC009A 34-35 cm       17400       2.9       50       71.3       0.79       66800       0.12       53.4       8.5       39.1       12.3       22900       6780       22.8       24.2       10400         188123       R2229MC010A 0-1 cm       13200       3.7       45       90.5       0.58       61500       <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 188090 | R2183MC009A 14-15 cm  | 17200       | 2.1         | 51         | 72.2        | 0.77         | 66000        | 0.19        | 51.8        | 8.3         | 38.5         | 13.3         | 22400        | 6670        | 22.1         | 24.1         | 10500       |
| 188100       R2183MC009A 34-35 cm       17400       2.9       50       71.3       0.79       66800       0.12       53.4       8.5       39.1       12.3       22900       6780       22.8       24.2       14000         188123       R2229MC010A 0-1 cm       13200       3.7       45       90.5       0.58       61500       <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 188100 | R2183MC009A 24-25 cm  | 16700       | 2.9         | 49         | 67.7        | 0.75         | 65500        | <0.1        | 52.7        | 8.3         | 37.7         | 12.1         | 22400        | 6590        | 22.3         | 23.7         | 10300       |
| 188123       R2229MC010A 0-1 cm       13200       4.7       4.1       8.8       10.0       4.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11.0       11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 188110 | R2183MC009A 34-35 cm  | 17400       | 2.9         | 50         | 71.3        | 0.79         | 66800        | 0.12        | 53.4        | 8.5         | 39.1         | 12.3         | 22900        | 6780        | 22.8         | 24.2         | 1040        |
| 188125       R2229MC010A 2-3 cm       13000       4.7       41       83.9       0.57       59100       -0.1       40.5       7.9       30.7       9.1       18000       4700       17.4       17.2       17.4         188127       R2229MC010A 4-5 cm       12900       2.3       40       75.1       0.58       59900       -0.1       40.8       6.1       30.1       9.1       16800       4940       17.9       17.4       8490         188132       R2229MC010A 4-5 cm       13600       2.3       42       60.9       0.61       63300       -0.1       42.1       6.3       31.3       8.9       17600       5090       18.7       18.1       8700         188137       R2229MC010A 24-25 cm       10800       2.4       30       41.9       0.48       49100       -0.1       37.6       5.6       25.3       6.5       14400       4010       16.2       14.5       716         188137       R2229MC010A 3-31 cm       9480       2.7       25       35.4       0.42       40100       -0.1       31.6       6.2       19.4       30400       15.2       12.5       6333         Hynne       Hynne       21200       3.8       42.0 </td <td>188123</td> <td>R2229MC010A 0-1 cm</td> <td>13200</td> <td>3.7</td> <td>45</td> <td>90.5</td> <td>0.58</td> <td>61500</td> <td>&lt;0.1</td> <td>41.1</td> <td>7.5</td> <td>31.2</td> <td>9.8</td> <td>18100</td> <td>4970</td> <td>17.7</td> <td>17.6</td> <td>9420</td>                                                                                                                                                                                                                                                                                                                                                          | 188123 | R2229MC010A 0-1 cm    | 13200       | 3.7         | 45         | 90.5        | 0.58         | 61500        | <0.1        | 41.1        | 7.5         | 31.2         | 9.8          | 18100        | 4970        | 17.7         | 17.6         | 9420        |
| 188127       R2229MC010A 4-5 cm       1290       2.3       40       75.1       0.68       5990       c0.1       40.8       6.1       30.1       9.1       16800       4940       17.9       17.4       4499         188132       R2229MC010A 9-10 cm       13600       2.3       42       60.9       0.61       63300       <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 188125 | R2229MC010A 2-3 cm    | 13000       | 4.7         | 41         | 83.9        | 0.57         | 59100        | <0.1        | 40.5        | 7.9         | 30.7         | 9.1          | 18000        | 4700        | 17.4         | 17.2         | 8770        |
| 188132       R2229MC010A 9-10 cm       13600       2.3       42       60.9       0.61       63300       42.1       6.3       31.3       8.9       17600       5090       18.7       18.1       8700         188137       R2229MC010A 14-15 cm       13700       <2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 188127 | R2229MC010A 4-5 cm    | 12900       | 2.3         | 40         | 75.1        | 0.58         | 59900        | <0.1        | 40.8        | 6.1         | 30.1         | 9.1          | 16800        | 4940        | 17.9         | 17.4         | 8490        |
| 188137       R2229MC010A 14-15 cm       1370       -2       41       55.7       0.61       63500       0.11       42.5       6.5       31.4       8.9       17500       5070       18.5       18.4       8580         188147       R2229MC010A 24-25 cm       10800       2.4       30       41.9       0.48       49100       <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 188132 | R2229MC010A 9-10 cm   | 13600       | 2.3         | 42         | 60.9        | 0.61         | 63300        | <0.1        | 42.1        | 6.3         | 31.3         | 8.9          | 17600        | 5090        | 18.7         | 18.1         | 8700        |
| R2229MC010A 24-25 cm         10800         2.4         30         41.9         0.48         49100         <0.1         37.6         5.6         25.3         6.5         14400         4010         16.2         14.5         7160           188147         R2229MC010A 30-31 cm         9480         2.7         25         35.4         0.42         40100         <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 188137 | R2229MC010A 14-15 cm  | 13700       | <2          | 41         | 55.7        | 0.61         | 63500        | 0.11        | 42.5        | 6.5         | 31.4         | 8.9          | 17500        | 5070        | 18.5         | 18.4         | 8580        |
| 188153       R2229MC010A 30-31 cm       9480       2.7       25       35.4       0.42       40100       <0.1       35.4       5.1       22.1       5.6       12700       3440       15.2       12.5       6430         Hynne       Hynne       21200       3.8       29       85.2       0.56       22400       <0.1       60.2       11.6       62.4       19.4       30400       7550       25.3       26.9       15.00         Minn       Minn       17900       <2       <10       57.9       0.34       1160       <0.1       31.1       10.5       24.1       11.7       32700       6080       15.7       16.2       6470         188164       R2242MC012A 0-1 cm       19600       6.0       68       122       0.93       84400       0.18       52.3       11.2       42.7       14.4       26800       8100       22.3       28.1       13800         188164       R2242MC012A 0-1 cm       19600       5.8       65       121       0.97       83400       0.17       54.3       11.9       44.2       15.0       28000       7990       23.4       29.1       13300         188168       R2242MC012A 4-5 cm       20600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 188147 | R2229MC010A 24-25 cm  | 10800       | 2.4         | 30         | 41.9        | 0.48         | 49100        | <0.1        | 37.6        | 5.6         | 25.3         | 6.5          | 14400        | 4010        | 16.2         | 14.5         | 7160        |
| HynneLynne212003.82985.20.5622400<0.160.211.662.419.430400755025.326.91500MinnMinn17900<2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 188153 | R2229MC010A 30-31 cm  | 9480        | 2.7         | 25         | 35.4        | 0.42         | 40100        | <0.1        | 35.4        | 5.1         | 22.1         | 5.6          | 12700        | 3440        | 15.2         | 12.5         | 6430        |
| MinnMinn17900<2<1057.90.341160<0.131.110.524.111.732700608015.716.26470188164R2242MC012A 0-1 cm196006.0681220.93844000.1852.311.242.714.426800810022.328.113800188166R2242MC012A 2-3 cm203005.8651210.97834000.1754.311.944.215.028000799023.429.113300188168R2242MC012A 4-5 cm206005.4641130.98828000.1555.015.045.315.028500800023.729.613300188173R2242MC012A 9-10 cm210003.0651000.99858000.2056.610.846.415.628700867023.630.613200188178R2242MC012A 14-15 cm214002.6641011.01827000.2357.810.947.515.128900882024.531.213500188188R2242MC012A 24-25 cm225002.8651021.06748000.3060.011.849.315.929600927025.233.313900188202R2242MC012A 38-39 cm216002.45987.41.0360700.1360.012.447.315.729300898025.232.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Hynne  | Hynne                 | 21200       | 3.8         | 29         | 85.2        | 0.56         | 22400        | <0.1        | 60.2        | 11.6        | 62.4         | 19.4         | 30400        | 7550        | 25.3         | 26.9         | 15000       |
| 188164       R2242MC012A 0-1 cm       19600       6.0       68       122       0.93       84400       0.18       52.3       11.2       42.7       14.4       26800       8100       22.3       28.1       13800         188166       R2242MC012A 2-3 cm       20300       5.8       65       121       0.97       83400       0.17       54.3       11.9       44.2       15.0       28000       7990       23.4       29.1       13300         188168       R2242MC012A 4-5 cm       20600       5.4       64       113       0.98       82800       0.15       55.0       15.0       45.3       15.0       28500       8000       23.7       29.6       13300         188173       R2242MC012A 9-10 cm       21000       3.0       65       100       0.99       85800       0.20       56.6       10.8       46.4       15.6       28700       8670       23.6       30.6       13200         188173       R2242MC012A 14-15 cm       21400       2.6       64       101       1.01       82700       0.23       57.8       10.9       47.5       15.1       28900       8820       24.5       31.2       13500         188178       R2242MC012A 24-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Minn   | Minn                  | 17900       | <2          | <10        | 57.9        | 0.34         | 1160         | <0.1        | 31.1        | 10.5        | 24.1         | 11.7         | 32700        | 6080        | 15.7         | 16.2         | 6470        |
| 188166       R2242MC012A 2-3 cm       20300       5.8       65       121       0.97       83400       0.17       54.3       11.9       44.2       15.0       28000       7990       23.4       29.1       13300         188168       R2242MC012A 4-5 cm       20600       5.4       64       113       0.98       82800       0.15       55.0       15.0       45.3       15.0       28000       7990       23.4       29.1       13300         188168       R2242MC012A 4-5 cm       20600       5.4       64       113       0.98       82800       0.15       55.0       15.0       45.3       15.0       28500       8000       23.7       29.6       13300         188173       R2242MC012A 9-10 cm       21000       3.0       65       100       0.99       85800       0.20       56.6       10.8       46.4       15.6       28700       8670       23.6       30.6       13200         188178       R2242MC012A 14-15 cm       21400       2.6       64       101       1.01       82700       0.23       57.8       10.9       47.5       15.1       28900       8820       24.5       31.2       13500       188208       188202       R2242MC012A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 188164 | R2242MC012A 0-1 cm    | 19600       | 6.0         | 68         | 122         | 0.93         | 84400        | 0.18        | 52.3        | 11.2        | 42.7         | 14.4         | 26800        | 8100        | 22.3         | 28.1         | 13800       |
| 188168       R2242MC012A 4-5 cm       20600       5.4       64       113       0.98       82800       0.15       55.0       15.0       45.3       15.0       28500       8000       23.7       29.6       13300         188173       R2242MC012A 9-10 cm       21000       3.0       65       100       0.99       85800       0.20       56.6       10.8       46.4       15.6       28700       8670       23.6       30.6       13200         188173       R2242MC012A 14-15 cm       21400       2.6       64       101       1.01       82700       0.23       57.8       10.9       47.5       15.1       28900       8820       24.5       31.2       13500         188178       R2242MC012A 24-25 cm       22500       2.8       65       102       1.06       74800       0.30       60.0       11.8       49.3       15.9       29600       9270       25.2       33.3       13900         188128       R2242MC012A 38-39 cm       21600       2.4       59       87.4       1.03       60700       0.13       60.0       11.8       49.3       15.9       29600       9270       25.2       32.1       13600         188208       R224MC013A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 188166 | R2242MC012A 2-3 cm    | 20300       | 5.8         | 65         | 121         | 0.97         | 83400        | 0.17        | 54.3        | 11.9        | 44.2         | 15.0         | 28000        | 7990        | 23.4         | 29.1         | 13300       |
| 188173       R2242MC012A 9-10 cm       21000       3.0       65       100       0.99       85800       0.20       56.6       10.8       46.4       15.6       28700       8670       23.6       30.6       13200         188178       R2242MC012A 14-15 cm       21400       2.6       64       101       1.01       82700       0.23       57.8       10.9       47.5       15.1       28900       8820       24.5       31.2       13500         188188       R2242MC012A 24-25 cm       22500       2.8       65       102       1.06       74800       0.30       60.0       11.8       49.3       15.9       29600       9270       25.2       33.3       13900         188202       R2242MC012A 38-39 cm       21600       2.4       59       87.4       1.03       60700       0.13       60.0       12.4       47.3       15.7       29300       8980       25.2       32.1       13600         188208       R2270MC013A 0-1 cm       14600       4.6       87.1       0.67       61900       0.11       44.0       7.9       31.6       10.1       19400       5700       19.1       20.2       10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 188168 | R2242MC012A 4-5 cm    | 20600       | 5.4         | 64         | 113         | 0.98         | 82800        | 0.15        | 55.0        | 15.0        | 45.3         | 15.0         | 28500        | 8000        | 23.7         | 29.6         | 13300       |
| 188178       R2242MC012A 14-15 cm       21400       2.6       64       101       1.01       82700       0.23       57.8       10.9       47.5       15.1       28900       8820       24.5       31.2       13500         188188       R2242MC012A 24-25 cm       22500       2.8       65       102       1.06       74800       0.30       60.0       11.8       49.3       15.9       29600       9270       25.2       33.3       13900         188202       R2242MC012A 38-39 cm       21600       2.4       59       87.4       1.03       60700       0.13       60.0       12.4       47.3       15.7       29300       8980       25.2       32.1       13600         188208       R2270MC013A 0-1 cm       14600       4.6       48       87.1       0.67       61900       0.11       44.0       7.9       31.6       10.1       19400       5700       19.1       20.2       10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 188173 | R2242MC012A 9-10 cm   | 21000       | 3.0         | 65         | 100         | 0.99         | 85800        | 0.20        | 56.6        | 10.8        | 46.4         | 15.6         | 28700        | 8670        | 23.6         | 30.6         | 1320        |
| 188188       R2242MC012A 24-25 cm       22500       2.8       65       102       1.06       74800       0.30       60.0       11.8       49.3       15.9       29600       9270       25.2       33.3       13900         188102       R2242MC012A 38-39 cm       21600       2.4       59       87.4       1.03       60700       0.13       60.0       11.8       49.3       15.9       29600       9270       25.2       33.3       13900         188208       R2270MC013A 0-1 cm       14600       4.6       48       87.1       0.67       61900       0.11       44.0       7.9       31.6       10.1       19400       5700       19.1       20.2       10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 188178 | R2242MC012A 14-15 cm  | 21400       | 2.6         | 64         | 101         | 1.01         | 82700        | 0.23        | 57.8        | 10.9        | 47.5         | 15.1         | 28900        | 8820        | 24.5         | 31.2         | 1350        |
| 188202       R2242MC012A 38-39 cm       21600       2.4       59       87.4       1.03       60700       0.13       60.0       12.4       47.3       15.7       29300       8980       25.2       32.1       13600         188208       R2270MC013A 0-1 cm       14600       4.6       48       87.1       0.67       61900       0.11       44.0       7.9       31.6       10.1       19400       5700       19.1       20.2       10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 188188 | R2242MC012A 24-25 cm  | 22500       | 2.8         | 65         | 102         | 1.06         | 74800        | 0.30        | 60.0        | 11.8        | 49.3         | 15.9         | 29600        | 9270        | 25.2         | 33.3         | 1390        |
| 188208 R2270MC013A 0-1 cm 14600 4.6 48 87.1 0.67 61900 0.11 44.0 7.9 31.6 10.1 19400 5700 19.1 20.2 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 188202 | R2242MC012A 38-39 cm  | 21600       | 2.4         | 59         | 87.4        | 1.03         | 60700        | 0.13        | 60.0        | 12.4        | 47.3         | 15.7         | 29300        | 8980        | 25.2         | 32.1         | 13600       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 188208 | R2270MC013A 0-1 cm    | 14600       | 4.6         | 48         | 87.1        | 0.67         | 61900        | 0.11        | 44.0        | 7.9         | 31.6         | 10.1         | 19400        | 5700        | 19.1         | 20.2         | 1000        |



· NGU -

Leiv Eirikssons vei 39 NO - 7040 Trondheim

NORGES TIf.: 73 90 40 00 GEOLOGISKE E-post: lab@ngu.no Bestemmelse av kationer, ICP-OES metode (LABdok\_G09) GEOLOGISK MATERIALE ANALYSEKONTRAKTNR. 2021.0031



| NGU-nr | IPrøve ID             | Mn<br>ma/kal | Mo<br>ma/kal | Na<br>mg/kg | Ni<br>ma/kal | P<br>ma/kal      | Pb<br>ma/kal | S<br>ma/ka | Sc<br>ma/ka | Se<br>ma/kal | Si<br>ma/kal | Sr<br>ma/kal | Ti<br>ma/ka | V<br>ma/ka | Y<br>ma/kal | Zn<br>ma/kal | Zr<br>ma/ka |
|--------|-----------------------|--------------|--------------|-------------|--------------|------------------|--------------|------------|-------------|--------------|--------------|--------------|-------------|------------|-------------|--------------|-------------|
| Hynne  | Hynne                 | 417          |              | 6400        | 41.3         | <b>gg</b><br>597 | 13.1         | 644        | 6.06        | <b>99</b>    | 225          | 73.7         | 1400        | 63.5       | 14 7        | 76.8         | 23.4        |
| Minn   | Minn                  | 238          | 1.3          | 208         | 19.7         | 385              | 12.3         | 103        | 3.07        | <10          | 325          | 4.9          | 2130        | 33.3       | 10.2        | 61.8         | 10.9        |
| Tana   | Tana                  | 370          | <1           | 350         | 54.6         | 602              | 23.1         | 32         | 6.28        | <10          | 531          | 33.9         | 506         | 21.0       | 25.9        | 74.0         | 21.9        |
| 188003 | R2132MC006A 0-1 cm    | 412          | <1           | 7190        | 10.6         | 681              | 10.7         | 669        | 2.39        | <10          | 519          | 113          | 447         | 23.8       | 9.52        | 21.9         | 5.8         |
| 188042 | R2139MC008A 0-1 cm    | 473          | <1           | 13600       | 19.4         | 665              | 16.0         | 1210       | 4.13        | <10          | 248          | 226          | 688         | 40.0       | 12.3        | 41.1         | 9.3         |
| 188044 | R2139MC008A 2-3 cm    | 680          | <1           | 11300       | 22.0         | 689              | 20.6         | 1020       | 4.56        | <10          | 281          | 237          | 720         | 44.3       | 13.0        | 47.0         | 10.3        |
| 188046 | R2139CMC008A 4-5 cm   | 1020         | <1           | 10100       | 23.4         | 691              | 20.3         | 900        | 4.69        | <10          | 245          | 229          | 752         | 45.7       | 13.4        | 48.1         | 11.0        |
| 188051 | R2139CMC008A 9-10 cm  | 216          | <1           | 8930        | 19.8         | 642              | 16.6         | 800        | 4.39        | <10          | 256          | 226          | 717         | 42.0       | 12.9        | 43.0         | 10.7        |
| 188056 | R2139CMC008A 14-15 cm | 217          | <1           | 7070        | 19.3         | 641              | 9.6          | 638        | 4.21        | <10          | 386          | 225          | 726         | 40.4       | 12.9        | 38.2         | 10.1        |
| 188066 | R2139CMC008A 24-25 cm | 236          | <1           | 6040        | 20.0         | 642              | 8.2          | 844        | 4.28        | <10          | 306          | 235          | 728         | 39.3       | 13.0        | 38.8         | 10.4        |
| 188070 | R2139CMC008A 28-29 cm | 245          | <1           | 6380        | 20.2         | 644              | 8.2          | 788        | 4.40        | <10          | 353          | 230          | 754         | 40.4       | 13.3        | 40.3         | 11.0        |
| 188076 | R2183MC009A 0-1 cm    | 946          | <1           | 18800       | 29.2         | 683              | 24.3         | 1670       | 5.87        | <10          | 224          | 264          | 917         | 56.3       | 14.2        | 62.1         | 12.7        |
| 188078 | R2183MC009A 2-3 cm    | 865          | <1           | 13200       | 29.6         | 765              | 25.0         | 1200       | 6.10        | <10          | 225          | 262          | 949         | 57.6       | 15.0        | 64.7         | 13.6        |
| 188080 | R2183MC009A 4-5 cm    | 299          | <1           | 11800       | 28.0         | 682              | 25.3         | 1060       | 5.96        | <10          | 209          | 261          | 930         | 56.1       | 14.8        | 63.1         | 13.6        |
| 188085 | R2183MC009A 9-10 cm   | 280          | <1           | 11300       | 27.4         | 657              | 21.7         | 1020       | 5.80        | <10          | 236          | 261          | 929         | 53.8       | 14.6        | 59.7         | 13.6        |
| 188090 | R2183MC009A 14-15 cm  | 280          | <1           | 9910        | 26.9         | 662              | 15.7         | 908        | 5.70        | <10          | 209          | 265          | 925         | 54.8       | 14.5        | 53.8         | 13.1        |
| 188100 | R2183MC009A 24-25 cm  | 289          | <1           | 8630        | 25.8         | 670              | 10.8         | 908        | 5.58        | <10          | 239          | 259          | 926         | 50.1       | 14.6        | 51.6         | 13.2        |
| 188110 | R2183MC009A 34-35 cm  | 304          | <1           | 7580        | 26.8         | 652              | 10.0         | 960        | 5.76        | <10          | <200         | 261          | 947         | 52.1       | 14.8        | 53.6         | 13.8        |
| 188123 | R2229MC010A 0-1 cm    | 572          | <1           | 14300       | 21.6         | 620              | 15.9         | 1260       | 4.60        | <10          | 241          | 246          | 819         | 41.2       | 12.4        | 45.0         | 10.0        |
| 188125 | R2229MC010A 2-3 cm    | 563          | <1           | 10100       | 21.0         | 635              | 14.7         | 920        | 4.53        | <10          | 295          | 232          | 807         | 39.7       | 12.2        | 44.3         | 10.1        |
| 188127 | R2229MC010A 4-5 cm    | 220          | <1           | 9150        | 20.0         | 588              | 14.2         | 847        | 4.50        | <10          | 233          | 231          | 839         | 39.3       | 12.3        | 42.6         | 10.3        |
| 188132 | R2229MC010A 9-10 cm   | 229          | <1           | 8950        | 20.8         | 600              | 12.1         | 863        | 4.68        | <10          | 332          | 241          | 858         | 40.1       | 12.8        | 43.1         | 10.8        |
| 188137 | R2229MC010A 14-15 cm  | 240          | <1           | 7420        | 21.1         | 589              | 8.6          | 711        | 4.70        | <10          | 263          | 242          | 853         | 40.8       | 12.7        | 42.0         | 10.9        |
| 188147 | R2229MC010A 24-25 cm  | 197          | <1           | 5290        | 16.9         | 559              | 5.6          | 772        | 3.84        | <10          | 376          | 176          | 757         | 32.5       | 11.1        | 33.2         | 9.5         |
| 188153 | R2229MC010A 30-31 cm  | 180          | <1           | 4920        | 14.6         | 551              | 4.7          | 771        | 3.43        | <10          | 432          | 136          | 715         | 27.5       | 10.4        | 29.2         | 8.6         |
| Hynne  | Hynne                 | 423          | <1           | 6460        | 40.3         | 599              | 13.0         | 637        | 6.14        | <10          | 216          | 81.5         | 1400        | 63.4       | 14.7        | 76.4         | 23.7        |
| Minn   | Minn                  | 239          | 1.4          | 213         | 19.6         | 395              | 12.5         | 104        | 3.11        | <10          | 358          | 4.8          | 2190        | 33.8       | 10.5        | 62.1         | 11.8        |
| 188164 | R2242MC012A 0-1 cm    | 810          | <1           | 24600       | 33.5         | 572              | 21.3         | 2070       | 6.38        | <10          | 222          | 367          | 983         | 59.6       | 15.2        | 65.5         | 14.4        |
| 188166 | R2242MC012A 2-3 cm    | 1120         | <1           | 16900       | 37.2         | 582              | 23.9         | 1400       | 6.59        | <10          | 210          | 361          | 1000        | 60.9       | 15.7        | 69.0         | 15.3        |
| 188168 | R2242MC012A 4-5 cm    | 1980         | 2.0          | 15300       | 40.7         | 586              | 23.8         | 1330       | 6.74        | <10          | <200         | 355          | 1020        | 61.9       | 16.1        | 70.3         | 15.7        |
| 188173 | R2242MC012A 9-10 cm   | 320          | <1           | 12800       | 34.7         | 568              | 21.3         | 1090       | 6.90        | <10          | <200         | 365          | 1040        | 65.7       | 16.3        | 71.0         | 16.8        |
| 188178 | R2242MC012A 14-15 cm  | 328          | <1           | 12900       | 35.4         | 542              | 13.1         | 1100       | 7.02        | <10          | 248          | 345          | 1050        | 66.8       | 16.4        | 68.9         | 17.5        |
| 188188 | R2242MC012A 24-25 cm  | 340          | <1           | 11700       | 37.7         | 552              | 11.8         | 959        | 7.26        | <10          | <200         | 305          | 1100        | 70.0       | 16.5        | 72.2         | 18.6        |
| 188202 | R2242MC012A 38-39 cm  | 343          | <1           | 10800       | 37.4         | 535              | 11.8         | 880        | 6.97        | <10          | 219          | 243          | 1070        | 64.1       | 15.8        | 70.5         | 18.8        |
| 188208 | R2270MC013A 0-1 cm    | 506          | <1           | 13700       | 22.4         | 568              | 16.0         | 1220       | 4.68        | <10          | 250          | 248          | 784         | 44.3       | 12.8        | 47.5         | 11.3        |



· NGU -

Leiv Eirikssons vei 39

NO - 7040 Trondheim NORGES GEOLOGISKE E-post: lab@ngu.no

### Bestemmelse av kationer, ICP-OES metode (LABdok\_G09) GEOLOGISK MATERIALE ANALYSEKONTRAKTNR. 2021.0031



| NGU-nr | Prøve ID             | Al<br>ma/kal | As<br>ma/ka | B<br>ma/ka | Ba<br>mg/kg | Be<br>ma/kal | Ca<br>mɑ/kɑ | Cd<br>ma/ka | Ce<br>ma/ka | Co<br>ma/kal | Cr<br>ma/ka | Cu<br>ma/ka | Fe<br>ma/kal | K<br>ma/ka | La<br>mɑ/kɑl | Li<br>ma/kal | Mg<br>ma/ka |
|--------|----------------------|--------------|-------------|------------|-------------|--------------|-------------|-------------|-------------|--------------|-------------|-------------|--------------|------------|--------------|--------------|-------------|
| 188210 | R2270MC013A 2-3 cm   | 16500        | 4.8         | 50         | 92.8        | 0.76         | 63800       | <0.1        | 49.2        | 92           | 36.3        | 11.2        | 22300        | 6340       | 20.7         | 23.3         | 10900       |
| 188212 | R2270MC013A 4-5 cm   | 16600        | 5.1         | 49         | 80.9        | 0.77         | 61600       | <0.1        | 50.7        | 9.5          | 37.1        | 11.0        | 22900        | 6350       | 21.4         | 23.4         | 10800       |
| 188217 | R2270MC013A 9-10 cm  | 22100        | 5.8         | 58         | 86.8        | 1.04         | 31800       | 0.42        | 63.7        | 12.6         | 48.2        | 18.1        | 30400        | 8490       | 26.0         | 33.5         | 14100       |
| 188222 | R2270MC013A 14-15 cm | 21000        | 3.9         | 55         | 79.7        | 0.98         | 33600       | 0.16        | 61.8        | 11.7         | 45.0        | 15.9        | 27600        | 8240       | 25.2         | 31.9         | 13200       |
| 188232 | R2270MC013A 24-25 cm | 25600        | 6.3         | 63         | 95.3        | 1.17         | 22700       | 0.15        | 70.7        | 13.7         | 55.8        | 20.3        | 32900        | 10100      | 28.7         | 39.4         | 15900       |
| 188241 | R2270MC013A 32-33 cm | 27200        | 9.5         | 67         | 108         | 1.20         | 22400       | 0.15        | 78.0        | 15.1         | 64.4        | 22.9        | 37900        | 11200      | 31.5         | 43.2         | 17500       |
| 188246 | R2276MC014A 0-1 cm   | 19100        | 5.0         | 65         | 114         | 0.91         | 76400       | 0.11        | 53.5        | 10.9         | 44.0        | 15.2        | 27000        | 7550       | 22.5         | 27.7         | 13200       |
| 188248 | R2276MC014A 2-3 cm   | 19500        | 5.1         | 63         | 114         | 0.93         | 77300       | 0.12        | 54.2        | 11.1         | 44.7        | 15.1        | 27500        | 7510       | 22.7         | 28.2         | 13100       |
| 188250 | R2276MC014A 4-5 cm   | 19500        | 8.2         | 64         | 102         | 0.93         | 77100       | 0.10        | 54.3        | 12.6         | 44.9        | 15.3        | 28900        | 7540       | 22.9         | 28.6         | 13000       |
| 188255 | R2276MC014A 9-10 cm  | 19800        | 3.0         | 64         | 102         | 0.95         | 78700       | 0.10        | 55.6        | 10.5         | 45.6        | 15.4        | 27500        | 7720       | 23.2         | 28.9         | 13000       |
| 188260 | R2276MC014A 14-15 cm | 19800        | 3.3         | 65         | 92.3        | 0.94         | 78700       | <0.1        | 54.5        | 10.5         | 45.6        | 15.5        | 27900        | 7680       | 22.9         | 28.8         | 13000       |
| 188270 | R2276MC014A 24-25 cm | 19700        | 3.1         | 62         | 85.0        | 0.94         | 78400       | <0.1        | 54.1        | 10.5         | 45.2        | 14.7        | 27200        | 8140       | 22.8         | 29.1         | 12800       |
| 188289 | R2276MC014A 43-44 cm | 20900        | 2.9         | 60         | 84.3        | 1.00         | 70100       | 0.14        | 58.9        | 11.6         | 47.6        | 14.9        | 28500        | 8560       | 24.7         | 31.2         | 13300       |
| 188293 | R2279BC060 0-1 cm    | 14200        | 4.5         | 49         | 109         | 0.67         | 70300       | <0.1        | 42.3        | 8.5          | 33.9        | 11.9        | 20600        | 5650       | 18.0         | 20.8         | 10200       |
| 188294 | R2289MC015A 0-1 cm   | 17800        | 4.9         | 62         | 152         | 0.84         | 76800       | <0.1        | 49.9        | 10.5         | 41.4        | 14.8        | 25500        | 7060       | 20.7         | 25.1         | 12700       |
| Hynne  | Hynne                | 20900        | 4.1         | 30         | 81.3        | 0.55         | 19000       | <0.1        | 58.2        | 11.9         | 61.9        | 20.1        | 30500        | 7410       | 24.5         | 27.0         | 15000       |
| Minn   | Minn                 | 17800        | <2          | <10        | 56.3        | 0.34         | 1040        | <0.1        | 29.9        | 10.5         | 23.9        | 12.4        | 32500        | 5990       | 15.9         | 16.1         | 6490        |
| Tana   | Tana                 | 16900        | <2          | <10        | 148         | 1.51         | 2940        | <0.1        | 84.0        | 15.7         | 42.2        | 4.8         | 20400        | 5780       | 39.2         | 21.9         | 10200       |
| 188339 | R2326GR104 0-1 cm    | 20500        | 6.4         | 74         | 150         | 0.99         | 80800       | 0.14        | 53.7        | 12.1         | 46.3        | 15.6        | 29200        | 8320       | 22.3         | 29.9         | 14800       |
| 188340 | R2331MC016A 0-1 cm   | 17800        | 6.1         | 67         | 175         | 0.85         | 77600       | 0.14        | 46.3        | 10.3         | 39.0        | 13.6        | 24800        | 7480       | 19.5         | 25.6         | 13700       |
| 188381 | R2338MC017A 0-1 cm   | 20900        | 5.3         | 74         | 126         | 1.00         | 77000       | 0.14        | 55.4        | 12.3         | 47.3        | 15.6        | 29700        | 8440       | 23.1         | 30.6         | 15000       |
| 188383 | R2338MC017A 2-3 cm   | 21700        | 4.8         | 71         | 119         | 1.03         | 77600       | <0.1        | 56.8        | 12.4         | 48.6        | 15.6        | 30500        | 8410       | 23.8         | 31.5         | 14500       |
| 188385 | R2338MC017A 4-5 cm   | 22100        | 5.4         | 71         | 124         | 1.07         | 77000       | 0.13        | 58.3        | 13.3         | 50.0        | 16.5        | 31400        | 8500       | 24.2         | 33.0         | 14500       |
| 188390 | R2338MC017A 9-10 cm  | 22700        | 7.2         | 73         | 108         | 1.09         | 78900       | <0.1        | 58.9        | 12.9         | 50.5        | 16.7        | 32900        | 8730       | 24.7         | 32.9         | 14600       |
| 188395 | R2338MC017A 14-15 cm | 22300        | 8.1         | 72         | 105         | 1.06         | 77400       | 0.13        | 57.6        | 13.3         | 49.7        | 16.3        | 32600        | 8700       | 24.0         | 32.2         | 14600       |
| 188405 | R2338MC017A 24-25 cm | 22600        | 3.7         | 70         | 99.9        | 1.08         | 81300       | 0.20        | 59.8        | 12.7         | 50.6        | 16.4        | 31200        | 9050       | 24.8         | 33.4         | 14100       |
| 188428 | R2338MC017A 47-48 cm | 23400        | 3.4         | 68         | 98.7        | 1.12         | 74200       | 0.25        | 61.8        | 12.9         | 52.1        | 16.6        | 31800        | 9570       | 25.8         | 34.8         | 14700       |
| 188486 | R2354GR125 0-1 cm    | 19400        | 4.4         | 68         | 126         | 0.93         | 74200       | 0.10        | 51.5        | 11.3         | 43.4        | 14.1        | 27500        | 7820       | 21.2         | 28.2         | 13800       |
| 188487 | R2359GR129 0-1 cm    | 17200        | 4.5         | 57         | 169         | 0.82         | 80400       | <0.1        | 46.9        | 9.8          | 37.5        | 12.5        | 24000        | 6630       | 19.8         | 24.4         | 11600       |
| 188488 | R2363MC019A 0-1 cm   | 15700        | 3.0         | 55         | 179         | 0.75         | 81600       | <0.1        | 43.7        | 8.6          | 34.2        | 11.4        | 21800        | 6120       | 18.5         | 22.4         | 11300       |
| 188490 | R2363MC019A 2-3 cm   | 16500        | 5.1         | 54         | 185         | 0.79         | 83800       | <0.1        | 46.3        | 9.1          | 36.4        | 12.9        | 23600        | 6230       | 19.3         | 23.5         | 11200       |
| 188492 | R2363MC019A 4-5 cm   | 17400        | 5.3         | 56         | 122         | 0.83         | 83500       | <0.1        | 47.8        | 10.1         | 37.8        | 13.0        | 24300        | 6500       | 20.2         | 24.8         | 11500       |
| 188497 | R2363MC019A 9-10 cm  | 17100        | 3.2         | 56         | 88.8        | 0.83         | 85700       | 0.10        | 47.7        | 8.5          | 37.3        | 12.7        | 23600        | 6650       | 20.0         | 24.7         | 11400       |
| 188502 | R2363MC019A 14-15 cm | 17000        | 2.9         | 56         | 82.7        | 0.83         | 84600       | <0.1        | 48.4        | 8.9          | 37.5        | 12.5        | 23500        | 6520       | 20.1         | 24.9         | 11400       |
| 188512 | R2363MC019A 24-25 cm | 18300        | 4.1         | 53         | 72.9        | 0.91         | 58400       | 0.19        | 50.4        | 10.9         | 39.1        | 14.0        | 25200        | 7140       | 20.7         | 27.5         | 11900       |



· NGU -

Leiv Eirikssons vei 39 NO - 7040 Trondheim

NORGES TIf.: 73 90 40 00 GEOLOGISKE E-post: lab@ngu.no

### Bestemmelse av kationer, ICP-OES metode (LABdok\_G09) GEOLOGISK MATERIALE ANALYSEKONTRAKTNR. 2021.0031



| NGU-nr | Prøve ID             | Mn<br>ma/kal | Mo<br>ma/ka | Na<br>mg/kg | Ni<br>ma/ka | P<br>ma/kal | Pb<br>ma/ka | S<br>ma/ka | Sc<br>ma/ka | Se<br>ma/ka | Si<br>ma/ka | Sr<br>ma/ka | Ti<br>ma/ka | V<br>ma/ka | Y<br>ma/ka | Zn<br>ma/ka | Zr<br>ma/ka |
|--------|----------------------|--------------|-------------|-------------|-------------|-------------|-------------|------------|-------------|-------------|-------------|-------------|-------------|------------|------------|-------------|-------------|
| 188210 | R2270MC013A 2-3 cm   | 625          | <u> </u>    | 12300       | 26.5        | 584         | <u> </u>    | 1050       | 5 36        | <u> </u>    | <200        | 260         | 872         | 49.4       | 14 1       | 54 4        | 12.8        |
| 188212 | R2270MC013A 4-5 cm   | 576          | <1          | 10200       | 25.7        | 587         | 16.6        | 900        | 5.43        | <10         | 220         | 246         | 893         | 49.7       | 14.4       | 54.7        | 13.7        |
| 188217 | R2270MC013A 9-10 cm  | 304          | <1          | 8530        | 36.1        | 543         | 15.7        | 1580       | 6.94        | <10         | 210         | 119         | 913         | 73.1       | 15.6       | 73.8        | 21.3        |
| 188222 | R2270MC013A 14-15 cm | 297          | <1          | 7660        | 32.8        | 520         | 12.6        | 935        | 6.55        | <10         | 259         | 122         | 924         | 63.7       | 15.4       | 69.1        | 21.2        |
| 188232 | R2270MC013A 24-25 cm | 351          | <1          | 8990        | 38.3        | 536         | 14.8        | 1690       | 7.76        | <10         | <200        | 80.3        | 1020        | 77.6       | 16.5       | 81.2        | 22.1        |
| 188241 | R2270MC013A 32-33 cm | 406          | <1          | 9450        | 42.3        | 593         | 14.5        | 2710       | 8.55        | <10         | 203         | 80.8        | 1280        | 82.1       | 17.9       | 91.4        | 24.1        |
| 188246 | R2276MC014A 0-1 cm   | 714          | <1          | 18500       | 32.6        | 596         | 20.3        | 1640       | 6.33        | <10         | <200        | 332         | 918         | 58.9       | 15.3       | 65.8        | 14.6        |
| 188248 | R2276MC014A 2-3 cm   | 668          | <1          | 15800       | 33.4        | 609         | 21.0        | 1340       | 6.44        | <10         | <200        | 327         | 928         | 59.8       | 15.5       | 67.2        | 14.9        |
| 188250 | R2276MC014A 4-5 cm   | 724          | <1          | 14700       | 33.1        | 696         | 21.3        | 1240       | 6.46        | <10         | <200        | 326         | 928         | 60.4       | 15.5       | 67.7        | 15.3        |
| 188255 | R2276MC014A 9-10 cm  | 345          | <1          | 13500       | 33.2        | 598         | 21.7        | 1200       | 6.55        | <10         | <200        | 331         | 946         | 61.5       | 15.7       | 68.8        | 15.5        |
| 188260 | R2276MC014A 14-15 cm | 393          | <1          | 14300       | 33.3        | 600         | 21.1        | 1260       | 6.54        | <10         | <200        | 331         | 937         | 60.9       | 15.7       | 67.9        | 15.4        |
| 188270 | R2276MC014A 24-25 cm | 331          | <1          | 13900       | 33.1        | 575         | 13.8        | 1230       | 6.48        | <10         | <200        | 329         | 938         | 59.6       | 15.4       | 64.4        | 15.6        |
| 188289 | R2276MC014A 43-44 cm | 362          | <1          | 10600       | 34.8        | 586         | 12.3        | 961        | 6.84        | <10         | <200        | 284         | 1020        | 63.2       | 15.9       | 68.4        | 17.4        |
| 188293 | R2279BC060 0-1 cm    | 629          | <1          | 15400       | 24.6        | 548         | 19.0        | 1330       | 4.72        | <10         | 218         | 280         | 709         | 46.3       | 12.3       | 50.3        | 10.9        |
| 188294 | R2289MC015A 0-1 cm   | 745          | <1          | 20700       | 30.8        | 616         | 22.7        | 1880       | 5.90        | <10         | <200        | 333         | 846         | 57.8       | 14.4       | 62.1        | 13.1        |
| Hynne  | Hynne                | 427          | <1          | 6540        | 40.8        | 641         | 13.5        | 669        | 5.85        | <10         | 221         | 77.0        | 1360        | 61.9       | 14.8       | 77.5        | 23.2        |
| Minn   | Minn                 | 236          | 1.3         | 218         | 19.7        | 372         | 12.2        | 101        | 3.07        | <10         | 347         | 4.8         | 2140        | 33.4       | 10.1       | 62.3        | 10.6        |
| Tana   | Tana                 | 366          | <1          | 339         | 54.4        | 606         | 23.4        | 32         | 6.06        | <10         | 522         | 33.8        | 474         | 19.7       | 25.4       | 73.9        | 21.1        |
| 188339 | R2326GR104 0-1 cm    | 793          | <1          | 24700       | 35.3        | 575         | 21.2        | 2220       | 6.75        | <10         | <200        | 361         | 927         | 64.2       | 15.4       | 70.7        | 15.4        |
| 188340 | R2331MC016A 0-1 cm   | 651          | <1          | 28900       | 29.7        | 524         | 20.0        | 2430       | 5.72        | <10         | 209         | 341         | 800         | 55.1       | 13.5       | 60.1        | 13.1        |
| 188381 | R2338MC017A 0-1 cm   | 781          | <1          | 23900       | 35.9        | 576         | 20.6        | 2060       | 6.88        | <10         | <200        | 342         | 963         | 65.0       | 15.7       | 71.7        | 15.8        |
| 188383 | R2338MC017A 2-3 cm   | 822          | <1          | 17900       | 36.7        | 579         | 19.2        | 1550       | 7.07        | <10         | <200        | 337         | 991         | 65.1       | 16.2       | 73.0        | 16.8        |
| 188385 | R2338MC017A 4-5 cm   | 1900         | 1.7         | 15000       | 40.2        | 587         | 20.5        | 1280       | 7.26        | <10         | <200        | 339         | 1000        | 68.7       | 16.5       | 75.7        | 17.2        |
| 188390 | R2338MC017A 9-10 cm  | 630          | <1          | 15200       | 38.2        | 628         | 24.0        | 1300       | 7.33        | <10         | <200        | 346         | 1030        | 70.7       | 16.6       | 77.7        | 17.4        |
| 188395 | R2338MC017A 14-15 cm | 749          | <1          | 16800       | 40.7        | 639         | 23.4        | 1400       | 7.22        | <10         | <200        | 344         | 1010        | 69.2       | 16.3       | 75.9        | 16.9        |
| 188405 | R2338MC017A 24-25 cm | 413          | <1          | 11600       | 38.7        | 584         | 14.8        | 1030       | 7.34        | <10         | <200        | 348         | 1030        | 69.1       | 16.7       | 73.9        | 18.0        |
| 188428 | R2338MC017A 47-48 cm | 404          | <1          | 11900       | 38.9        | 572         | 13.7        | 1110       | 7.54        | <10         | <200        | 311         | 1070        | 71.8       | 16.9       | 76.0        | 19.3        |
| 188486 | R2354GR125 0-1 cm    | 638          | <1          | 21200       | 32.5        | 515         | 17.8        | 1820       | 6.33        | <10         | <200        | 323         | 882         | 59.7       | 14.5       | 65.8        | 15.4        |
| 188487 | R2359GR129 0-1 cm    | 640          | <1          | 15700       | 29.0        | 530         | 19.1        | 1340       | 5.59        | <10         | 233         | 345         | 818         | 52.0       | 14.0       | 58.1        | 13.8        |
| 188488 | R2363MC019A 0-1 cm   | 454          | <1          | 17200       | 25.1        | 497         | 15.1        | 1600       | 5.11        | <10         | 226         | 339         | 751         | 47.7       | 13.1       | 52.2        | 13.0        |
| 188490 | R2363MC019A 2-3 cm   | 663          | <1          | 12600       | 28.3        | 545         | 18.1        | 1110       | 5.42        | <10         | 255         | 351         | 781         | 50.9       | 13.9       | 57.0        | 13.8        |
| 188492 | R2363MC019A 4-5 cm   | 905          | <1          | 12400       | 29.1        | 538         | 19.2        | 1040       | 5.61        | <10         | 229         | 347         | 815         | 52.8       | 14.2       | 58.8        | 14.3        |
| 188497 | R2363MC019A 9-10 cm  | 279          | <1          | 12100       | 26.7        | 504         | 15.6        | 1020       | 5.56        | <10         | 233         | 349         | 813         | 51.7       | 14.2       | 56.3        | 14.8        |
| 188502 | R2363MC019A 14-15 cm | 300          | <1          | 10900       | 27.5        | 493         | 11.8        | 920        | 5.57        | <10         | <200        | 343         | 794         | 51.4       | 14.1       | 56.0        | 15.0        |
| 188512 | R2363MC019A 24-25 cm | 282          | <1          | 7730        | 31.5        | 462         | 10.9        | 866        | 5.78        | <10         | <200        | 221         | 748         | 56.4       | 13.6       | 60.4        | 18.7        |



· NGU -

Leiv Eirikssons vei 39

 NO - 7040 Trondheim

 NORGES
 Tlf.: 73 90 40 00

 GEOLOGISKE
 E-post: lab@ngu.no

Bestemmelse av kationer, ICP-OES metode (LABdok\_G09) GEOLOGISK MATERIALE ANALYSEKONTRAKTNR. 2021.0031



|        |                      | Al    | As    | В     | Ва    | Be    | Ca    | Cd    | Ce    | Co    | Cr    | Cu    | Fe    | K     | La    | Li    | Mg    |
|--------|----------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| NGU-nr | Prøve ID             | mg/kg |
| 188525 | R2363MC019A 37-38 cm | 23400 | 9.6   | 60    | 81.7  | 1.13  | 27900 | 0.17  | 61.3  | 13.2  | 51.6  | 20.6  | 30500 | 8880  | 24.9  | 36.5  | 14900 |
| 188531 | R2365GR141 0-1 cm    | 16800 | 4.8   | 58    | 293   | 0.80  | 86300 | 0.11  | 45.5  | 9.6   | 36.5  | 13.4  | 23700 | 6530  | 19.3  | 24.0  | 12100 |
| Hynne  | Hynne                | 21200 | 4.1   | 30    | 83.5  | 0.57  | 23500 | <0.1  | 59.7  | 12.0  | 64.4  | 20.4  | 31000 | 7490  | 24.9  | 27.0  | 15500 |
| Minn   | Minn                 | 17900 | <2    | <10   | 57.3  | 0.33  | 1120  | <0.1  | 28.9  | 10.6  | 23.8  | 12.4  | 32400 | 6020  | 15.3  | 16.0  | 6460  |
| 188433 | R2339MC018A 0-1 cm   | 22000 | 5.9   | 73    | 142   | 1.06  | 78800 | 0.12  | 57.0  | 13.2  | 49.3  | 16.3  | 31400 | 8610  | 23.9  | 32.2  | 14900 |
| 188434 | R2339MC018A 1-2 cm   | 21900 | 6.2   | 72    | 145   | 1.05  | 77800 | 0.11  | 57.5  | 13.3  | 49.3  | 16.3  | 31400 | 8640  | 23.7  | 32.0  | 14900 |
| 188435 | R2339MC018A 2-3 cm   | 22600 | 6.3   | 74    | 159   | 1.10  | 77600 | 0.14  | 59.7  | 14.0  | 51.1  | 17.2  | 32600 | 8790  | 24.9  | 33.7  | 14900 |
| 188436 | R2339MC018A 3-4 cm   | 22200 | 6.5   | 73    | 158   | 1.08  | 76200 | 0.15  | 58.1  | 14.4  | 50.1  | 17.2  | 32200 | 8650  | 24.1  | 33.8  | 15100 |
| 188437 | R2339MC018A 4-5 cm   | 22100 | 7.0   | 72    | 143   | 1.06  | 77400 | 0.15  | 57.8  | 14.9  | 49.7  | 16.7  | 32200 | 8580  | 23.8  | 32.5  | 14900 |
| 188438 | R2339MC018A 5-6 cm   | 22200 | 7.2   | 71    | 126   | 1.08  | 77100 | <0.1  | 58.3  | 14.8  | 50.2  | 16.8  | 32600 | 8660  | 24.3  | 32.6  | 14900 |
| 188439 | R2339MC018A 6-7 cm   | 23100 | 7.3   | 73    | 123   | 1.11  | 77600 | 0.13  | 59.4  | 17.3  | 50.9  | 17.1  | 32100 | 8890  | 24.2  | 33.4  | 14800 |
| 188440 | R2339MC018A 7-8 cm   | 23900 | 8.1   | 74    | 108   | 1.13  | 78500 | 0.12  | 60.3  | 14.7  | 51.4  | 16.7  | 33000 | 9200  | 24.7  | 34.1  | 14900 |
| 188441 | R2339MC018A 8-9 cm   | 23600 | 9.7   | 74    | 103   | 1.13  | 78500 | 0.10  | 59.0  | 13.6  | 50.9  | 16.5  | 33100 | 9220  | 24.5  | 33.8  | 14700 |
| 188442 | R2339MC018A 9-10 cm  | 23900 | 8.5   | 73    | 97.8  | 1.13  | 79100 | <0.1  | 60.1  | 12.2  | 52.0  | 16.4  | 33800 | 9450  | 24.8  | 34.2  | 14800 |
| 188443 | R2339MC018A 10-11 cm | 23500 | 6.0   | 73    | 98.5  | 1.13  | 77000 | 0.11  | 59.1  | 11.9  | 51.3  | 16.2  | 32500 | 9210  | 24.4  | 33.7  | 14600 |
| 188444 | R2339MC018A 11-12 cm | 23600 | 5.0   | 73    | 101   | 1.13  | 78000 | 0.13  | 59.3  | 11.9  | 51.4  | 16.8  | 32000 | 9230  | 24.3  | 33.8  | 14700 |
| 188445 | R2339MC018A 12-13 cm | 24300 | 3.8   | 74    | 102   | 1.15  | 79700 | 0.19  | 60.8  | 11.9  | 52.2  | 17.3  | 31800 | 9720  | 25.1  | 35.0  | 14700 |
| 188446 | R2339MC018A 13-14 cm | 23900 | 4.1   | 75    | 98.0  | 1.14  | 78000 | 0.17  | 60.2  | 12.0  | 51.9  | 16.6  | 31400 | 9430  | 25.2  | 34.4  | 14600 |
| 188447 | R2339MC018A 14-15 cm | 24300 | 4.0   | 75    | 96.6  | 1.16  | 78700 | 0.25  | 60.9  | 12.2  | 52.6  | 16.9  | 31500 | 9520  | 25.4  | 34.8  | 14700 |
| 188448 | R2339MC018A 15-16 cm | 24100 | 3.3   | 73    | 94.9  | 1.15  | 78100 | 0.30  | 60.6  | 12.3  | 52.2  | 16.7  | 31100 | 9670  | 25.2  | 34.7  | 14600 |
| 188449 | R2339MC018A 16-17 cm | 24400 | 3.1   | 73    | 94.6  | 1.14  | 78300 | 0.26  | 60.8  | 12.5  | 52.4  | 16.9  | 31400 | 9500  | 25.2  | 34.4  | 14600 |
| 188450 | R2339MC018A 17-18 cm | 24000 | 3.6   | 75    | 94.1  | 1.15  | 78700 | 0.16  | 60.1  | 12.5  | 51.7  | 16.1  | 31100 | 9540  | 24.9  | 34.4  | 14700 |
| 188451 | R2339MC018A 18-19 cm | 23700 | 4.7   | 76    | 95.3  | 1.13  | 78900 | 0.17  | 59.8  | 12.6  | 51.7  | 16.8  | 31100 | 9420  | 24.9  | 34.0  | 14700 |
| 188452 | R2339MC018A 19-20 cm | 23700 | 3.4   | 74    | 93.3  | 1.15  | 78900 | 0.11  | 59.9  | 12.4  | 51.6  | 16.2  | 31100 | 9760  | 25.0  | 34.3  | 14700 |
| 188453 | R2339MC018A 20-21 cm | 23400 | 4.0   | 74    | 93.3  | 1.14  | 79200 | 0.13  | 59.6  | 12.3  | 51.0  | 16.0  | 31200 | 9560  | 24.8  | 33.8  | 14700 |
| 188454 | R2339MC018A 21-22 cm | 23600 | 4.1   | 75    | 92.3  | 1.14  | 79400 | 0.15  | 59.5  | 12.5  | 51.4  | 15.9  | 30900 | 9670  | 25.0  | 34.2  | 14700 |
| 188455 | R2339MC018A 22-23 cm | 23800 | 4.1   | 74    | 92.1  | 1.14  | 79000 | 0.18  | 59.4  | 12.7  | 51.5  | 16.0  | 31100 | 9820  | 24.8  | 34.3  | 14700 |
| 188456 | R2339MC018A 23-24 cm | 23800 | 4.1   | 74    | 94.3  | 1.13  | 80100 | 0.14  | 60.2  | 12.6  | 51.6  | 16.3  | 31300 | 9800  | 24.8  | 34.4  | 14700 |
| 188457 | R2339MC018A 24-25 cm | 23600 | 3.8   | 73    | 92.4  | 1.13  | 78700 | 0.12  | 59.3  | 12.6  | 51.1  | 15.7  | 31100 | 9820  | 24.8  | 34.2  | 14500 |
| 188458 | R2339MC018A 25-26 cm | 23600 | 3.5   | 73    | 91.3  | 1.14  | 78500 | 0.10  | 58.9  | 12.7  | 50.7  | 15.3  | 31000 | 9750  | 24.7  | 33.9  | 14400 |
| 188459 | R2339MC018A 26-27 cm | 24300 | 3.6   | 75    | 94.5  | 1.16  | 79700 | 0.12  | 60.5  | 12.9  | 52.3  | 16.2  | 31800 | 10000 | 25.3  | 34.9  | 14800 |
| 188460 | R2339MC018A 27-28 cm | 24300 | 3.7   | 75    | 95.7  | 1.16  | 79600 | 0.12  | 60.5  | 13.0  | 52.6  | 16.1  | 32100 | 10000 | 25.2  | 35.0  | 14800 |
| 188461 | R2339MC018A 28-29 cm | 24600 | 4.2   | 75    | 96.9  | 1.18  | 79100 | 0.18  | 60.4  | 13.1  | 52.6  | 16.8  | 31900 | 10000 | 25.3  | 35.3  | 14800 |
| 188462 | R2339MC018A 29-30 cm | 24400 | 3.8   | 74    | 94.3  | 1.18  | 79000 | 0.19  | 60.4  | 13.1  | 52.3  | 16.8  | 31500 | 9980  | 25.5  | 35.0  | 14600 |
| 188463 | R2339MC018A 30-31 cm | 24200 | 3.8   | 72    | 96.2  | 1.16  | 80000 | 0.15  | 60.1  | 13.0  | 52.2  | 16.3  | 31500 | 9830  | 24.9  | 34.4  | 14500 |



· NGU -

Leiv Eirikssons vei 39 NO - 7040 Trondheim

NORGES TIf.: 73 90 40 00 GEOLOGISKE E-post: lab@ngu.no Bestemmelse av kationer, ICP-OES metode (LABdok\_G09) GEOLOGISK MATERIALE ANALYSEKONTRAKTNR. 2021.0031



| NGU-nr | Prøve ID             | Mn<br>ma/kal | Mo<br>ma/ka | Na<br>mɑ/kɑ | Ni<br>ma/ka | P<br>ma/ka | Pb<br>ma/ka | S<br>ma/ka | Sc<br>ma/ka | Se<br>ma/ka | Si<br>ma/ka | Sr<br>ma/ka | Ti<br>ma/ka | V<br>ma/ka | Y<br>ma/kal | Zn<br>ma/ka | Zr<br>ma/ka |
|--------|----------------------|--------------|-------------|-------------|-------------|------------|-------------|------------|-------------|-------------|-------------|-------------|-------------|------------|-------------|-------------|-------------|
| 188525 | R2363MC019A 37-38 cm | 330          | <1          | 9310        | 38.3        | 506        | 14.3        | 1950       | 7.14        | <10         | <200        | 90.0        | 778         | 74.5       | 15.1        | 74.1        | 21.2        |
| 188531 | R2365GR141 0-1 cm    | 687          | <1          | 19000       | 28.6        | 540        | 19.9        | 1710       | 5.46        | <10         | <200        | 377         | 786         | 52.1       | 13.9        | 57.3        | 13.3        |
| Hynne  | Hynne                | 467          | <1          | 6470        | 41.4        | 595        | 12.8        | 642        | 6.00        | <10         | <200        | 80.7        | 1390        | 63.2       | 14.6        | 78.8        | 23.6        |
| Minn   | Minn                 | 241          | 1.3         | 218         | 19.4        | 392        | 12.4        | 104        | 3.07        | <10         | 267         | 4.8         | 2140        | 33.7       | 10.4        | 62.1        | 11.(        |
| 188433 | R2339MC018A 0-1 cm   | 1040         | <1          | 19000       | 38.0        | 596        | 22.4        | 1570       | 7.17        | <10         | <200        | 351         | 1000        | 67.7       | 16.2        | 75.5        | 16.6        |
| 188434 | R2339MC018A 1-2 cm   | 1050         | <1          | 19700       | 38.3        | 588        | 22.6        | 1750       | 7.21        | <10         | <200        | 348         | 988         | 67.5       | 16.2        | 75.4        | 16.9        |
| 188435 | R2339MC018A 2-3 cm   | 1660         | 1.3         | 16200       | 42.6        | 603        | 24.8        | 1320       | 7.46        | <10         | <200        | 351         | 1020        | 70.1       | 16.8        | 79.0        | 17.5        |
| 188436 | R2339MC018A 3-4 cm   | 3060         | 2.9         | 18100       | 44.7        | 599        | 26.0        | 1530       | 7.31        | <10         | <200        | 344         | 994         | 69.9       | 16.5        | 78.6        | 17.1        |
| 188437 | R2339MC018A 4-5 cm   | 1780         | 1.1         | 17900       | 40.2        | 596        | 25.9        | 1480       | 7.25        | <10         | <200        | 346         | 984         | 68.4       | 16.4        | 77.1        | 16.9        |
| 188438 | R2339MC018A 5-6 cm   | 1380         | <1          | 16900       | 39.2        | 613        | 25.9        | 1390       | 7.29        | <10         | <200        | 346         | 996         | 69.6       | 16.5        | 78.1        | 17.1        |
| 188439 | R2339MC018A 6-7 cm   | 1490         | <1          | 17100       | 41.1        | 624        | 26.4        | 1360       | 7.41        | <10         | 260         | 336         | 1050        | 70.3       | 16.5        | 78.6        | 16.9        |
| 188440 | R2339MC018A 7-8 cm   | 908          | <1          | 16300       | 40.1        | 644        | 25.1        | 1320       | 7.47        | <10         | 220         | 337         | 1060        | 71.2       | 16.7        | 78.7        | 17.3        |
| 188441 | R2339MC018A 8-9 cm   | 716          | <1          | 15800       | 38.4        | 650        | 23.6        | 1260       | 7.38        | <10         | 238         | 333         | 1070        | 71.0       | 16.4        | 77.7        | 17.3        |
| 188442 | R2339MC018A 9-10 cm  | 426          | <1          | 14400       | 38.6        | 637        | 22.1        | 1190       | 7.53        | <10         | 218         | 330         | 1070        | 71.9       | 16.8        | 78.3        | 17.8        |
| 188443 | R2339MC018A 10-11 cm | 445          | <1          | 15000       | 37.8        | 594        | 19.5        | 1210       | 7.40        | <10         | <200        | 321         | 1060        | 70.1       | 16.5        | 76.0        | 17.5        |
| 188444 | R2339MC018A 11-12 cm | 515          | <1          | 15600       | 37.9        | 581        | 19.6        | 1300       | 7.42        | <10         | <200        | 323         | 1070        | 71.2       | 16.6        | 76.2        | 17.6        |
| 188445 | R2339MC018A 12-13 cm | 389          | <1          | 14100       | 38.6        | 575        | 19.6        | 1170       | 7.54        | <10         | <200        | 330         | 1100        | 75.4       | 16.8        | 77.5        | 18.2        |
| 188446 | R2339MC018A 13-14 cm | 427          | <1          | 14800       | 38.3        | 575        | 18.1        | 1220       | 7.50        | <10         | <200        | 319         | 1100        | 70.9       | 16.7        | 76.2        | 17.8        |
| 188447 | R2339MC018A 14-15 cm | 429          | <1          | 13800       | 38.9        | 574        | 17.1        | 1120       | 7.58        | <10         | 205         | 324         | 1100        | 72.0       | 16.9        | 77.3        | 18.2        |
| 188448 | R2339MC018A 15-16 cm | 391          | <1          | 13900       | 39.3        | 566        | 16.3        | 1170       | 7.54        | <10         | 231         | 318         | 1100        | 72.6       | 16.7        | 76.7        | 18.3        |
| 188449 | R2339MC018A 16-17 cm | 411          | <1          | 13300       | 39.4        | 569        | 15.5        | 1060       | 7.54        | <10         | 209         | 320         | 1090        | 73.3       | 16.7        | 76.6        | 18.3        |
| 188450 | R2339MC018A 17-18 cm | 456          | <1          | 15100       | 39.0        | 568        | 16.1        | 1240       | 7.49        | <10         | <200        | 322         | 1090        | 70.4       | 16.6        | 75.9        | 18.0        |
| 188451 | R2339MC018A 18-19 cm | 466          | <1          | 15400       | 38.6        | 572        | 17.1        | 1310       | 7.47        | <10         | <200        | 326         | 1080        | 71.1       | 16.5        | 76.5        | 17.8        |
| 188452 | R2339MC018A 19-20 cm | 404          | <1          | 15300       | 38.5        | 571        | 16.9        | 1270       | 7.48        | <10         | 221         | 329         | 1080        | 68.4       | 16.5        | 76.3        | 17.7        |
| 188453 | R2339MC018A 20-21 cm | 418          | <1          | 15700       | 38.1        | 567        | 17.9        | 1250       | 7.40        | <10         | 246         | 324         | 1070        | 69.2       | 16.4        | 75.7        | 17.6        |
| 188454 | R2339MC018A 21-22 cm | 424          | <1          | 15900       | 38.2        | 571        | 16.3        | 1300       | 7.46        | <10         | 226         | 326         | 1090        | 69.7       | 16.5        | 75.0        | 17.6        |
| 188455 | R2339MC018A 22-23 cm | 406          | <1          | 15900       | 38.5        | 571        | 15.2        | 1300       | 7.46        | <10         | 223         | 326         | 1090        | 70.1       | 16.5        | 75.2        | 17.8        |
| 188456 | R2339MC018A 23-24 cm | 410          | <1          | 15200       | 38.6        | 575        | 16.2        | 1200       | 7.47        | <10         | 242         | 328         | 1080        | 70.3       | 16.6        | 75.3        | 17.9        |
| 188457 | R2339MC018A 24-25 cm | 408          | <1          | 14800       | 38.3        | 568        | 14.9        | 1220       | 7.41        | <10         | <200        | 325         | 1090        | 69.4       | 16.4        | 74.2        | 17.9        |
| 188458 | R2339MC018A 25-26 cm | 411          | <1          | 14800       | 37.9        | 569        | 14.7        | 1190       | 7.36        | <10         | <200        | 326         | 1080        | 67.9       | 16.3        | 73.9        | 17.6        |
| 188459 | R2339MC018A 26-27 cm | 430          | <1          | 14800       | 39.4        | 580        | 14.9        | 1210       | 7.57        | <10         | 208         | 326         | 1110        | 70.2       | 16.7        | 76.2        | 18.2        |
| 188460 | R2339MC018A 27-28 cm | 434          | <1          | 14100       | 39.6        | 580        | 14.3        | 1150       | 7.56        | <10         | 215         | 328         | 1110        | 71.7       | 16.7        | 76.5        | 18.4        |
| 188461 | R2339MC018A 28-29 cm | 432          | <1          | 14600       | 39.7        | 581        | 14.5        | 1150       | 7.59        | <10         | 223         | 325         | 1110        | 72.2       | 16.7        | 76.5        | 18.4        |
| 188462 | R2339MC018A 29-30 cm | 431          | <1          | 13900       | 39.6        | 577        | 14.7        | 1150       | 7.57        | <10         | 212         | 327         | 1110        | 71.9       | 16.7        | 76.1        | 18.2        |
| 188463 | R2339MC018A 30-31 cm | 414          | <1          | 12600       | 39.4        | 578        | 14.3        | 1070       | 7.53        | <10         | 221         | 328         | 1100        | 71.6       | 16.6        | 75.8        | 18.4        |



· NGU -

Leiv Eirikssons vei 39 NO - 7040 Trondheim

NORGES TIf.: 73 90 40 00 GEOLOGISKE E-post: lab@ngu.no

### Bestemmelse av kationer, ICP-OES metode (LABdok\_G09) GEOLOGISK MATERIALE ANALYSEKONTRAKTNR. 2021.0031



| NGU-nr | Prøve ID             | AI    | As    | В     | Ba    | Be    | Ca    | Cd    | Ce    | Co    | Cr    | Cu    | Fe    | ĸ     | La    | Li    | Mg    |
|--------|----------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|        |                      | mg/kg |
| 188464 | R2339MC018A 31-32 cm | 24000 | 3.7   | 72    | 95.1  | 1.16  | 78600 | 0.18  | 60.7  | 12.8  | 52.0  | 16.5  | 31200 | 9730  | 24.9  | 34.2  | 14400 |
| 188465 | R2339MC018A 32-33 cm | 24700 | 3.5   | 72    | 99.0  | 1.17  | 79300 | 0.19  | 61.0  | 12.9  | 53.0  | 16.8  | 31800 | 9850  | 25.3  | 35.0  | 14400 |
| 188466 | R2339MC018A 33-34 cm | 25000 | 4.0   | 73    | 98.2  | 1.18  | 79300 | 0.22  | 61.2  | 12.7  | 52.7  | 17.2  | 31600 | 9980  | 25.6  | 35.2  | 14600 |
| 188467 | R2339MC018A 34-35 cm | 23900 | 3.7   | 71    | 97.0  | 1.15  | 77100 | 0.24  | 60.4  | 12.6  | 52.0  | 17.2  | 31400 | 9720  | 25.0  | 34.3  | 14400 |
| 188468 | R2339MC018A 35-36 cm | 24200 | 3.5   | 71    | 97.2  | 1.15  | 76900 | 0.33  | 60.6  | 12.8  | 52.1  | 16.9  | 31400 | 9720  | 25.1  | 34.4  | 14400 |
| 188469 | R2339MC018A 36-37 cm | 24100 | 3.9   | 71    | 97.2  | 1.15  | 77700 | 0.31  | 60.9  | 12.7  | 51.9  | 16.2  | 31200 | 9720  | 25.2  | 34.4  | 14500 |
| 188470 | R2339MC018A 37-38 cm | 24000 | 3.8   | 71    | 94.9  | 1.14  | 77800 | 0.23  | 60.4  | 13.0  | 51.6  | 16.1  | 31300 | 9660  | 25.2  | 34.6  | 14400 |
| 188471 | R2339MC018A 38-39 cm | 24400 | 3.6   | 72    | 97.6  | 1.17  | 78800 | 0.21  | 61.3  | 13.0  | 52.7  | 16.2  | 32000 | 9910  | 25.9  | 35.3  | 14500 |
| 188472 | R2339MC018A 39-40 cm | 24000 | 3.9   | 71    | 94.2  | 1.15  | 78600 | 0.16  | 60.4  | 12.7  | 51.6  | 15.9  | 31200 | 9670  | 25.1  | 34.3  | 14300 |
| 188473 | R2339MC018A 40-41 cm | 23800 | 4.1   | 71    | 94.8  | 1.15  | 79200 | 0.17  | 60.5  | 12.8  | 51.8  | 15.9  | 31300 | 9660  | 25.3  | 34.3  | 14300 |
| 188474 | R2339MC018A 41-42 cm | 23900 | 4.7   | 72    | 93.5  | 1.14  | 78500 | 0.22  | 59.5  | 12.8  | 51.1  | 16.5  | 31000 | 9660  | 25.1  | 34.2  | 14300 |
| 188475 | R2339MC018A 42-43 cm | 24400 | 3.5   | 71    | 96.8  | 1.16  | 77000 | 0.16  | 62.1  | 13.0  | 52.9  | 16.7  | 31900 | 9790  | 25.7  | 35.0  | 14400 |
| 188476 | R2339MC018A 43-44 cm | 24500 | 4.1   | 72    | 95.2  | 1.16  | 80000 | 0.16  | 61.0  | 13.6  | 52.0  | 16.4  | 31600 | 9790  | 25.6  | 34.9  | 14400 |
| Hynne  | Hynne                | 21500 | 4.4   | 29    | 78.7  | 0.59  | 18800 | <0.1  | 61.0  | 11.8  | 62.5  | 20.3  | 29800 | 7610  | 25.4  | 26.4  | 15000 |
| Minn   | Minn                 | 18200 | 2.2   | <10   | 55.8  | 0.35  | 1100  | <0.1  | 29.1  | 10.8  | 23.6  | 12.1  | 31700 | 6090  | 16.0  | 15.9  | 6440  |
| Tana   | Tana                 | 17600 | <2    | <10   | 143   | 1.56  | 2960  | <0.1  | 85.5  | 15.3  | 42.1  | 4.7   | 20000 | 6110  | 40.1  | 21.4  | 9980  |


UNDERSØKELSE

· NGU -

Leiv Eirikssons vei 39 NO - 7040 Trondheim

NORGES TIf.: 73 90 40 00 GEOLOGISKE E-post: lab@ngu.no

### Bestemmelse av kationer, ICP-OES metode (LABdok\_G09) GEOLOGISK MATERIALE ANALYSEKONTRAKTNR. 2021.0031



### NB! S, Se, Si omfattes ikke av akkreditering. For andre unntak se Anmerkninger

|        |                      | Mn    | Мо    | Na    | Ni    | Р     | Pb    | S     | Sc    | Se    | Si    | Sr    | Ti    | V     | Y     | Zn    | Zr    |
|--------|----------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| NGU-nr | Prøve ID             | mg/kg |
| 188464 | R2339MC018A 31-32 cm | 408   | <1    | 13000 | 39.3  | 570   | 13.8  | 1070  | 7.51  | <10   | <200  | 323   | 1100  | 72.0  | 16.6  | 75.7  | 18.2  |
| 188465 | R2339MC018A 32-33 cm | 407   | <1    | 11000 | 39.8  | 584   | 13.7  | 916   | 7.63  | <10   | <200  | 321   | 1110  | 73.6  | 16.8  | 76.9  | 18.7  |
| 188466 | R2339MC018A 33-34 cm | 410   | <1    | 13000 | 39.6  | 575   | 13.7  | 1050  | 7.61  | <10   | 221   | 328   | 1130  | 73.5  | 16.8  | 76.7  | 18.6  |
| 188467 | R2339MC018A 34-35 cm | 399   | <1    | 11900 | 39.2  | 567   | 13.5  | 998   | 7.48  | <10   | <200  | 312   | 1100  | 73.4  | 16.6  | 76.2  | 18.4  |
| 188468 | R2339MC018A 35-36 cm | 399   | <1    | 12000 | 39.7  | 568   | 13.4  | 1000  | 7.52  | <10   | <200  | 319   | 1100  | 73.6  | 16.6  | 76.3  | 18.6  |
| 188469 | R2339MC018A 36-37 cm | 401   | <1    | 12000 | 39.5  | 571   | 13.7  | 1060  | 7.50  | <10   | <200  | 317   | 1110  | 71.6  | 16.6  | 76.1  | 18.5  |
| 188470 | R2339MC018A 37-38 cm | 408   | <1    | 11500 | 39.6  | 597   | 13.6  | 1000  | 7.47  | <10   | <200  | 321   | 1100  | 70.4  | 16.5  | 75.6  | 18.5  |
| 188471 | R2339MC018A 38-39 cm | 415   | <1    | 10600 | 39.8  | 586   | 13.3  | 871   | 7.60  | <10   | 202   | 325   | 1130  | 72.1  | 16.9  | 77.3  | 19.0  |
| 188472 | R2339MC018A 39-40 cm | 409   | <1    | 11700 | 38.7  | 576   | 14.6  | 1020  | 7.46  | <10   | <200  | 322   | 1100  | 70.0  | 16.5  | 75.6  | 18.4  |
| 188473 | R2339MC018A 40-41 cm | 409   | <1    | 10800 | 39.0  | 582   | 13.9  | 981   | 7.49  | <10   | <200  | 321   | 1110  | 70.7  | 16.6  | 75.6  | 18.6  |
| 188474 | R2339MC018A 41-42 cm | 411   | <1    | 12900 | 39.4  | 575   | 15.2  | 1150  | 7.38  | <10   | <200  | 320   | 1100  | 71.2  | 16.3  | 74.9  | 17.9  |
| 188475 | R2339MC018A 42-43 cm | 408   | <1    | 10300 | 40.0  | 578   | 13.8  | 883   | 7.62  | <10   | <200  | 309   | 1130  | 72.6  | 16.8  | 77.2  | 19.0  |
| 188476 | R2339MC018A 43-44 cm | 412   | <1    | 11200 | 41.3  | 585   | 15.3  | 993   | 7.52  | <10   | <200  | 329   | 1120  | 70.7  | 16.7  | 76.2  | 18.6  |
| Hynne  | Hynne                | 440   | <1    | 6280  | 40.8  | 610   | 12.8  | 625   | 5.95  | <10   | 238   | 73.2  | 1450  | 62.3  | 14.5  | 80.6  | 22.9  |
| Minn   | Minn                 | 330   | 1.3   | 217   | 19.6  | 378   | 12.9  | 101   | 3.03  | <10   | 388   | 4.6   | 2200  | 32.9  | 10.1  | 62.0  | 11.0  |
| Tana   | Tana                 | 368   | <1    | 336   | 53.4  | 607   | 23.0  | 32    | 6.03  | <10   | 547   | 32.1  | 509   | 20.3  | 25.0  | 73.2  | 20.6  |



Leiv Eirikssons vei 39 NO - 7040 Trondheim Tlf.: 73 90 40 00 E-post: lab@ngu.no

| METODE:<br>Prinsipp:                                                  | Analyse av kvikksølv i oppsluttete geologiske materialer (LABdok_G10 under etablering)<br>Analysemetoden er basert på kalddamp teknikk (CV-AAS) med SnCl <sub>2</sub> som reduksjonsmiddel                                                                                                                   |
|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Analyseinstrument:                                                    | Teledyne Leeman Labs QuickTrace® M-7600Mercury Analyzer                                                                                                                                                                                                                                                      |
| Framstilling av analyseløsninger:<br>Merknad:                         | iht. prosedyre i LABdok_P03: Framstilling av analyseløsninger etter partiell oppslutning i salpetersyre iht. NS-4770<br>Prøvebehandling iht. NS-4770 er en selektiv oppslutningsmetode og medfører ikke total dekomponering. Rapporterte<br>analyseverdier representerer derfor ikke totalt innhold i prøve. |
| Nedre bestemmelsesgrense (LLQ):                                       | 0.005 mg/kg                                                                                                                                                                                                                                                                                                  |
|                                                                       | *Basert på fortynningsfaktor 100, dvs. 1 (±0.001) g prøve fortynnes i 100 ml analysevolum.                                                                                                                                                                                                                   |
|                                                                       | For analyser med fortynningsfaktor som avviker fra 100, blir deteksjonsgrensene og måleområdene automatisk omregnet.                                                                                                                                                                                         |
| Analyseusikkerhet:                                                    | <b>± 40 % rel.</b> måleområdet 0.005 - 0.025 mg/kg                                                                                                                                                                                                                                                           |
|                                                                       | <b>± 20 % rel.</b> måleområdet 0.025 - 2.00 mg/kg                                                                                                                                                                                                                                                            |
|                                                                       | Oppgitt usikkerhet har dekningsfaktor 2 (2 standardavvik), noe som tilsvarer et konfidensintervall på 95 %                                                                                                                                                                                                   |
| Kontrollrutiner:                                                      | Det analyseres rutinemessig kontrollprøver som føres i kontrolldiagram (X-diagram). Disse kan forevises om ønskelig.                                                                                                                                                                                         |
| Analysekontrakt nr.: 2021.0031<br>Antall prøver: 121<br>Anmerkninger: | Prøvematerial: GEOLOGISK MATERIALE                                                                                                                                                                                                                                                                           |

Delrapport med forside ("Forside\_Hg") og sider med analysedata ("Data\_Hg"). Fullstendig analyserapport finnes kun i papirformat. Gjengivelse av analysedata skal skje på en slik måte at meningsinnholdet i rapporten ikke endres. *Merk! Rapporten er skrivebeskyttet.* 

Ferdig analysert (dato): 05.05.2021 Operatør: Arlinda F. Ciftja

Leiv Eirikssons vei 39 NO - 7040 Trondheim Tlf.: 73 90 40 00 E-post: lab@ngu.no

| NGU-nr. | Prøve ID              | Hg      |
|---------|-----------------------|---------|
|         |                       | mg/kg   |
| Hynne   | Hynne                 | 0.0261  |
| Minn    | Minn                  | < 0.005 |
| Tana    | Tana                  | < 0.005 |
| 188003  | R2132MC006A 0-1 cm    | 0.0134  |
| 188042  | R2139MC008A 0-1 cm    | 0.0207  |
| 188044  | R2139MC008A 2-3 cm    | 0.0230  |
| 188046  | R2139CMC008A 4-5 cm   | 0.0227  |
| 188051  | R2139CMC008A 9-10 cm  | 0.0187  |
| 188056  | R2139CMC008A 14-15 cm | 0.0129  |
| 188066  | R2139CMC008A 24-25 cm | 0.0115  |
| 188070  | R2139CMC008A 28-29 cm | 0.0119  |
| 188076  | R2183MC009A 0-1 cm    | 0.0305  |
| 188078  | R2183MC009A 2-3 cm    | 0.0283  |
| 188080  | R2183MC009A 4-5 cm    | 0.0257  |
| 188085  | R2183MC009A 9-10 cm   | 0.0244  |
| 188090  | R2183MC009A 14-15 cm  | 0.0164  |
| 188100  | R2183MC009A 24-25 cm  | 0.0139  |
| 188110  | R2183MC009A 34-35 cm  | 0.0125  |
| 188123  | R2229MC010A 0-1 cm    | 0.0198  |
| 188125  | R2229MC010A 2-3 cm    | 0.0172  |
| 188127  | R2229MC010A 4-5 cm    | 0.0154  |
| 188132  | R2229MC010A 9-10 cm   | 0.0151  |
| 188137  | R2229MC010A 14-15 cm  | 0.0105  |
| 188147  | R2229MC010A 24-25 cm  | 0.0078  |
| 188153  | R2229MC010A 30-31 cm  | 0.0075  |
| Hynne   | Hynne                 | 0.0245  |
| Minn    | Minn                  | < 0.005 |
| 188164  | R2242MC012A 0-1 cm    | 0.0253  |
| 188166  | R2242MC012A 2-3 cm    | 0.0255  |
| 188168  | R2242MC012A 4-5 cm    | 0.0235  |
| 188173  | R2242MC012A 9-10 cm   | 0.0232  |
| 188178  | R2242MC012A 14-15 cm  | 0.0166  |
| 188188  | R2242MC012A 24-25 cm  | 0.0153  |
| 188202  | R2242MC012A 38-39 cm  | 0.0142  |

Leiv Eirikssons vei 39 NO - 7040 Trondheim Tlf.: 73 90 40 00 E-post: lab@ngu.no

| NGU-nr. | Prøve ID             | Hg      |
|---------|----------------------|---------|
|         |                      | mg/kg   |
| 188208  | R2270MC013A 0-1 cm   | 0.0202  |
| 188210  | R2270MC013A 2-3 cm   | 0.0214  |
| 188212  | R2270MC013A 4-5 cm   | 0.0171  |
| 188217  | R2270MC013A 9-10 cm  | 0.0192  |
| 188222  | R2270MC013A 14-15 cm | 0.0167  |
| 188232  | R2270MC013A 24-25 cm | 0.0194  |
| 188241  | R2270MC013A 32-33 cm | 0.0151  |
| 188246  | R2276MC014A 0-1 cm   | 0.0261  |
| 188248  | R2276MC014A 2-3 cm   | 0.0253  |
| 188250  | R2276MC014A 4-5 cm   | 0.0254  |
| 188255  | R2276MC014A 9-10 cm  | 0.0252  |
| 188260  | R2276MC014A 14-15 cm | 0.0236  |
| 188270  | R2276MC014A 24-25 cm | 0.0161  |
| 188289  | R2276MC014A 43-44 cm | 0.0165  |
| 188293  | R2279BC060 0-1 cm    | 0.0293  |
| 188294  | R2289MC015A 0-1 cm   | 0.0293  |
| Hynne   | Hynne                | 0.0285  |
| Minn    | Minn                 | < 0.005 |
| Tana    | Tana                 | < 0.005 |
| 188339  | R2326GR104 0-1 cm    | 0.0267  |
| 188340  | R2331MC016A 0-1 cm   | 0.0274  |
| 188381  | R2338MC017A 0-1 cm   | 0.0279  |
| 188383  | R2338MC017A 2-3 cm   | 0.0273  |
| 188385  | R2338MC017A 4-5 cm   | 0.0243  |
| 188390  | R2338MC017A 9-10 cm  | 0.0248  |
| 188395  | R2338MC017A 14-15 cm | 0.0267  |
| 188405  | R2338MC017A 24-25 cm | 0.0200  |
| 188428  | R2338MC017A 47-48 cm | 0.0178  |
| 188486  | R2354GR125 0-1 cm    | 0.0238  |
| 188487  | R2359GR129 0-1 cm    | 0.0263  |
| 188488  | R2363MC019A 0-1 cm   | 0.0203  |
| 188490  | R2363MC019A 2-3 cm   | 0.0263  |
| 188492  | R2363MC019A 4-5 cm   | 0.0252  |
| 188497  | R2363MC019A 9-10 cm  | 0.0194  |

Leiv Eirikssons vei 39 NO - 7040 Trondheim Tlf.: 73 90 40 00 E-post: lab@ngu.no

| NGU-nr. | Prøve ID             | Hg      |
|---------|----------------------|---------|
|         |                      | mg/kg   |
| 188502  | R2363MC019A 14-15 cm | 0.0163  |
| 188512  | R2363MC019A 24-25 cm | 0.0156  |
| 188525  | R2363MC019A 37-38 cm | 0.0195  |
| 188531  | R2365GR141 0-1 cm    | 0.0278  |
| Hynne   | Hynne                | 0.0236  |
| Minn    | Minn                 | < 0.005 |
| 188433  | R2339MC018A 0-1 cm   | 0.0225  |
| 188434  | R2339MC018A 1-2 cm   | 0.0262  |
| 188435  | R2339MC018A 2-3 cm   | 0.0296  |
| 188436  | R2339MC018A 3-4 cm   | 0.0255  |
| 188437  | R2339MC018A 4-5 cm   | 0.0245  |
| 188438  | R2339MC018A 5-6 cm   | 0.0263  |
| 188439  | R2339MC018A 6-7 cm   | 0.0255  |
| 188440  | R2339MC018A 7-8 cm   | 0.0256  |
| 188441  | R2339MC018A 8-9 cm   | 0.0285  |
| 188442  | R2339MC018A 9-10 cm  | 0.0240  |
| 188443  | R2339MC018A 10-11 cm | 0.0233  |
| 188444  | R2339MC018A 11-12 cm | 0.0233  |
| 188445  | R2339MC018A 12-13 cm | 0.0175  |
| 188446  | R2339MC018A 13-14 cm | 0.0208  |
| 188447  | R2339MC018A 14-15 cm | 0.0213  |
| 188448  | R2339MC018A 15-16 cm | 0.0194  |
| 188449  | R2339MC018A 16-17 cm | 0.0200  |
| 188450  | R2339MC018A 17-18 cm | 0.0196  |
| 188451  | R2339MC018A 18-19 cm | 0.0213  |
| 188452  | R2339MC018A 19-20 cm | 0.0181  |
| 188453  | R2339MC018A 20-21 cm | 0.0217  |
| 188454  | R2339MC018A 21-22 cm | 0.0197  |
| 188455  | R2339MC018A 22-23 cm | 0.0193  |
| 188456  | R2339MC018A 23-24 cm | 0.0187  |
| 188457  | R2339MC018A 24-25 cm | 0.0180  |
| 188458  | R2339MC018A 25-26 cm | 0.0173  |
| 188459  | R2339MC018A 26-27 cm | 0.0184  |
| 188460  | R2339MC018A 27-28 cm | 0.0181  |

Leiv Eirikssons vei 39 NO - 7040 Trondheim Tlf.: 73 90 40 00 E-post: lab@ngu.no

| NGU-nr. | Prøve ID             | Hg      |
|---------|----------------------|---------|
|         |                      | mg/kg   |
| 188461  | R2339MC018A 28-29 cm | 0.0191  |
| 188462  | R2339MC018A 29-30 cm | 0.0174  |
| 188463  | R2339MC018A 30-31 cm | 0.0175  |
| 188464  | R2339MC018A 31-32 cm | 0.0183  |
| 188465  | R2339MC018A 32-33 cm | 0.0186  |
| 188466  | R2339MC018A 33-34 cm | 0.0168  |
| 188467  | R2339MC018A 34-35 cm | 0.0162  |
| 188468  | R2339MC018A 35-36 cm | 0.0187  |
| 188469  | R2339MC018A 36-37 cm | 0.0169  |
| 188470  | R2339MC018A 37-38 cm | 0.0171  |
| 188471  | R2339MC018A 38-39 cm | 0.0174  |
| 188472  | R2339MC018A 39-40 cm | 0.0171  |
| 188473  | R2339MC018A 40-41 cm | 0.0177  |
| 188474  | R2339MC018A 41-42 cm | 0.0183  |
| 188475  | R2339MC018A 42-43 cm | 0.0171  |
| 188476  | R2339MC018A 43-44 cm | 0.0180  |
| Hynne   | Hynne                | 0.0246  |
| Minn    | Minn                 | < 0.005 |
| Tana    | Tana                 | < 0.005 |

## Vedlegg 2

Cd, Cr, Cu og Zn kart i prøvene 0-1 cm dyp og sedimentasjonsrater basert på <sup>210</sup>Pb-data.











# Vedlegg 3

XRI-bilder av sedimentkjerner



R2132MC006E - XRI - 0°/45°/90°



R2139MC008C - XRI - 0°/45°/90°



R2183MC009C - XRI - 0°/45°/90°



R2229MC011C - XRI - 0°/45°/90°



R2242MC012C - XRI - 0°/45°/90°



R2270MC013C - XRI - 0°/45°/90°



R2276MC014C - XRI - 0°/45°/90°



R2289MC015C - XRI - 0°/45°/90°



R2331MC016C - XRI - 0°/45°/90°



R2338MC017C - XRI - 0°/45°/90°

## Vedlegg 4

<sup>137</sup>Cs aktivitet og <sup>210</sup>Pb datering av 5 sedimentkjerner (R2139MC008A, R2183MC009A, R2242MC012A, R2270MC013A og R2338MC017A).
Leverandør av data: Gamma Dating Center (GDC), Københavns Universitet, Danmark

# Gamma Dating Center Copenhagen

Copenhagen, Oct 19th, 2021

Thorbjørn J. Andersen Department of Geosciences and Natural Resource Management (IGN) University of Copenhagen Oester Voldgade 10 1350 Copenhagen K e-mail <u>tja@ign.ku.dk</u> phone +45 35 32 25 03 fax +45 35 32 25 01

## Dating of core R2139MC008A

## Dating of core R2139MC008A

## Methods

The samples have been analysed for the activity of <sup>210</sup>Pb, <sup>226</sup>Ra and <sup>137</sup>Cs via gammaspectrometry at the Gamma Dating Center, Institute of Geography, University of Copenhagen. The measurements were carried out on a Canberra ultralow-background Ge-detector. <sup>210</sup>Pb was measured via its gamma-peak at 46,5 keV, <sup>226</sup>Ra via the granddaughter <sup>214</sup>Pb (peaks at 295 and 352 keV) and <sup>137</sup>Cs via its peak at 661 keV.

## Results

The core showed surface contents of unsupported <sup>210</sup>Pb of around 320 Bq kg<sup>-1</sup> with a clear tendency for exponential decline with (fig 1). The calculated flux of unsupported <sup>210</sup>Pb is 391 Bq m<sup>-2</sup> y<sup>-1</sup> which is about 3 times higher than the expected flux (based on data shown in Appleby, 2001). This indicates that the site is subject to sediment focusing.

The content of the isotope <sup>137</sup>Cs was very low with no distinct peaks. Low contents was also observed of 241Am with a small subsurface peak at 8 cm depth.

CRS-modelling has been applied on the profile using a modified method (Appleby, 2001; Andersen 2017) where the activity below 16 cm is calculated on the basis of the regression shown in fig 2. The result is given in table 2 and fig 3 and 4.

The chronology given in table 2 is only valid if bioturbation and other sediment mixing is negligible. If this is not the case, ages given in table 2 are underestimated and accumulation rates are overestimated. However, the subsurface peak in <sup>241</sup>Am in dated to early 1960's (fig 4) which is consistent with its global peak in that period and the chronology is therefore considered to be reliable.

Thorbjørn J Andersen Professor, IGN, University of Copenhagen Oester Voldgade 10, 1350 Copenhagen K, Denmark

## References:

Andersen, T.J., 2017. Some Practical Considerations Regarding the Application of <sup>210</sup>Pb and <sup>137</sup>Cs Dating to Estuarine Sediments. Applications of Paleoenvironmental Techniques in Estuarine Studies . Developments in Paleoenvironmental Research (DPER), Vol. 20, p 121-140.

Appleby, P.G., 2001. Chronostratigraphic techniques in recent sediments. In: Last, W.M & Smol, J.P. (eds) Tracking environmental change using lake sediments. Volume 1: Basin analysis, coring and chronological techniques. Kluwer Academic Publishers, the Netherlands.

## Table 1. Raw data, R2139MC008A

| Depth | Pb-     | error   | Pb-210  | error pb- | Pb-210  | error pb- | Cs-137  | error   |
|-------|---------|---------|---------|-----------|---------|-----------|---------|---------|
|       | 210tot  | Pb-210  | sup     | 210 sup   | unsup   | 210       |         | Cs-137  |
|       |         | tot     |         |           |         | unsup     |         |         |
| cm    | Bq kg-1 | Bq kg-1 | Bq kg-1 | Bq kg-1   | Bq kg-1 | Bq kg-1   | Bq kg-1 | Bq kg-1 |
|       |         |         |         |           |         |           |         |         |
| 0.5   | 342     | 28      | 18      | 1         | 324     | 29        | 0       | 38      |
| 1.5   | 290     | 23      | 19      | 11        | 271     | 34        | 0       | 0       |
| 2.5   | 262     | 19      | 20      | 0         | 242     | 19        | 7       | 0       |
| 3.5   | 233     | 17      | 23      | 4         | 210     | 21        | 0       | 0       |
| 4.5   | 156     | 13      | 26      | 1         | 130     | 14        | 0       | 0       |
| 5.5   | 106     | 9       | 23      | 4         | 83      | 13        | 0       | 0       |
| 6.5   | 67      | 6       | 17      | 1         | 50      | 8         | 0       | 0       |
| 7.5   | 79      | 7       | 19      | 3         | 60      | 10        | 2       | 16      |
| 8.5   | 52      | 5       | 21      | 4         | 31      | 9         | 4       | 23      |
| 9.5   | 86      | 7       | 23      | 2         | 63      | 9         | 0       | 0       |
| 10.5  | 69      | 6       | 21      | 2         | 48      | 8         | 0       | 0       |
| 11.5  | 52      | 5       | 23      | 3         | 29      | 8         | 0       | 0       |
| 12.5  | 41      | 4       | 17      | 2         | 23      | 6         | 4       | 0       |
| 13.5  | 28      | 3       | 21      | 1         | 7       | 4         | 0       | 0       |
| 14.5  | 32      | 3       | 20      | 1         | 12      | 4         | 0       | 0       |
| 15.5  | 22      | 2       | 19      | 0         | 3       | 2         | 0       | 0       |
| 16.5  | 23      | 2       | 23      | 3         | 0       | 5         | 0       | 0       |
| 17.5  | 28      | 3       | 23      | 3         | 5       | 6         | 0       | 0       |
| 18.5  | 19      | 2       | 22      | 3         | 0       | 5         | 0       | 0       |
| 19.5  | 22      | 2       | 22      | 1         | 0       | 4         | 0       | 0       |
| 20.5  | 15      | 2       | 25      | 5         | 0       | 7         | 0       | 0       |

| D (1  |     |       |      |              |              |
|-------|-----|-------|------|--------------|--------------|
| Depth | Age | error | Date | acc rate     | error rate   |
|       |     | age   |      |              |              |
| cm    | у   | у     | У    | (kg m-2 y-1) | (kg m-2 y-1) |
|       |     |       |      |              |              |
|       |     |       | 2020 |              |              |
| 0.5   | 3   | 1     | 2017 | 1.16         | 0.11         |
| 1.5   | 9   | 2     | 2011 | 1.10         | 0.13         |
| 2.5   | 16  | 2     | 2004 | 1.03         | 0.09         |
| 3.5   | 25  | 2     | 1995 | 0.92         | 0.10         |
| 4.5   | 34  | 2     | 1986 | 0.93         | 0.11         |
| 5.5   | 41  | 2     | 1979 | 1.15         | 0.19         |
| 6.5   | 47  | 3     | 1973 | 1.50         | 0.24         |
| 7.5   | 53  | 3     | 1967 | 1.50         | 0.26         |
| 8.5   | 59  | 3     | 1961 | 1.51         | 0.41         |
| 9.5   | 66  | 4     | 1954 | 1.18         | 0.19         |
| 10.5  | 79  | 4     | 1941 | 0.74         | 0.15         |
| 11.5  | 92  | 6     | 1928 | 0.72         | 0.20         |
| 12.5  | 107 | 7     | 1913 | 0.68         | 0.21         |
| 13.5  | 121 | 8     | 1899 | 0.75         | 0.39         |

## Table 2, chronology core R2139MC008A



Fig 1



**Fig 2.** Regression of unsupported <sup>210</sup>Pb vs accumulated dry density.







# Gamma Dating Center Copenhagen

Copenhagen, Oct 15th, 2021

Thorbjørn J. Andersen Department of Geosciences and Natural Resource Management (IGN) University of Copenhagen Oester Voldgade 10 1350 Copenhagen K e-mail <u>tja@ign.ku.dk</u> phone +45 35 32 25 03 fax +45 35 32 25 01

## Dating of core R2183MC009A

## Dating of core R2183MC009A

## Methods

The samples have been analysed for the activity of <sup>210</sup>Pb, <sup>226</sup>Ra and <sup>137</sup>Cs via gammaspectrometry at the Gamma Dating Center, Institute of Geography, University of Copenhagen. The measurements were carried out on a Canberra ultralow-background Ge-detector. <sup>210</sup>Pb was measured via its gamma-peak at 46,5 keV, <sup>226</sup>Ra via the granddaughter <sup>214</sup>Pb (peaks at 295 and 352 keV) and <sup>137</sup>Cs via its peak at 661 keV.

## Results

The core showed surface contents of unsupported <sup>210</sup>Pb of around 300 Bq kg<sup>-1</sup> with a clear tendency for exponential decline with depth in the upper 14 cm and a more irregular profile below that level (fig 1). The calculated flux of unsupported <sup>210</sup>Pb is 343 Bq m<sup>-2</sup> y<sup>-1</sup> which is about 3 times higher than the expected flux (based on data shown in Appleby, 2001). This indicates that the site is subject to sediment focusing.

The content of the isotope <sup>137</sup>Cs was low and only consistently above detection limits in the upper 10 cm of the core.

CRS-modelling has been applied on the profile using a modified method (Appleby, 2001; Andersen 2017) where the activity below 14 cm is calculated on the basis of the regression shown in fig 2. The result is given in table 2 and fig 3 and 4.

The chronology given in table 2 is only valid if bioturbation and other sediment mixing is negligible. If this is not the case, ages given in table 2 are underestimated and accumulation rates are overestimated. The general exponential decline in unsupported <sup>210</sup>Pb in the core gives confidence in the chronology and the measured content of <sup>137</sup>Cs is broadly in line with the known release-history of the isotope if allowing for possible slight downward mixing of 1 - 2 cm. The chronology is therefore believed to be reliable, especially the upper 14cm.

Thorbjørn J Andersen Professor, IGN, University of Copenhagen Oester Voldgade 10, 1350 Copenhagen K, Denmark

## References:

Andersen, T.J., 2017. Some Practical Considerations Regarding the Application of <sup>210</sup>Pb and <sup>137</sup>Cs Dating to Estuarine Sediments. Applications of Paleoenvironmental Techniques in Estuarine Studies . Developments in Paleoenvironmental Research (DPER), Vol. 20, p 121-140.

Appleby, P.G., 2001. Chronostratigraphic techniques in recent sediments. In: Last, W.M & Smol, J.P. (eds) Tracking environmental change using lake sediments. Volume 1: Basin analysis, coring and chronological techniques. Kluwer Academic Publishers, the Netherlands.

| Table | 1. | Raw | data, | R21 | 83N | AC( | )09A |
|-------|----|-----|-------|-----|-----|-----|------|
|-------|----|-----|-------|-----|-----|-----|------|

| Depth | Pb-     | error Pb- | Pb-210  | error Pb- | Pb-210  | error Pb- | Cs-137  | error   |
|-------|---------|-----------|---------|-----------|---------|-----------|---------|---------|
| -     | 210tot  | 210 tot   | sup     | 210 sup   | unsup   | 210 unsup |         | Cs-137  |
| cm    | Bq kg-1 | Bq kg-1   | Bq kg-1 | Bq kg-1   | Bq kg-1 | Bq kg-1   | Bq kg-1 | Bq kg-1 |
| 0.5   | 329     | 20        | 14      | 0         | 316     | 20        | 4       | 1       |
| 1.5   | 265     | 17        | 18      | 0         | 247     | 17        | 3       | 1       |
| 2.5   | 220     | 16        | 16      | 1         | 204     | 17        | 2       | 2       |
| 3.5   | 157     | 13        | 16      | 4         | 141     | 17        | 9       | 1       |
| 4.5   | 148     | 16        | 17      | 7         | 131     | 23        | 9       | 3       |
| 5.5   | 91      | 9         | 13      | 0         | 78      | 9         | 5       | 1       |
| 6.5   | 125     | 12        | 8       | 3         | 117     | 15        | 9       | 2       |
| 7.5   | 105     | 10        | 15      | 4         | 90      | 14        | 6       | 2       |
| 8.5   | 68      | 7         | 16      | 3         | 52      | 10        | 6       | 1       |
| 9.5   | 63      | 7         | 17      | 3         | 46      | 9         | 7       | 2       |
| 10.5  | 58      | 5         | 15      | 2         | 43      | 7         | 2       | 1       |
| 11.5  | 49      | 6         | 12      | 1         | 37      | 6         | 0       | 0       |
| 12.5  | 81      | 8         | 18      | 2         | 63      | 11        | 0       | 0       |
| 13.5  | 23      | 2         | 15      | 2         | 7       | 4         | 1       | 1       |
| 14.5  | 25      | 3         | 15      | 2         | 10      | 5         | 1       | 1       |
| 15.5  | 23      | 3         | 16      | 5         | 7       | 8         | 0       | 0       |
| 16.5  | 10      | 1         | 17      | 1         | 1       | 2         | 0       | 0       |
| 20.5  | 5       | 1         | 15      | 1         | 1       | 2         | 0       | 0       |

Table 2, chronology core R2183MC009A

| Depth | Age | error | Date | acc rate           | error rate     |
|-------|-----|-------|------|--------------------|----------------|
| cm    | N/  | age   | V    | $(kam 2 \times 1)$ | (kam 2 v 1)    |
|       | у   | у     | У    | (Kg III-2 y-1)     | (Kg III-2 y-1) |
|       |     |       | 2020 |                    |                |
| 0.5   | 2   | 1     | 2018 | 1.05               | 0.08           |
| 1.5   | 8   | 1     | 2012 | 1.04               | 0.08           |
| 2.5   | 14  | 2     | 2006 | 1.09               | 0.10           |
| 3.5   | 20  | 2     | 2000 | 1.18               | 0.15           |
| 4.5   | 26  | 2     | 1994 | 1.24               | 0.22           |
| 5.5   | 32  | 2     | 1988 | 1.35               | 0.17           |
| 6.5   | 38  | 2     | 1982 | 1.19               | 0.17           |
| 7.5   | 47  | 3     | 1973 | 0.88               | 0.15           |
| 8.5   | 55  | 3     | 1965 | 0.98               | 0.19           |
| 9.5   | 62  | 4     | 1958 | 1.11               | 0.24           |
| 10.5  | 71  | 4     | 1949 | 0.97               | 0.19           |
| 11.5  | 81  | 5     | 1939 | 0.81               | 0.17           |
| 12.5  | 100 | 9     | 1920 | 0.41               | 0.12           |
| 13.5  | 131 | 17    | 1889 | 0.27               | 0.18           |







Fig 2. Regression of unsupported <sup>210</sup>Pb vs accumulated dry density.









# Gamma Dating Center Copenhagen

Copenhagen, Oct 15th, 2021

Thorbjørn J. Andersen Department of Geosciences and Natural Resource Management (IGN) University of Copenhagen Oester Voldgade 10 1350 Copenhagen K e-mail <u>tja@ign.ku.dk</u> phone +45 35 32 25 03 fax +45 35 32 25 01

## Dating of core R2242MC012A
#### Dating of core R2242MC012A

#### Methods

The samples have been analysed for the activity of <sup>210</sup>Pb, <sup>226</sup>Ra and <sup>137</sup>Cs via gammaspectrometry at the Gamma Dating Center, Institute of Geography, University of Copenhagen. The measurements were carried out on a Canberra ultralow-background Ge-detector. <sup>210</sup>Pb was measured via its gamma-peak at 46,5 keV, <sup>226</sup>Ra via the granddaughter <sup>214</sup>Pb (peaks at 295 and 352 keV) and <sup>137</sup>Cs via its peak at 661 keV.

#### Results

The core showed surface contents of unsupported <sup>210</sup>Pb of around 480 Bq kg<sup>-1</sup> with a clear tendency for exponential decline with depth (fig 1). The calculated flux of unsupported <sup>210</sup>Pb is 369 Bq m<sup>-2</sup> y<sup>-1</sup> which is about 3 times higher than the expected flux (based on data shown in Appleby, 2001). This indicates that the site is subject to sediment focusing.

The content of the isotope  $^{137}$ Cs showed a distinct peak centered around 4 – 5 cm depth and was consistently above detection limits in the upper 10 cm of the core.

CRS-modelling has been applied on the profile using a modified method (Appleby, 2001; Andersen 2017) where the activity below 21 cm is calculated on the basis of the regression shown in fig 2. The result is given in table 2 and fig 3 and 4.

The general exponential decline in unsupported <sup>210</sup>Pb in the core gives confidence in the chronology and the measured content of <sup>137</sup>Cs clearly shows a Chernobyl-origin of the peak activities and suggest only minor downward mixing. The chronology is believed to be reliable.

Thorbjørn J Andersen Professor, IGN, University of Copenhagen Oester Voldgade 10, 1350 Copenhagen K, Denmark

#### References:

Andersen, T.J., 2017. Some Practical Considerations Regarding the Application of <sup>210</sup>Pb and <sup>137</sup>Cs Dating to Estuarine Sediments. Applications of Paleoenvironmental Techniques in Estuarine Studies . Developments in Paleoenvironmental Research (DPER), Vol. 20, p 121-140.

Appleby, P.G., 2001. Chronostratigraphic techniques in recent sediments. In: Last, W.M & Smol, J.P. (eds) Tracking environmental change using lake sediments. Volume 1: Basin analysis, coring and chronological techniques. Kluwer Academic Publishers, the Netherlands.

| Depth | Pb-     | error   | Pb-210  | error pb- | Pb-210  | error pb- | Cs-137  | error   |
|-------|---------|---------|---------|-----------|---------|-----------|---------|---------|
| _     | 210tot  | Pb-210  | sup     | 210 sup   | unsup   | 210       |         | Cs-137  |
|       |         | tot     |         |           |         | unsup     |         |         |
| cm    | Bq kg-1 | Bq kg-1 | Bq kg-1 | Bq kg-1   | Bq kg-1 | Bq kg-1   | Bq kg-1 | Bq kg-1 |
|       |         |         |         |           |         |           |         |         |
| 0.5   | 503     | 26      | 27      | 2         | 476     | 28        | 9       | 3       |
| 1.5   | 352     | 20      | 27      | 1         | 325     | 21        | 16      | 2       |
| 2.5   | 283     | 20      | 26      | 0         | 257     | 20        | 18      | 4       |
| 3.5   | 284     | 20      | 28      | 4         | 256     | 24        | 43      | 4       |
| 4.5   | 185     | 14      | 24      | 0         | 161     | 14        | 46      | 4       |
| 5.5   | 116     | 9       | 24      | 2         | 92      | 11        | 28      | 2       |
| 6.5   | 130     | 10      | 26      | 0         | 103     | 11        | 16      | 3       |
| 7.5   | 105     | 9       | 25      | 7         | 79      | 15        | 14      | 3       |
| 8.5   | 108     | 9       | 27      | 1         | 81      | 9         | 5       | 3       |
| 9.5   | 91      | 5       | 24      | 3         | 67      | 8         | 7       | 1       |
| 10.5  | 68      | 6       | 28      | 1         | 41      | 8         | 5       | 3       |
| 11.5  | 68      | 6       | 31      | 6         | 38      | 12        | 3       | 3       |
| 12.5  | 54      | 5       | 28      | 2         | 26      | 7         | 0       | 0       |
| 13.5  | 37      | 4       | 23      | 7         | 14      | 11        | 0       | 0       |
| 14.5  | 16      | 2       | 22      | 1         | 1       | 3         | 3       | 2       |
| 15.5  | 38      | 4       | 25      | 0         | 13      | 4         | 2       | 2       |
| 16.5  | 40      | 4       | 29      | 4         | 11      | 8         | 4       | 3       |
| 17.5  | 36      | 3       | 28      | 2         | 8       | 5         | 0       | 0       |
| 18.5  | 37      | 3       | 28      | 0         | 9       | 4         | 0       | 0       |
| 19.5  | 29      | 3       | 27      | 1         | 2       | 4         | 0       | 0       |
| 20.5  | 30      | 3       | 27      | 2         | 3       | 5         | 0       | 0       |

Table 1. Raw data, R2242MC012A

| Depth | Age | error | Date | acc rate     | error rate   |
|-------|-----|-------|------|--------------|--------------|
|       |     | age   |      |              |              |
| cm    | у   | у     | у    | (kg m-2 y-1) | (kg m-2 y-1) |
|       |     |       |      |              |              |
|       |     |       | 2020 |              |              |
| 0.5   | 3   | 1     | 2017 | 0.74         | 0.05         |
| 1.5   | 9   | 1     | 2011 | 0.77         | 0.06         |
| 2.5   | 15  | 1     | 2005 | 0.87         | 0.07         |
| 3.5   | 22  | 2     | 1998 | 0.80         | 0.08         |
| 4.5   | 31  | 2     | 1989 | 0.78         | 0.08         |
| 5.5   | 37  | 2     | 1983 | 1.02         | 0.13         |
| 6.5   | 43  | 2     | 1977 | 1.10         | 0.13         |
| 7.5   | 50  | 3     | 1970 | 0.96         | 0.18         |
| 8.5   | 58  | 3     | 1962 | 0.87         | 0.12         |
| 9.5   | 67  | 4     | 1953 | 0.72         | 0.11         |
| 10.5  | 76  | 5     | 1944 | 0.74         | 0.16         |
| 11.5  | 85  | 6     | 1935 | 0.77         | 0.25         |
| 12.5  | 95  | 7     | 1925 | 0.70         | 0.23         |
| 13.5  | 103 | 8     | 1917 | 0.84         | 0.65         |
| 14.5  | 107 | 7     | 1913 | 1.87         | 4.67         |
| 15.5  | 112 | 8     | 1908 | 1.75         | 0.66         |
| 16.5  | 120 | 10    | 1900 | 0.84         | 0.60         |
| 17.5  | 130 | 10    | 1890 | 0.79         | 0.48         |
| 18.5  | 142 | 12    | 1878 | 0.63         | 0.33         |
| 19.5  | 152 | 15    | 1868 | 0.71         | 1.26         |
| 20.5  | 159 | 15    | 1861 | 1.12         | 0.52         |

### Table 2, chronology core R2242MC012A







Fig 2. Regression of unsupported <sup>210</sup>Pb vs accumulated dry density.





# Gamma Dating Center Copenhagen

Copenhagen, Oct 19th, 2021

Thorbjørn J. Andersen Department of Geosciences and Natural Resource Management (IGN) University of Copenhagen Oester Voldgade 10 1350 Copenhagen K e-mail <u>tja@ign.ku.dk</u> phone +45 35 32 25 03 fax +45 35 32 25 01

# Dating of core R2270MC013A

#### Dating of core R2270MC013A

#### Methods

The samples have been analysed for the activity of <sup>210</sup>Pb, <sup>226</sup>Ra and <sup>137</sup>Cs via gammaspectrometry at the Gamma Dating Center, Institute of Geography, University of Copenhagen. The measurements were carried out on a Canberra ultralow-background Ge-detector. <sup>210</sup>Pb was measured via its gamma-peak at 46,5 keV, <sup>226</sup>Ra via the granddaughter <sup>214</sup>Pb (peaks at 295 and 352 keV) and <sup>137</sup>Cs via its peak at 661 keV.

#### Results

The core showed surface contents of unsupported <sup>210</sup>Pb of around 270 Bq kg<sup>-1</sup> with a clear tendency for exponential decline with (fig 1). The calculated flux of unsupported <sup>210</sup>Pb is 391 Bq m<sup>-2</sup> y<sup>-1</sup> which is about twice the expected flux (based on data shown in Appleby, 2001). This indicates that the site is subject to some sediment focusing.

The content of the isotope <sup>137</sup>Cs was very low with no distinct peaks.

CRS-modelling has been applied on the profile using a modified method (Appleby, 2001; Andersen 2017) where the activity below 9 cm is calculated on the basis of the regression shown in fig 2. The result is given in table 2 and fig 3 and 4.

The chronology given in table 2 is only valid if bioturbation and other sediment mixing is negligible. If this is not the case, ages given in table 2 are underestimated and accumulation rates are overestimated. The clear tendency for exponential decline with depth of unsupported <sup>210</sup>Pb gives confidence in the result but some mixing is indicated by the presence of <sup>137</sup>Cs in layers dated to well before the 1950's.

Thorbjørn J Andersen Professor, IGN, University of Copenhagen Oester Voldgade 10, 1350 Copenhagen K, Denmark

#### References:

Andersen, T.J., 2017. Some Practical Considerations Regarding the Application of <sup>210</sup>Pb and <sup>137</sup>Cs Dating to Estuarine Sediments. Applications of Paleoenvironmental Techniques in Estuarine Studies . Developments in Paleoenvironmental Research (DPER), Vol. 20, p 121-140.

Appleby, P.G., 2001. Chronostratigraphic techniques in recent sediments. In: Last, W.M & Smol, J.P. (eds) Tracking environmental change using lake sediments. Volume 1: Basin analysis, coring and chronological techniques. Kluwer Academic Publishers, the Netherlands.

### Table 1. Raw data, R2270MC013A

| Depth | Pb-     | error   | Pb-210  | error pb- | Pb-210  | error pb- | Cs-137  | error   |
|-------|---------|---------|---------|-----------|---------|-----------|---------|---------|
|       | 210tot  | Pb-210  | sup     | 210 sup   | unsup   | 210       |         | Cs-137  |
|       |         | tot     |         |           |         | unsup     |         |         |
| cm    | Bq kg-1 | Bq kg-1 | Bq kg-1 | Bq kg-1   | Bq kg-1 | Bq kg-1   | Bq kg-1 | Bq kg-1 |
| 0.50  | 284     | 27      | 13      | 2         | 271     | 30        | 5       | 3       |
| 1.50  | 292     | 25      | 16      | 0         | 276     | 25        | 9       | 2       |
| 2.50  | 213     | 17      | 20      | 4         | 194     | 22        | 6       | 2       |
| 3.50  | 159     | 14      | 15      | 1         | 144     | 14        | 0       | 0       |
| 4.50  | 83      | 8       | 18      | 5         | 65      | 13        | 0       | 0       |
| 5.50  | 68      | 8       | 19      | 4         | 50      | 12        | 0       | 0       |
| 6.50  | 57      | 6       | 11      | 7         | 46      | 13        | 2       | 1       |
| 7.50  | 42      | 5       | 18      | 5         | 24      | 10        | 6       | 2       |
| 8.50  | 28      | 4       | 17      | 2         | 11      | 6         | 0       | 0       |
| 9.50  | 11      | 2       | 20      | 1         | 0       | 3         | 3       | 1       |
| 10.50 | 5       | 1       | 16      | 1         | 0       | 1         | 0       | 0       |
| 11.50 | 17      | 2       | 17      | 0         | 0       | 2         | 1       | 1       |
| 12.50 | 16      | 2       | 17      | 1         | 0       | 3         | 1       | 1       |
| 13.50 | 20      | 3       | 21      | 2         | 0       | 5         | 0       | 0       |

Table 2, chronology core R2270MC013A

| Depth | Age | error | Date | acc rate     | error rate   |
|-------|-----|-------|------|--------------|--------------|
|       |     | age   |      |              |              |
| cm    | у   | у     | У    | (kg m-2 y-1) | (kg m-2 y-1) |
|       |     |       |      |              |              |
|       |     |       | 2020 |              |              |
| 0.5   | 3   | 2     | 2017 | 0.82         | 0.09         |
| 1.5   | 12  | 2     | 2008 | 0.67         | 0.07         |
| 2.5   | 24  | 3     | 1996 | 0.57         | 0.07         |
| 3.5   | 38  | 3     | 1982 | 0.53         | 0.07         |
| 4.5   | 53  | 5     | 1967 | 0.54         | 0.12         |
| 5.5   | 67  | 6     | 1953 | 0.63         | 0.17         |
| 6.5   | 85  | 9     | 1935 | 0.46         | 0.16         |
| 7.5   | 115 | 17    | 1905 | 0.30         | 0.17         |







Fig 2. Regression of unsupported <sup>210</sup>Pb vs accumulated dry density.







# Gamma Dating Center Copenhagen

Copenhagen, Oct 27th, 2021

Thorbjørn J. Andersen Department of Geosciences and Natural Resource Management (IGN) University of Copenhagen Oester Voldgade 10 1350 Copenhagen K e-mail <u>tja@ign.ku.dk</u> phone +45 35 32 25 03 fax +45 35 32 25 01

# Dating of core R2338MC017A

#### Dating of core R2338MC017A

#### Methods

The samples have been analysed for the activity of <sup>210</sup>Pb, <sup>226</sup>Ra and <sup>137</sup>Cs via gammaspectrometry at the Gamma Dating Center, Institute of Geography, University of Copenhagen. The measurements were carried out on a Canberra ultralow-background Ge-detector. <sup>210</sup>Pb was measured via its gamma-peak at 46,5 keV, <sup>226</sup>Ra via the granddaughter <sup>214</sup>Pb (peaks at 295 and 352 keV) and <sup>137</sup>Cs via its peak at 661 keV.

#### Results

The core showed surface contents of unsupported <sup>210</sup>Pb of around 230 Bq kg<sup>-1</sup> with a clear tendency for exponential decline with depth in the upper 14 cm and a more irregular profile below that level (fig 1). The calculated flux of unsupported <sup>210</sup>Pb is 306 Bq m<sup>-2</sup> y<sup>-1</sup> which is about 3 times higher than the expected flux (based on data shown in Appleby, 2001). This indicates that the site is subject to sediment focusing.

The content of the isotope <sup>137</sup>Cs was low but measurable contents was found down to a depth of about 20 cm.

CRS-modelling has been applied on the profile using a modified method (Appleby, 2001; Andersen 2017) where the activity below 22 cm is calculated on the basis of the regression shown in fig 2. The result is given in table 2 and fig 3 and 4.

The chronology given in table 2 is only valid if bioturbation and other sediment mixing is negligible. If this is not the case, ages given in table 2 are underestimated and accumulation rates are overestimated. The general exponential decline in unsupported <sup>210</sup>Pb in the core gives confidence in the chronology. However, the rather uniform content of <sup>137</sup>Cs suggests that some mixing takes place and the chronology should therefore only be considered to be indicative. The mixing does not penetrate to depths deeper than 23 cm.

Thorbjørn J Andersen Professor, IGN, University of Copenhagen Oester Voldgade 10, 1350 Copenhagen K, Denmark

#### References:

Andersen, T.J., 2017. Some Practical Considerations Regarding the Application of <sup>210</sup>Pb and <sup>137</sup>Cs Dating to Estuarine Sediments. Applications of Paleoenvironmental Techniques in Estuarine Studies . Developments in Paleoenvironmental Research (DPER), Vol. 20, p 121-140.

Appleby, P.G., 2001. Chronostratigraphic techniques in recent sediments. In: Last, W.M & Smol, J.P. (eds) Tracking environmental change using lake sediments. Volume 1: Basin analysis, coring and chronological techniques. Kluwer Academic Publishers, the Netherlands.

| Table 1. | Raw | data, | R2338MC017 |
|----------|-----|-------|------------|
|----------|-----|-------|------------|

| Depth | Pb-     | error   | Pb-210  | error pb- | Pb-210  | error pb- | Cs-137  | error   |
|-------|---------|---------|---------|-----------|---------|-----------|---------|---------|
|       | 210tot  | Pb-210  | sup     | 210 sup   | unsup   | 210       |         | Cs-137  |
|       |         | tot     |         |           |         | unsup     |         |         |
| cm    | Bq kg-1 | Bq kg-1 | Bq kg-1 | Bq kg-1   | Bq kg-1 | Bq kg-1   | Bq kg-1 | Bq kg-1 |
| 0.5   | 244     | 18      | 18      | 2         | 226     | 20        | 3       | 2       |
| 1.5   | 180     | 15      | 18      | 0         | 162     | 15        | 0       | 0       |
| 2.5   | 136     | 12      | 17      | 0         | 119     | 12        | 0       | 0       |
| 3.5   | 105     | 10      | 17      | 2         | 87      | 12        | 0       | 0       |
| 4.5   | 143     | 13      | 19      | 3         | 124     | 16        | 2       | 2       |
| 5.5   | 165     | 15      | 16      | 4         | 149     | 19        | 3       | 2       |
| 7.5   | 98      | 10      | 21      | 5         | 77      | 15        | 4       | 2       |
| 8.5   | 98      | 10      | 19      | 2         | 79      | 12        | 6       | 2       |
| 9.5   | 82      | 5       | 19      | 1         | 64      | 6         | 4       | 1       |
| 10.5  | 80      | 7       | 18      | 6         | 62      | 13        | 7       | 1       |
| 11.5  | 62      | 5       | 18      | 2         | 44      | 7         | 5       | 1       |
| 12.5  | 56      | 6       | 16      | 0         | 41      | 7         | 4       | 2       |
| 14.5  | 63      | 7       | 22      | 2         | 40      | 10        | 4       | 2       |
| 16.5  | 77      | 8       | 18      | 3         | 59      | 11        | 4       | 2       |
| 17.5  | 73      | 8       | 17      | 6         | 56      | 14        | 0       | 0       |
| 18.5  | 56      | 6       | 18      | 2         | 38      | 7         | 3       | 1       |
| 20.5  | 33      | 4       | 15      | 2         | 18      | 6         | 6       | 1       |
| 21.5  | 36      | 4       | 19      | 6         | 16      | 11        | 3       | 1       |
| 22.5  | 19      | 3       | 16      | 3         | 3       | 6         | 0       | 0       |
| 23.5  | 18      | 3       | 19      | 3         | 0       | 6         | 2       | 1       |
| 32.5  | 19      | 3       | 18      | 6         | 0       | 8         | 0       | 0       |

| Depth | Age | error | Date | acc rate     | error rate   |
|-------|-----|-------|------|--------------|--------------|
| cm    | v   | v     | v    | (kg m-2 y-1) | (kg m-2 y-1) |
|       |     |       |      |              |              |
|       |     |       | 2020 |              |              |
| 0.5   | 2   | 1     | 2018 | 1.32         | 0.13         |
| 1.5   | 5   | 2     | 2015 | 1.43         | 0.15         |
| 2.5   | 7   | 2     | 2013 | 1.80         | 0.20         |
| 3.5   | 10  | 2     | 2010 | 2.26         | 0.31         |
| 4.5   | 13  | 2     | 2007 | 2.02         | 0.28         |
| 5.5   | 18  | 2     | 2002 | 1.39         | 0.18         |
| 7.5   | 27  | 2     | 1993 | 1.35         | 0.27         |
| 8.5   | 31  | 2     | 1989 | 1.58         | 0.25         |
| 9.5   | 35  | 3     | 1985 | 1.51         | 0.18         |
| 10.5  | 40  | 3     | 1980 | 1.51         | 0.33         |
| 11.5  | 44  | 3     | 1976 | 1.58         | 0.30         |
| 12.5  | 47  | 3     | 1973 | 1.76         | 0.32         |
| 14.5  | 55  | 4     | 1965 | 1.54         | 0.36         |
| 16.5  | 68  | 5     | 1952 | 0.92         | 0.21         |
| 17.5  | 79  | 6     | 1941 | 0.54         | 0.14         |
| 18.5  | 93  | 7     | 1927 | 0.45         | 0.11         |

Table 2, chronology core R2338MC017







Fig 2. Regression of unsupported <sup>210</sup>Pb vs accumulated dry density.









# Vedlegg 5

Mikroplastrapport NGI-rapport



REPORT

# Microplastics in sediment from the Norwegian Sea MAREANO

DOC.NO. 20210378-01-R REV.NO. 1/2022-01-26

NORWEGIAN GEOTECHNICAL INSTITUTE NGI.NO Neither the confidentiality nor the integrity of this document can be guaranteed following electronic transmission. The addressee should consider this risk and take full responsibility for use of this document.

This document shall not be used in parts, or for other purposes than the document was prepared for. The document shall not be copied, in parts or in whole, or be given to a third party without the owner's consent. No changes to the document shall be made without consent from NGI.

Ved elektronisk overføring kan ikke konfidensialiteten eller autentisiteten av dette dokumentet garanteres. Adressaten bør vurdere denne risikoen og ta fullt ansvar for bruk av dette dokumentet.

Dokumentet skal ikke benyttes i utdrag eller til andre formål enn det dokumentet omhandler. Dokumentet må ikke reproduseres eller leveres til tredjemann uten eiers samtykke. Dokumentet må ikke endres uten samtykke fra NGI.

# NG

# Project

| Project title:           | Microplastics in sediment from the Norwegian Sea |
|--------------------------|--------------------------------------------------|
| Document title:          | MAREANO                                          |
| Document no.:            | 20210378-01-R                                    |
| Date:                    | 2021-11-29                                       |
| Revision no. /rev. date: | 1 / 2022-01-26                                   |

# Client

| Client:                | The Geological Survey of Norway (NGU) |
|------------------------|---------------------------------------|
| Client contact person: | Henning Jensen                        |
| Contract reference:    | Contract signed 2021-05-19            |

# for NGI

| Project manager: | Maren Valestrand Tjønneland |
|------------------|-----------------------------|
| Prepared by:     | Maren Valestrand Tjønneland |
| Reviewed by:     | Hans Peter Arp              |

NORWEGIAN GEOTECHNICAL INSTITUTE NGI.NO Main office PO Box 3930 Ullevaal St. NO-0806 Oslo Norway

Trondheim office PO Box 5687 Torgarden NO-7485 Trondheim Norway T 22 02 30 00 BIC NO. F 22 23 04 48 IBAN N NGI@ngi.no ORGAN

BIC NO. DNBANOKK IBAN NO26 5096 05 01281 ORGANISATION NO. 958 254 318MVA ISO 9001/14001 CERTIFIED BY BSI FS 32989/EMS 612006

Document no.: 20210378-01-R Date: 2022-01-26 Rev.no.: 1 Page: 4

## Summary

A MAREANO survey of the Norwegian Sea was conducted in 2020, where sediment from the mid-Norwegian Continental Shelf were sampled for the analysis of microplastics and other contaminants using a multicorer equipped with steel tubes. The Norwegian Geotechnical Institute (NGI) has, on behalf of The Geological Survey of Norway (NGU) and MAREANO, performed the microplastics analyses of the sediment samples (n = 24), covering both surface samples and sediment cores, as described in this report.

Deep-sediment from the bottom of the sediment cores (i.e. samples dated precious to the existence of plastic) was used as field blanks (n = 2), quantifying microplastic contamination from the expedition and sample processing as well as the analytical method, assuming that the samples should be plastic-free. Method blanks (n = 10) were prepared and analysed to quantify microplastic contribution from the analytical method in the laboratory. Microplastics were found in all method blanks, with the main contributor being the high numbers of polyethylene particles detected. Due to the polyethylene contamination in the lab, is was concluded that this plastic type could not be correctly quantified and is therefore not reported. Generally, the field blanks contained less microplastic that the method blanks, indicating the analytical method was the main contributor to the contamination of the samples. A higher level of some microplastics were, however, found in the field blanks, namely rubber and chlorinated polyethylene/PVC. Concentrations stated in this report was corrected for both the concentration found in method blanks and field blanks.

In surface sediments (top 2 cm; n = 11) from the Norwegian Sea microplastic concentrations ranged widely, from 51 to 2187 particles/kg dry sediment (mean  $\pm$  standard deviation:  $679 \pm 663$  particles/kg). These concentrations are comparable with previously reported levels of microplastic found in sediments from the Northern North Sea (top 1 cm; n = 10, range; n.d. to 3400 particles/kg; mean:  $525 \pm 1030$  particles/kg). In both studies, chlorinated polyethylene/PVC and rubber particles were frequently encountered, along with other microplastics.

The microplastic profile in three sediment cores was investigated by analysing deeper sediment (n = 13). A generally decreasing abundance downcore was observed, with some variations. The MP concentration in samples from the top 10 cm of the cores S-06, S-10 and S-11 ranged from n.d. – 1084 particles/kg (mean:  $562 \pm 472$  particles/kg), 41 - 352 particles/kg (mean:  $233 \pm 125$  particles/kg) and 654 - 1579 particles/kg (mean:  $1069 \pm 331$ ), respectively. In two of the cores (S-10 and S-11), the highest concentration of MP was found in sediment from 2-4 cm, whereas sediment from 6-8 cm depth displayed highest MP levels in the last core (S-06). This is likely due to bioturbation, as dating results suggests that this core has been affected by sediment mixing. No clear trend in microplastic composition was seen downcore. One of the cores (S-11) had a rather homogenous distribution of plastic types downcore, however the other cores displayed more variable microplastic composition. Several future recommendations for future sampling campaigns and analysis are provided.

Document no.: 20210378-01-R Date: 2022-01-26 Rev.no.: 1 Page: 5

# Contents

| 1 | Intro              | duction                                                   | 6  |
|---|--------------------|-----------------------------------------------------------|----|
|   | 1.1                | MAREANO survey of the Norwegian Sea                       | 6  |
|   | 1.2                | Plastic pollution                                         | 6  |
| 2 | Mate               | erials and methods                                        | 8  |
|   | 2.1                | Field work and sampling strategy                          | 8  |
|   | 2.2                | Microplastics analysis                                    | 11 |
|   | 2.3                | Chemicals and solvents                                    | 18 |
|   | 2.4                | Quality assurance                                         | 18 |
|   | 2.5                | Microplastic concentrations                               | 19 |
| 3 | Resu               | Its and discussion                                        | 21 |
|   | 3.1                | Visual microscopy                                         | 21 |
|   | 3.2                | Carbonate, Total Carbon and Total Organic Carbon profiles | 21 |
|   | 3.3                | Quality assurance                                         | 22 |
|   | 3.4                | Microplastics in surface samples                          | 31 |
|   | 3.5                | Microplastics in sediment cores                           | 41 |
| 4 | Cond               | lusions                                                   | 47 |
| 5 | Recommendations 48 |                                                           |    |
| 6 | Refe               | rences                                                    | 50 |

# Appendix

| Appendix A | Pictures from visual microscopy                       |
|------------|-------------------------------------------------------|
| Appendix B | Results for method blanks and field blanks (raw data) |
| Appendix C | Results for sediment samples (raw data)               |
| Appendix D | Material composition                                  |

# **Review and reference page**

# NG

Document no.: 20210378-01-R Date: 2022-01-26 Rev.no.: 1 Page: 6

# 1 Introduction

## 1.1 MAREANO survey of the Norwegian Sea

The Geological Survey of Norway (NGU) participates in the MAREANO programme as part of the Executive Groups responsible for carrying out field sampling and other scientific activities. The MAREANO programme maps depth and topography, sediment composition, biodiversity, habitats and biotopes as well as pollution in the seabed in Norwegian offshore areas, to address critical questions related to the Norwegian seabed.

In 2020, a MAREANO survey of the mid-Norwegian continental shelf in the Norwegian Sea was conducted, where sediment from stations along Trøndelag to Helgeland (n = 11) was collected for the analysis of microplastics and other contaminants. Surface sediment (0-2 cm) was sampled from all stations, as well as deeper sediment samples from three of the stations, using multicorer sampling equipment. The Norwegian Geotechnical Institute (NGI) has, on behalf of NGU/MAREANO, performed the microplastic analyses of in total 26 sediment samples, including two field blanks, as described in this report.

## 1.2 Plastic pollution

In 1907 Bakelite, the first polymer considered to be truly synthetic, was developed, marking the start of the plastic age [1]. After this, commercial production of PVC and PS started in the 1920s and 1930s, respectively, followed by the subsequent discovery the other now commonly used plastics PE (1930), PET (1941) and PP (1954). The mid-20<sup>th</sup> century is considered the start of large-scale production of everyday plastic products. From this time onwards, the use of plastics has increased exponentially, with a large portion of plastics being made for single use purposes.

In 2015 the production rate of plastic was 380 million metric tons (MT) plastic, and since then production rates are forecasted to be increasing [2]. Unfortunately, many countries still have inefficient waste management and water treatment systems that allow for leakage to the environment. Mismanaged plastic waste could triple from 60-99 million MT in 2015 to 155-265 MT by 2060, assuming a business-as-usual scenario. [3] Plastics are designed to be extremely durable and resistant to decay. While these characteristics are highly valued during usage, it has the implication that plastic emitted into the environment will remain for long periods of time. Plastic is currently found to be accumulating on remote islands, the sea surface, within the water column of the sea and on deep seafloor.

Recently, concern has been raised regarding smaller plastic pieces, referred to as microplastics; which may pose a threat to sensitive marine ecosystems. Microplastics are generally defined as plastic items smaller than 5 mm. These can originate from weathering of larger plastic items due to the influence of e.g. UV-light, mechanic abrasion, waves and temperature fluctuations (so-called secondary microplastics), or from direct emissions of plastics that were manufactured smaller than 5 mm (so-called

primary microplastics). A variety of studies suggest that the seafloor is the ultimate sink for microplastics [4] [5] [6]. However, there have been relatively few surveys of microplastics on the sea floor, and few studies on the impacts of microplastics on benthic ecosystems as well.

Previously, microplastics (between  $5 \mu m - 1 mm$ ) have been found in marine sediments along the Norwegian Continental Shelf (NCS), sampled during a MAREANO pilot study [7]. Ten sediment samples were collected from a large area along the NCS, where eight of these were in proximity to the sampling region of the present study. The results reported the presence of microplastics at all stations (23 to 290 particles/kg sediment; mean  $\pm$  standard error:  $120 \pm 97$  particles/kg), with polyethylene and polypropylene being common plastic types. In sediment from the northern North Sea (NNS), microplastic have also been reported, indicating a wider range and higher microplastic concentrations (n.d. to 3400 particles/kg; mean  $\pm$  standard error:  $525 \pm 1030$ particles/kg) [8]. Chlorinated polyethylene was among the most frequently encountered microplastics in the NNS sampling region, as well as PET, rubber and phenoxy resin.

To understand the history of plastic pollution, reconstruction of sedimentary microplastic archives based on MP concentrations and dated sediment cores, is gaining more and more attention. This is yet to be performed on sediments along the Norwegian Sea shelf. The MAREANO sediment samples reported here are of great interest regarding the distribution and presence of microplastics on the seabed on the mid-Norwegian Continental Shelf and its evolution with time using <sup>210</sup>PB dated sediment cores.

Document no.: 20210378-01-R Date: 2022-01-26 Rev.no.: 1 Page: 8

# 2 Materials and methods

## 2.1 Field work and sampling strategy

Sediment cores were sampled during two sampling cruises with the Institute of Marine Research (IMR) research vessel, G.O Sars, at stations in the Norwegian Sea in 2020. The geographical area studied consisted of ten stations along the Trøndelag coast and Helgeland with varying distance from land, as well as one station in the deeper parts of the Norwegian Sea (Figure 2). Sediment cores were sampled by NGU and HI using a multicorer (produced by KC-Denmark, model 73.000), which gives six sediment cores with a maximum depth of ca. 50 cm. The mlticorer was equipped with four transparent PVC-tubes and two stainless steel tubes (inner diameter of 106 mm) which were used to sample cores for microplastic analysis. The sampling was performed as described in MAREANO's chemistry program (Metodedokument-Kjemiprogram-MAREANO-versjon-16.08.2021.pdf).

The core samples were briefly (for 2-3 s) opened during tube recovery from the multicorer, and then kept sealed until opening at NGU in Trondheim, Norway. Care was taken to avoid potential contamination from microplastic in the ambient air by keeping the contact between samples and surroundings to a minimum. After storing the sediment cores in a cooling rom for 8-11 months, the samples were opened outdoors at NGU and transferred to glass jars for shipping to NGI. For some of the sediment cores, leakage of seawater had occurred due to issues with the sealing of the cores, affecting the dry weigh % of some of the sediment samples (Photo 1).



Figure 1 Sediment cores sampled for microplastic analysis in steel tubes, showing a core where seawater is intact (left) and where seawater has leaked out during storage/transfer (Photos from NGU).

At NGI, the samples were stored at 2-4 °C until processing.

Document no.: 20210378-01-R Date: 2022-01-26 Rev.no.: 1 Page: 9



Figure 2 Microplastic sampling stations S-01 to S-11 in the Norwegian Sea.

### 2.1.1 Surface samples

Sediment surface samples from all stations (n = 11, Table 1) were prepared from the sediment cores, by slicing off the top 2 cm with a metal spatula.

| Sample<br>ID | Sample<br>depth<br>(cm) | Station    | Latitude | Longitude | Bottom<br>depth<br>(m) |
|--------------|-------------------------|------------|----------|-----------|------------------------|
| S-01         | 0-2                     | R2132MC006 | 63.88470 | 07.57127  | 235.61                 |
| S-02         | 0-2                     | R2139MC008 | 64.19527 | 07.35512  | 332.41                 |
| S-03         | 0-2                     | R2183MC009 | 64.28006 | 08.40502  | 356.67                 |
| S-04         | 0-2                     | R2229MC010 | 64.71354 | 08.22013  | 237.98                 |
| S-05         | 0-2                     | R2242MC012 | 66.83023 | 10.43077  | 400.05                 |
| S-06         | 0-2                     | R2270MC013 | 66.23164 | 10.47961  | 293.51                 |
| S-07         | 0-2                     | R2276MC014 | 65.67928 | 10.17709  | 395.79                 |
| S-08         | 0-2                     | R2289MC015 | 65.56744 | 10.42937  | 410.77                 |
| S-09         | 0-2                     | R2331MC016 | 65.48132 | 09.27189  | 368.30                 |
| S-10         | 0-2                     | R2338MC017 | 65.71696 | 09.07689  | 448.96                 |
| S-11         | 0-2                     | R2363MC019 | 65.50764 | 08.04405  | 372.93                 |

Table 1 List of surface samples with station specific information provided by NGU.

### 2.1.2 Sediment profile samples

For three of the stations (S-06, S-10 and S-11), deeper sediment samples were prepared in addition to the surface samples to assess the vertical microplastic profile of the sediment. The S-06, S-10 and S-11 sediment cores were sliced at 2 cm intervals to depths of 10 cm. From the S-10 core, a deeper sediment sample at 20-22 cm depth was also prepared. For sediment core S-06 and S-10, dating has been performed via gamma spectrometry at the Gamma Dating Centre, Institute of Geography, University of Copenhagen [9].

### 2.1.3 Field blank

A field blank is often defined as a sample which is initially free of analyte (here microplastics), prepared in the field and treated as a real sample (includes contact with sampling equipment and exposure to the sampling site, stored in the same way as regular samples and which undergoes the analytical procedure). This type of blank controls for both field and analytical contamination.

In this project, field blanks (n = 2, Table 2) were prepared by sampling deep-sediment (> 20 cm depth) from sediment cores in the same area as the surface samples, assuming that the deeper sediment was from a time prior to plastic production (meaning they should in theory be free from microplastics). Also, the selected samples S-10-FB-01 at 30 - 32 cm depth and S-11-FB-02 at 20 - 22 cm depth are well below the depth of

bioturbating animals, which potentially could mix microplastics into deeper sediment layers. The purpose of the field blanks was to correct for microplastic abundance in the environmental samples due to contamination.

| Sample ID  | Sample<br>depth (cm) | Station    | Comment                    |
|------------|----------------------|------------|----------------------------|
| S-10-FB-01 | 30-32                | R2338MC017 | From the same core as S-10 |
| S-11-FB-02 | 20-22                | R2363MC019 | From the same core as S-11 |

Table 2 List of field blanks used for correction of the results for surface and core samples.

Dating results provided by the Gamma Dating Centre for a sediment core from the same station as S-10-FB-01 shows that at a depth of 18,5 cm the sediment dates back to year  $1927 \pm 7$  years. According to the dating report, the sedimentation rate at this station is approximately 2,5 mm per year, implying that S-10-FB-01 at 30 - 32 cm depth is equivalent to approximately 120 years back in time, i.e. around the 1900s. According to the dating report, bioturbation and other sediment mixing for this core does not penetrate to depths deeper than 23 cm, strengthening the confidence in the dating results for this core. However, sedimentation rates in this area are in the range of 1 - 2 mm per year implying that the sediment at a depth of 20 - 22 cm is likely to have deposited between 200 - 100 years ago, i.e. between the 1820s and 1920s [9]. As the first plastic types were not commercially produced until in the late 1920s, the selected sediment layers should be well prior to introduction of microplastics to the marine environment. Thus, it is assumed the field blanks should be plastic-free.

## 2.2 Microplastics analysis

### 2.2.1 Sediment preparation

The first step of sample preparation was to homogenize the sediment by stirring the sample with a metal spoon in the glass jar used to store the sample. Then, a portion of the sediment (ca. 20 g wet weight) was transferred to a pre-weighed aluminium tray for dry matter analysis. The weight of the wet sediment sample was noted, and the sample dried at 60 °C for at least two days. The dry weight was obtained and used to calculate the percent dry matter (DM%, Formula 1). A temperature of 60 °C was used instead of 110 °C, which is normally used to calculate DM%, to prevent the potential melting of microplastics in the sample.

$$DM\% = \frac{dry \ weight \ (g)}{wet \ weight \ (g)} * 100\%$$
Formula 1

Another portion from the same sample (ca. 100 g wet weight) was transferred to a preweighed aluminium tray. This sediment was used for the microplastics-sediment separation. A slurry was made by adding ZnCl<sub>2</sub>-CaCl<sub>2</sub> ( $\rho \sim 1.52$  g/cm<sup>3</sup>) (from now on

# NG

referred to as zinc-chloride) to the sediment and stirring with a metal spoon or spatula to achieve a smooth, homogeneous consistency. This was considered a crucial step in order to prevent the trapping of microplastic particles inside the sediment.

### 2.2.2 Sediment density separation

NGI's Bauta Microplastic-Sediment Separator (BMSS) 2.0 was used to separate microplastics from sediment (Figure 3). The separator was updated from NGI's original BMSS design (Figure 2), inspired by the Munich Plastic-Sediment Separator (MPSS) by Imhof et al. (2012) [10] and used in previous studies [11] [12]. The BMSS 2.0 was designed without the constriction of the glass column in the previous BMSS to prevent particles sticking to the walls of the separator. The setup of the BMSS 2.0 consists of a stainless-steel base and sedimentation chamber with a glass column and separation chamber on top. The separation chamber is made up of a stainless-steel part with a shut-off valve and air vent, another glass column and a stainless-steel funnel with a  $\frac{1}{2}$ " ball valve on top. This unit makes it possible to separate the top-layer of the solution, which after density separation includes non-colloidal particles with a density less than the separation fluid used (i.e. microplastics, organic material and debris with  $\rho < 1.52$  g/cm<sup>3</sup>), whereas all denser particles are collected in the sediment chamber.



*Figure 3 NGI's Bauta Microplastic-Sediment Separator 2.0. (Schematic adapted from Philip Hayes).* 

# NG

Document no.: 20210378-01-R Date: 2022-01-26 Rev.no.: 1 Page: 13

The BMSS was thoroughly cleaned, flushed with distilled water and inspected before each use, to ensure minimal particle contamination. The filtered (Whatman glass microfiber filter, grade GF/D, pore size 2.7  $\mu$ m and diameter 150 mm) high-density zinc-chloride solution ( $\rho \ge 1.52$  g/cm<sup>3</sup>) [13] was filled from the bottom of the sediment chamber and into the lower glass column (until 1/3 of the glass column). Then, the slurry of sediment and zinc-chloride was added to the BMSS from the top, using a metal spoon. After stirring, the sample was left for the separation to start before elevating the zinc-chloride solution by addition of zinc-chloride through the inlet valve. The salt solution was raised into the separation chamber until just below the upper glass column (to prevent particles being trapped on the shelf at the separation chamber – glass column interface). Then, the sample was left for sedimentation overnight.

After sedimentation, the shut off valve of the separation chamber was closed to collect the separated microplastics. Then, the air vent was opened, and the zinc-chloride solution level was lowered before the separator unit was dismounted, turned upsidedown and placed on a tripod for filtration onto a 43  $\mu$ m stainless steel mesh filter (#300 Mesh - 0.043 mm Aperture - 0.04 mm Wire Diameter - SS316 Grade - Woven Wire, purchased from the Mesh Company, Warrington UK) (Figure 5C). A vacuum pump was used for filtration and the separation unit was flushed zinc-chloride. All parts open to the environment was covered with aluminium foil whenever possible. The filtration step was repeated three times by mounting the separator unit back to the bottom parts of the Bauta and filling with zinc-chloride solution. After the last filtration and rinsing with zinc-chloride, the separation unit was also rinsed with Milli-Q water to collect any remaining particles stuck to the Bauta walls. Milli-Q was introduced via water bottles are made of plastic (PE), and were tested to ensure little Microplastic particles; use of glass bottles would be a safer option.

The steel mesh filter containing the combined filtrate sample after rinsing several times (Figure 5, part D) was carefully folded into a "tea-bag" like form using the folding technique shown in Figure 4, and secured with a pre-weighed steel wire (Figure 5, part E). Finally, the samples were dried over night at 60 °C and weighed before treatment by oxidation of organic matter.



Figure 4 Folding technique used to secure sample material inside steel mesh.



Document no.: 20210378-01-R Date: 2022-01-26 Rev.no.: 1 Page: 14



Figure 5 A: sediment sample and zinc chloride solution ( $\rho \ge 1.52 \text{ g/cm}^3$ ) for separation; B: after density separation overnight; C: vacuum filtration of sample onto 43 µm steel mesh; D: close-up of filtered microplastic sample (before chemical digestion of organic matter); E: steel mesh containing sample wrapped into a "tea-bag" like shape.

NG

Document no.: 20210378-01-R Date: 2022-01-26 Rev.no.: 1 Page: 15

### 2.2.3 Oxidation of organic matter

Organic material was removed by performing a chemical digestion process that consisted of two parts. Biogenic polymers, such as chitin and cellulose, were dissolved in the first step by using a mixture of urea, thiourea and NaOH. [14] [15] The samples were submerged in the urea/thiourea/NaOH solution and placed in a freezer (- 20°C) for 45 minutes, lightly shaking the sample every 15 minutes. Then, the solution was left to reach room temperature with continuous stirring. In the second step, the remaining sample is digested with 30 % H<sub>2</sub>O<sub>2</sub> (prepared from 50 % stock solution) and 10 M NaOH until the reaction finished (approximately 4 hours). The samples were thoroughly rinsed with Milli-Q water after each step. The two-step oxidation process was done at least once for the separated samples. Pictures of the sample material after removal of organic matter is given in Appendix A, showing microplastics and other floating, non-digestible particles.

### 2.2.4 FT-IR analysis

Fourier Transform Infrared Spectroscopy (FT-IR) was performed to determine the material composition and to quantify the particles in the density separated and oxidized samples. First, the processed samples were transferred from the "tea bag" steel mesh filters and onto pre-cut, spherical steel mesh filters (pore size of 43  $\mu$ m, diameter of 20 mm) with a filtration area of 13 mm. This was done by opening the "tea bag" filters into Milli-Q water followed by sonication and vacuum filtration. Once transferred to the 20 mm filters, the samples were imaged using visual microscopy (Olympus SZX16 stereo microscope) provide information about the colours and shapes of the particles and to give an overview of the distribution of particles prior to FT-IR analysis.

The micro FT-IR system used here was a Perkin Elmer Spotlight 200i FT-IR microscope, equipped with a Frontier FTIR spectrometer. The system consists of a microscope, spectrometer, PC, stage controller and joystick (Figure 6).



Figure 6 Spotlight 200i – microscope and Frontier IT System

Prior to analysis, the Spotlight 200i was set up, and the microscope was focussed as described in the Spotlight 200 User's Guide. The scan parameters were set to the following settings: resolution: 4 cm<sup>-1</sup>, wave number range: 4000-600 cm<sup>-1</sup>, 4 number of accumulations.

For samples with larger particles (approximately > 2 mm based on visual determination), large enough to be picked up by tweezers, their length was measured using Vernier callipers, and thereafter individual particle analyses using the Frontier ATR assembly was conducted. The ATR crystal was cleaned with methanol between each analysis to reduce the chance of cross-contamination between samples. For particles too small to be picked up, the analysis was performed in transmittance mode. In this study, no particles large enough to be picked up by tweezers were observed, hence all particles were analysed in transmittance mode.

In transmittance mode, the infrared radiation penetrates the particle before arriving at the detector, giving an infrared spectrum of the entire volume of the particle. This mode works best with thin or translucent particles. Using the ATR technique allows for the analysis of materials that are too opaque for transmission measurements and too strongly absorbing for good reflectance measurements. The FT-IR microscope only scans the inner 10 mm of the total 20 mm filter, and thereby excludes some of particles on the edge of the filter (though these were a minority).

The obtained IR spectrums were compared with libraries of polymer spectra available through Perkin-Elmer, namely "Polymer", "ATR-Spectra", "Transmission-Spectra" and "Fluka", plus some in house NGI libraries using plastic reference materials. Particle identification is done through the software, which compares the obtained spectrum with those in the spectrum libraries, which includes a wide variety of plastic polymers, organic substances, salts and minerals, many of which are highly unlikely to be a major component of marine samples. The "Polymer" library also included typical polymer blends (e.g. polyethylene and polypropylene blends). Particles with a quality index  $\geq 0.7$  (i.e. 70 % match with FT-IR library) were accepted, whereas particles with a quality index <0.7 were rejected and are denoted "unknown" in this report. The identified items were categorized into the groups in Table 3.

In this study, a minimum of 200 particles were scanned per sediment sample.

| Particle Category                                              | Description                                                              |  |  |
|----------------------------------------------------------------|--------------------------------------------------------------------------|--|--|
| Unknown                                                        | Particles identified by FT-IR with a quality index < 0.7                 |  |  |
| Mineral                                                        | Particles with no organic chemical bond visible in the IR spectrum (such |  |  |
| Castings                                                       | as morganic saits, glass, etc.)                                          |  |  |
| Coatings-                                                      | Particles containing oxy-resins, such as ethoxy resin, epoxy resin,      |  |  |
| adhesives* phenoxy resin, or bisphenol-a containing particles. |                                                                          |  |  |
| Petro-Pyro                                                     | Typical petroleum substances, such as hydrocarbon resins, petroleum      |  |  |
|                                                                | products, etc.                                                           |  |  |
|                                                                | Commercial synthetic polymers, or a weathered derivative thereof,        |  |  |
| Plastic*                                                       | such as oxygenated polymers; semi-synthetics derived from                |  |  |
|                                                                | biopolymers like cellulose, such as rayon, viscose etc are not included  |  |  |
| Rubber*                                                        | Particles identified as rubbers, polymers used as rubbers (e.g. SBR,     |  |  |
|                                                                | silicon rubber), or resins containing rubber compounding products        |  |  |
| Organic                                                        | Particles identified as organic macromolecules like cellulose, rayon,    |  |  |
|                                                                | chitin, proteins, or in general particles containing organic carbon      |  |  |
|                                                                | molecular bonds, that do not fit into any of the above categories        |  |  |
|                                                                |                                                                          |  |  |

Table 3 Particle categories used in this report.

\*Microplastics are in this report defined as coatings-adhesives, plastic polymers and rubbers.

Plastic polymers were further subdivided into the plastic types in the table below. In case of blends, the main polymers in the composition was chosen.

| Plastic category    | Description                                        |  |  |
|---------------------|----------------------------------------------------|--|--|
| PE                  | Polyethylene (E.g. LDPE, HDPE, LLDPE, etc.)        |  |  |
| PE-chlorinated      | Chlorinated polyethylene                           |  |  |
| PE-chlorosulfonated | Chlorosulfonated polyethylene                      |  |  |
| PE-oxidized         | Oxidized polyethylene                              |  |  |
| PE:PP               | Blends of polyethylene:polypropylene               |  |  |
| PP                  | Polypropylene                                      |  |  |
| PET                 | Polyester, polyethylene terephthalates             |  |  |
| PS                  | Polystyrene                                        |  |  |
| PTFE                | Polytetrafluoroethylenes                           |  |  |
| PP-chlorinated      | Chlorinated polypropylenes                         |  |  |
| PAM                 | Polyacrylamide                                     |  |  |
| PMMA                | Polymethylmethacrylate and other polyacrylates     |  |  |
| PU                  | Polyurethane foam                                  |  |  |
| PVF                 | Polyvinyl fluoride                                 |  |  |
| PVC                 | Polyvinyl chloride                                 |  |  |
| Melamine            | Melamine (all resin blends)                        |  |  |
| Nylon               | Nylon and polyamide                                |  |  |
| Other               | Synthetic polymers not belonging to the above list |  |  |

Table 4 Plastic particle categories used in this report.

## 2.3 Chemicals and solvents

Chemicals used during solution preparation and spiking materials are listed below (Table 5 and Table 6, respectively).

| Chemical                   | Molecular formula                                                   | Manufacturer/<br>Distributor | Purity (%)       |
|----------------------------|---------------------------------------------------------------------|------------------------------|------------------|
| Zink chloride              | ZnCl <sub>2</sub>                                                   |                              | 97               |
| Calcium chloride           | CaCl <sub>2</sub>                                                   | V/M/D International          | 90-98            |
| Hydrogen<br>peroxide       | 50 % H <sub>2</sub> O <sub>2</sub>                                  | v w K international          | Analytical grade |
| Urea                       | CO(NH <sub>2</sub> ) <sub>2</sub>                                   |                              | ≥ 98             |
| Sodium dodecyl<br>sulphate | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>11</sub> SO <sub>4</sub> Na | Sigma Aldrich                | ≥ 99             |
| Thiourea                   | $CH_4N_2S$                                                          |                              | ≥ 98             |
| Sodium hydroxide           | NaOH                                                                | IVIEICK K GAA                | 99-100           |

Table 5 Chemicals used during solution preparation.

Table 6 Microplastics used in spiked blanks

| Голин     | Dolumortuno     | Manufacturer/  | Properties                   |               |
|-----------|-----------------|----------------|------------------------------|---------------|
| Form      | Polymer type    | Distributor    | Density (g/cm <sup>3</sup> ) | Diameter (µm) |
| Powder    | Polyester (PET) | Goodfellow     | 1.40                         | 45-300        |
| Fibre     | Polyester (PET) | Cambridge Ltd. | 1.39                         | 17            |
| Granulate | Polyester (PET) | (UK)           | 1.40                         | 3000-5000     |

## 2.4 Quality assurance

Contamination control was carried out throughout the sampling, processing and analysis. Several steps were taken to reduce contamination, which included:

- Cotton lab coats and clothing were used in the laboratory.
- All glassware was flushed with Milli-Q water and visually inspected before each use.
- All steel mesh filters were inspected with visual microscopy before use. If particles were observed, ultrasonic cleaning in Milli-Q was performed.
- The samples were kept sealed as much as possible to prevent airborne contamination.

Presence of contamination in blank samples was accounted for in the results.

Document no.: 20210378-01-R Date: 2022-01-26 Rev.no.: 1 Page: 19

### 2.4.1 Method blank

Method blanks (n = 10) were used to check for contamination from the laboratory method. Method blanks were prepared in the laboratory, by adding zinc chloride to a sediment-free aluminium tray and followed by the exact same analysis as for sediment samples. The method blanks were exposed to the ambient air for comparable time periods as the sediment samples, hence the blanks should account for airborne contamination as well as procedural contamination. No separate air contamination blanks were therefore performed.

### 2.4.2 Field blank

The field blanks (n = 2) were analysed in the same way as sediment samples and used to correct the microplastic concentrations in surface samples from the same geographical area. The field blanks were thus used to correct for contamination from sampling, transport and extraction as well as the laboratory method.

### 2.4.3 Spiked blanks

Spiked blanks were prepared after processing an actual sample by transferring some of the remaining "high-density material-free sediment" after separation in the BMSS from the sediment chamber, to a pre-weighed aluminium tray and spiked with either plastic fibres and granules or plastic powder and granules (Table 6). Five granules were used, and the weight of the granules, fibres and powder was noted before spiking the sediment. The spiked sediment was then re-introduced to the Bauta. The purpose of the spiked blanks was to test the recoveries of the method. The spiked sample recovery (frecovery) was calculated by using the following equation:

 $f_{recovery}(\%) = \frac{\underline{m}}{\underline{-(m}} \quad \underline{+m} \quad \underline{)}$ Formula 2

### 2.5 Microplastic concentrations

The number of particles of a specific type of microplastic based on the type of polymer in the analysed sediment surface samples ( $n_{p,sample}$ ) was corrected according to the average number of particles plus the standard deviation (SD) in the average value for field blanks ( $n_{p,field \ blank}$ ) or the method blanks ( $n_{p,method \ blank}$ ), whatever was highest as shown in Formula 3. The particle concentrations were also corrected for the recovery factor ( $f_{recovery}$ ).

if  $n_{p,field \ blank} > n_{p,method \ blank}$ :

 $n_{plastic} = (n_{p,sample} - n_{p,field \ blank} - SD_{p,field \ blank})/f_{recovery}$  Formula 3
Else:  $n_{plastic} = (n_{p,sample} - n_{p,method \ blank} - SD_{p,method \ blank})/f_{recovery}$ 

Weight results  $(m_p)$  were also corrected according to the recovery correction factor (frecovery) obtained from the spiked blanks (formula 4), which were based on mass.

if  $m_{p,field \ blank} > m_{p,method \ blank}$ :

 $m_{plastic} = (m_{p,sample} - m_{p,field \ blank})/f_{recovery}$  Formula 4

Else:  $m_{plastic} = (m_{p,sample} - m_{p,method blank})/f_{recovery}$ 

The field blank should account for microplastics introduced from the field sampling as well as from the laboratory method, but as the method blank samples could periodically contain additional microplastics that were not all present in the field blanks, such as variations in microplastic in the laboratory atmosphere, it was considered important to include this correction factor.

Based on the weight of the processed samples after density separation and chemical digestion (mg potential MP) and the percentage of identified microplastics in the samples, microplastic concentrations were estimated on weight basis.

$$c_{MP}\left(\frac{mg MP}{kg d.w.}\right) = \frac{mg \text{ potential } MP}{kg d.w.} * \frac{n_{plastic}}{n_{tot}}$$
Formula 5

Microplastic concentrations were also calculated as number of microplastic particles (blank-corrected) per kg sediment:

$$c_{MP}\left(\frac{items\,MP}{kg\,d.w.}\right) = \frac{n_{plastic}}{kg\,d.w.}$$
Formula 5

The presence of non-plastic particles (organic, mineral, petro-pyro and unknown particles) in the sediment samples were corrected by subtracting the average number amount in the method blanks only. This was done as the composition of non-plastic material in the sediment samples likely will vary with the geographical position, depth and characteristics of the sediments, and we do not have blanks for each station. Further, the number or organic particles in the sample after chemical digestion will vary depending on the number of treatments preformed and how successful it has been at removing organic matter, as has been described in Olsen et al. (2020) [15]. In these samples, the digestion removed enough particles to be below the analytical detection limit of the weighing balances used. Thus, the success of the digestion cannot be quantified; however, this is generally interpreted as implying that the sample is free of enough organic particles to avoid interferences in FT-IR analysis. There is also concern that too many repeated digestion procedures could destroy some of the plastics, like PET [15].

### **3** Results and discussion

### 3.1 Visual microscopy

Pictures from visual microscopy are shown in Appendix A. The most abundant particle shape was granules, followed by fibres and layers (based on observations through the FT-IR microscope). As previously mentioned for method blanks, a white "veil" suspected to be PE contamination was also observed in some of the sediment samples (e.g. S-01 0-2 cm, S-02 0-2 cm, S-11 2-4 cm; Appendix A).

### 3.2 Carbonate, Total Carbon and Total Organic Carbon profiles

The carbonate, total carbon (TC) and total organic carbon (TOC) content sediment samples are provided in Table 7.

| CompletD  | Depth | тс         | TOC       | Carbonate content       |
|-----------|-------|------------|-----------|-------------------------|
| Sample ID | (cm)  | (weight %) | (weight%) | (weight %) <sup>1</sup> |
| S-01      | 0-1   | 1.18       | 0.317     | 7.2                     |
| S-02      | 0-1   | 2.24       | 0.563     | 14.0                    |
| S-03      | 0-1   | 2.71       | 0.897     | 15.1                    |
| S-04      | 0-1   | 2.50       | 0.629     | 15.6                    |
| S-05      | 0-1   | 3.36       | 0.742     | 21.8                    |
| S-06      | 0-1   | 2.59       | 0.577     | 16.8                    |
|           | 2-3   | 2.44       | 0.543     | 15.8                    |
|           | 4-5   | 2.30       | 0.472     | 15.2                    |
|           | 9-10  | 1.61       | 0.480     | 9.4                     |
| S-07      | 0-1   | 3.17       | 0.711     | 20.5                    |
| S-08      | 0-1   | 3.08       | 0.765     | 19.3                    |
| S-09      | 0-1   | 3.29       | 0.909     | 19.8                    |
| S-10      | 0-1   | 3.14       | 0.750     | 19.9                    |
|           | 2-3   | 2.95       | 0.667     | 19.0                    |
|           | 4-5   | 3.09       | 0.700     | 19.9                    |
|           | 9-10  | 3.08       | 0.692     | 19.9                    |
|           | 14-15 | 3.15       | 0.681     | 20.6                    |
|           | 24-25 | 3.09       | 0.651     | 20.3                    |
|           | 47-48 | 2.80       | 0.547     | 18.8                    |
| S-11      | 0-1   | 3.21       | 0.573     | 22.0                    |
|           | 2-3   | 3.13       | 0.538     | 21.6                    |
|           | 4-5   | 3.19       | 0.525     | 22.2                    |
|           | 9-10  | 3.14       | 0.491     | 22.1                    |

Table 7 Levels of total carbon (TC), total organic carbon (TOC) and carbonate (CaCO<sub>3</sub>) in surface sample S-01 to S-11 and deeper sediments (S-06, S-10 and S-11) (TC and TOC-levels provided by NGU – results from LECO analyses) [9].

<sup>1</sup>Calculated as  $(TC - TOC) \times 8.33$ . Assumes that inorganic carbon is bound as CaCO<sub>3</sub> and assumed to be of biogenic origin.

### 3.3 Quality assurance

#### 3.3.1 Method blanks

As described previously, method blanks (n = 10) were prepared and analysed for microplastics to control for contamination resulting from the laboratory method. At least one method blank was analysed from each week of ongoing analyses. For week 24, three method blanks (MB-05, MB-07 and MB-08) were analysed to investigate the variation within a single week as well as to check for differences between a new and older Bauta (MB-07 and MB-08, respectively). As the microplastic level in all three blanks were quite similar, the average value was chosen to represent the contamination level in this week. The number of particles in the method blanks are shown in the table below.

Table 8 Number of microplastic particles and other particles in method blanks within each defined FT-IR category. SD = standard deviation.

| Particle \ Method blank<br>ID |                    | MB-<br>01 | MB-<br>03 | MB-05-<br>07-08 <sup>1</sup> | MB-<br>10 | MB-<br>12        | MB-<br>13        | MB-<br>16 | MB-<br>21        | Mean ±<br>SD |
|-------------------------------|--------------------|-----------|-----------|------------------------------|-----------|------------------|------------------|-----------|------------------|--------------|
| V                             | Veek               | 22        | 23        | 24                           | 25        | 26               | 33               | 34        | 43               |              |
| <b>D</b> I <b>E E</b>         | PE                 | 7         | 2         | 29                           | 88        | 128              | 82               | 12        | 38               | 48 ± 46      |
| Plastic                       | РР                 | 1         | 10        | 4                            | 4         | 10               | 0                | 2         | 10               | 5 ± 4        |
| polymer                       | PET                | 4         | 6         | 3                            | 6         | 4                | 4                | 2         | 6                | 4 ± 1        |
|                               | PS                 | 0         | 0         | 0                            | 0         | 0                | 2                | 0         | 0                | 0 ± 1        |
|                               | PE-<br>chlorinated | 0         | 0         | 1                            | 2         | 2                | 0                | 0         | 0                | 1±1          |
|                               | PAM                | 0         | 0         | 0 <sup>2</sup>               | 0         | 0                | 0                | 0         | 0                | 0 ± 0        |
|                               | PMMA               | 0         | 0         | 1                            | 0         | 0                | 0                | 0         | 0                | 0 ± 0        |
|                               | PU                 | 0         | 0         | 0                            | 2         | 0                | 0                | 0         | 2                | 1 ± 1        |
|                               | PE-oxidized        | 3         | 0         | 1                            | 26        | 26               | 2                | 0         | 0                | 7 ± 12       |
|                               | PE:PP              | 0         | 4         | 0                            | 0         | 0                | 0                | 0         | 2                | 1 ± 1        |
|                               | PVC                | 0         | 0         | 1                            | 0         | 0                | 0                | 0         | 0                | 0 ± 0        |
|                               | Melamine           | 1         | 8         | 1                            | 0         | 0                | 2                | 2         | 0                | 2 ± 3        |
|                               | Nylon              | 0         | 0         | 2                            | 0         | 0                | 0                | 0         | 0                | 0 ± 1        |
|                               | EVA                | 0         | 0         | 0                            | 0         | 0                | 0                | 2         | 0                | 0 ± 1        |
|                               | Additive           | 0         | 2         | 1                            | 2         | 4                | 0                | 0         | 0                | 1 ± 1        |
|                               | Other              | 0         | 2         | 1                            | 4         | 2                | 4                | 2         | 0                | 2 ± 2        |
|                               | Total              | 16        | 34        | 43                           | 134       | 176              | 96               | 22        | 58               | 72 ± 58      |
| Coatings-adhesives            |                    | 0         | 2         | 0                            | 0         | 0                | 0                | 0         | 2                | 1 ± 1        |
| Rubber                        |                    | 0         | 0         | 1                            | 0         | 0                | 0                | 0         | 0                | 0 ± 0        |
| Petro-Pyro                    |                    | 0         | 4         | 0                            | 0         | 0                | 0                | 0         | 2                | 1 ± 1        |
| Organic                       |                    | 37        | 116       | 97                           | 64        | 132 <sup>3</sup> | 108 <sup>3</sup> | 66        | 112 <sup>3</sup> | 92 ± 32      |
| Mineral                       |                    | 0         | 2         | 0                            | 2         | 0                | 0                | 0         | 0                | 1 ± 1        |
| Unknown                       |                    | 156       | 108       | 139                          | 148       | 84               | 166              | 134       | 100              | 129 ± 29     |

<sup>1</sup>Particle counts are given by the mean value of method blanks MB-05, MB-07 and MB-08 from week 24. <sup>2</sup>One PAM particle was found in method blank MB-08.

<sup>3</sup>Many particles were identified as "Ethylene/acrylic acid 20 % acrylic acid", accounting for 25 %, 48 % and 27 % of the organic particles in MB-12, MB-13 and MB- 21, respectively

Contamination by plastic polymers was evident in all method blank samples (Table 8), with an average of  $72 \pm 58$  particles per method blank. The main contributor to this contamination was the high number of PE particles (mean:  $48 \pm 46$  particles) found in the blanks, which seemed to reach a peak in week 26 of analyses (MB-12). For the method blanks with the highest number of PE particles (MB-10, MB-12, and MB-13), a white "veil" was observed on the filters (Appendix A), which was confirmed PE by FT-IR. Through the FT-IR microscope, a "waxy" looking substance was observed on the filters heavily contaminated by PE. This could not be seen in the visual microscope. Despite efforts to identify and limit the contamination, the source of the PE particles could not be found. Tests of laboratory equipment, chemicals used in the analyses and exposure to the ambient air in the lab did not show notable PE contamination. Due to the high abundance of PE resulting in the method blanks, this plastic type could not be quantified in this study. Hence, results for PE in the sediment samples are not reported.

Further, there appeared to be a periodic contamination of PE-oxidized particles (7  $\pm$  12 particles) in the method blanks, with especially high number of particles detected in blanks from week 25 and 26 (MB-10 and MB-12). The third and fourth most abundant plastic polymers found in the method blanks were PP (mean: 5  $\pm$  4 particles) and PET (mean: 4  $\pm$  1 particles). For other plastic polymers as well as coatings-adhesives and rubber particles, the contamination level in the blank samples was relatively low.

Each method blank contained an average of 92 organic particles, and 129 unknown particles (i.e. particles with a match score < 0.7 with the FT-IR library). The impurities collected on the steel mesh filters contributed to  $0 \pm 1$  mg (mean  $\pm$  standard deviation) average additional weight after chemical digestion.

Out of the particles classified as organics, a large portion was identified as rayon (22 %), a synthetic fibre made of cellulose. The presence of rayon in the method blanks (e.g. seen in MB-08; Appendix A) suggests that airborne contamination from clothing and other fabrics is a substantial contributor to contamination in the lab. Further, fibres contributed to around 25 % the particles found in the method blanks, with the majority of the fibres being unknowns (43 %), followed by organic (32 %) and plastic (16 %) fibres. Out of the plastic fibres, 66 % were classified as PE and 6 % as PP. A potential source of these PE and PP fibres can be the use of surgical face masks in the lab due to COVID-19 restrictions [16]. According to Chowdhury et al. (2021), mismanaged face masks are estimated to contribute to between 1.15 and 0.39 million tonnes of plastic debris entering global oceans within a year, as of April 2021, from the 46 countries analysed in the study [17].

In method blank MB-12, MB-13 and MB-21, particles identified as "Ethylene/acrylic acid 20 % acrylic acid" accounted for 25 %, 48 % and 27 % of the particles classified as organics, respectively. As the transmission spectrum of "Ethylene/acrylic acid 20 % acrylic acid" is similar to that of PE, it is possible that these particles are a part of the PE contamination experienced in the lab and that the number of PE particles in these blanks

shown in Table 8 are underestimated. However, as the level of PE in the environmental samples are not quantified, this potential underestimation does not affect the results. As shown in Appendix B, relatively high levels of PTFE particles were found in the method blanks (mean:  $41 \pm 38$  particles per blank sample). PTFE is a thermoplastic polymer of tetrafluoroethylene. PTFE, or Teflon, and it has several applications, such as a non-stick coating for pans and other cookware, due to its hydrophobic characteristics. The PTFE contamination was expected as the inner parts of the ball valve used in the density separator previously has been identified as a source of PTFE [12]. As the density of PTFE (2.10-2.30 g/cm<sup>3</sup>) is higher than the density of the ZnCl<sub>2</sub> solution, the method used in this study is not suitable for quantifying this polymer type. Hence, all PTFE particles found in both blank and sediment samples were regarded as contamination from the analytical method and not included in the results.

#### 3.3.2 Field blanks

The number of particles in the field blanks (n = 2) are shown in Table 9. As previously described, these samples were prepared and analysed for microplastics to control for contamination from sample processing in the field as well as the analytical method. The particles collected on the field blank steel mesh filters contributed to less weight than the uncertainty of the scale (limit of detection set to 0,001 g).

| Particle \ Field blank ID |                | S-10-FB-01 | S-11-FB-02        | Mean + SD   |
|---------------------------|----------------|------------|-------------------|-------------|
| Week                      |                | 26         | 43                |             |
|                           | PE             | 4          | 10                | 7 ± 4       |
|                           | РР             | 3          | 0                 | 2 ± 2       |
|                           | PET            | 6          | 2                 | 4 ± 3       |
|                           | PE-chlorinated | 8          | 24                | 16 ± 11     |
| Plastic                   | PAM            | 1          | 0                 | 1 ± 1       |
| polymer                   | PMMA           | 0          | 2                 | 1 ± 1       |
|                           | PE-oxidized    | 2          | 4                 | 3 ± 1       |
|                           | PE:PP          | 7          | 10                | 9 ± 2       |
|                           | Total          | 31         | 52                | 42 ± 15     |
| Coatings-a                | adhesives      | 4          | 4                 | 4 ± 0       |
| Rubber                    |                | 8          | 24                | 16 ± 11     |
| Petro-Pyro                |                | 1          | 10                | 6 ± 6       |
| Organic                   |                | 126        | 72                | 99 ± 38     |
| Mineral                   |                | 2          | 2                 | 2 ± 0       |
| Unknown                   |                | 252        | 2282 <sup>1</sup> | 1267 ± 1435 |

Table 9 Number of microplastic particles and other particles in field blanks within each defined FT-IR category. Colouring in the table corresponds to the colouring in Table 3. SD = standard deviation.

Document no.: 20210378-01-R Date: 2022-01-26 Rev.no.: 1 Page: 25

Generally, field blank samples contained similar amounts of plastic polymers, or less, compared to the method blanks. However, PE-chlorinated ( $16 \pm 11$ ) and PE:PP ( $9 \pm 2$ ) particles were more abundant in the field blanks (Figure 7). A relatively high number of rubber particles  $(16 \pm 11)$  were also observed in the field blanks, which was not recorded in the method blanks. The rubber particles are difficult to identify chemically, as most of these in the FT-IR libraries are provided by trade or brand names. It was found that some of the brand names listed (e.g. Resinall CP-25) were rich in polyethylene, thus some of the rubber results could be due to laboratory contamination. As expected, relatively high levels for PTFE particles were found in the field blanks due to contamination from the valves of the Bauta ( $17 \pm 6$ , Appendix B). In contrast to the sediment samples from the previous MAREANO survey [12] [18], no PVC particles were recorded in the field blanks in this study, which may be a result of replacing the PVC tubes previously used for core sampling with stainless steel tubes. However, as the FT-IR spectrum of PE-chlorinated is similar to that of PVC due to similarities in their chemical structure, it is possible that PVC particles have been mistaken as PEchlorinated.

As the deep-sediments used as field blanks originate from a time prior to plastic production, it is assumed that the microplastics found in these samples are contamination from either the analytical method or the field work. The results were corrected by subtracting the background level of contamination, as previously described (chapter 2.5). Correction by this method resulted in over 70 % of the identified microplastics being excluded from the results. From experience, this is not uncommon for samples from pristine areas, which have concentrations only slightly above detection limits.

Document no.: 20210378-01-R Date: 2022-01-26 Rev.no.: 1 Page: 26



Figure 7 Comparison of average number of microplastic particles encountered in method blanks (n = 10) and field blanks (n = 2), with exclusions of PTFE particles (see Appendix B).

Overall, the number of microplastics (plastic polymers, coatings-adhesives and rubber) in the method blanks were higher than the field blanks, suggesting that the analytical work contributed to more microplastic contamination than the field work and sample processing. Certain types of microplastic (PE:PP, PE-chlorinated, rubber and organotin) were however more abundant in the field blank samples, indicating that these have been introduced during field sampling at some point. It should however be noted that due to their similar FT-IR spectra, the PE:PP particles in the field blanks could potentially be misidentified PP particles (which were found in the method blanks), and thus not a result of contamination in the field. To which extent the presence of microplastics in the field blanks is due to contamination during sampling, transfer of subsamples or transport is uncertain.

In the field blanks, PE particles were present, but less so than in the method blanks. As the PE contamination appeared to vary substantially throughout the analyses, this is likely due to the field blank samples being analysed in a period of low PE contamination in the lab. As previously described, all PE particles were excluded from the further results and are not reported.

After subtracting the level of contamination in the method blanks (mean + SD, both microplastic and other particle types), microplastics accounted for 77 % and 85 % of the identified particles, respectively (Figure 8). As these deep-sediments originate from a time prior to plastic production, it is assumed that the plastics detected are related to contamination from sampling. During sampling, care was taken to avoid contamination of sampling equipment (using steel spatula to cut the samples, covering with aluminium foil as soon as possible etc.), however, field work and sampling still appears to be a be a source of contamination. Also, as the outer edge of the sediment cores were not cut away during sample processing, cross-contamination within the sediment cores cannot be ruled out.





Figure 8 Material composition of identified particles in the field blanks, shown as percentage of each category group, with the exclusion of unknown particles (FT-TR score < 0.7), which accounted for > 70 % of the analysed particles.

The concentration of microplastics in the field blanks (n = 2) after method blank correction are shown in Table 10, and ranged from 471 to 899 particles per kg dry weight sediment. On weight basis, the microplastic concentrations were < LOD by estimation based on measured sample weight and % MP. By estimating an average size and density of the identified microplastic particles, the mass concentration of MPs was on average  $685 \pm 303$  mg/kg (Table 10).

| Table 10 Microplastics (MP) abundance (dry weight basis) in field blank samples (sample blank |
|-----------------------------------------------------------------------------------------------|
| corrected). LOD = 1 mg/kg. SD = standard deviation.                                           |

| Sample ID  | Depth<br>(cm) | mg<br>MP/kg<br>d.w. <sup>1</sup> | mg<br>MP/kg<br>d.w. <sup>2</sup> | MP<br>particles<br>/kg | PVC and PE-<br>chlorinated<br>particles/kg <sup>3</sup> | Most frequent plastic                                                   |
|------------|---------------|----------------------------------|----------------------------------|------------------------|---------------------------------------------------------|-------------------------------------------------------------------------|
| S-10-FB-01 | 30-32         | n.d.                             | 0,3                              | 471                    | 127                                                     | Rubber (Resinall)<br>(34 %), PE-<br>chlorinated (27<br>%), PE:PP (21 %) |
| S-11-FB-02 | 20-22         | n.d.                             | 0,6                              | 899                    | 345                                                     | PE-chlorinated (38<br>%); rubber<br>(Resinall) (27 %),<br>PE:PP (14 %)  |
| All (ı     | mean ± SE     | D)                               | 0,4 ± 0,2                        | 685 ±<br>303           | 236 ± 155                                               | -                                                                       |

<sup>1</sup>Based on measured weight of floating, non-digestible material and the percentage of MP in the samples. n.d.= weight of sample material was below the limit of detection for the analytical balance (<0,001 g) <sup>2</sup>Based on an estimated mean particle diameter of 100 µm and density of 1.2 g/cm<sup>3</sup>, assuming spherical particles.

<sup>3</sup>No PVC particles were identified by FT-IR. All particles were identified as PE-chlorinated.

#### 3.3.3 Spiked blanks

Six spiked blanks were prepared and weighed to predict the recovery rates of microplastics from the environmental samples, as shown in the table below.

| Spiked | Depth (cm) | Date       | Density of ZnCl2:CaCl2 | Weight re | covery frac | tion (%)* |
|--------|------------|------------|------------------------|-----------|-------------|-----------|
| Diank  |            |            | (g/cm²)                | Powder    | Fibre       | Pellet    |
| S-11   | 0-2        | 25.08.2021 | 1,54                   | 90        | -           | 100       |
| S-11   | 4-6        | 25.08.2021 | 1,55                   | 88        | -           | 100       |
| S-11   | 8-10       | 25.08.2021 | 1,54                   | 79        | -           | 100       |
| S-10   | 0-2        | 05.10.2021 | 1,53                   | -         | 0           | 100       |
| S-10   | 4-6        | 05.10.2021 | 1,53                   | -         | 1           | 100       |
| S-10   | 8-10       | 05.10.2021 | 1,53                   | -         | -1          | 100       |
|        | Mean ± SD  | )          | 1,54 ± 0               | 86 ± 5,7  | 0 ± 1       | 100 ± 0   |

Table 11 Recovery rates for three types of PET microplastics used for spiking.

\*Based on blank corrected weight result, SD = standard deviation.

Document no.: 20210378-01-R Date: 2022-01-26 Rev.no.: 1 Page: 29

The total average recovery fraction obtained for PET powder was 86 % (Table 11). Thus, a fraction ( $f_{recovery}$ ) of 0.86 was used for recovery correction for the dry weights of sample microplastics. The recovery rate of PET powder was higher compared to the recovery recorded in the previous study on behalf of NGU as part of the MAREANO program (73 %) [12] [19]. This could be due to the optimized BMSS setup (Bauta 2.0) used in the present study, where the constriction of the glass column was removed to avoid potential loss due to particles sticking to the glass walls during separation.

For the PET fibres used for spiking, no recovery was recorded  $(0 \pm 1 \%)$ , indicating that all the fibres were lost during the analytical procedure. As the sediments in this study had high clay contents [9], this could be due to aggregation with clay particles hindering separation from the sediment during density separation. The PET fibres used were approximately 1 cm long and had a diameter of 17 µm and are made up of a weave of even smaller fibres, which are less than the pore size of the steel mesh filters of 43 µm; in previous project we did however have better recoveries. Knutsen et al. (2020) have reported an average recovery of  $77\pm 19 \%$  for PE fibres (38 µm), PET powder (75-300 µm) and PET pellets (3-5 mm) [8]. Relatively low recoveries for PET fibres (16 ± 16 %) were also seen in the previous study of microplastics in sediments form the MAREANO survey, especially for sediment with high clay content [18]. Therefore, it is considered not possible to accurately quantify small PET fibres in these sediments, likely due to aggregation with sediment.

Although fibres were observed in all environmental samples in this study, they could not be correctly quantified with this method due to the poor recovery for the PET fibres used for spiking. Much higher recovery rates have however been documented for other types of plastic fibres. Spiking with PE fibres (density of  $0.92 \text{ g/cm}^3$  and a larger diameter than PET fibres) have previously resulted in recovery rates of  $91 \pm 6 \%$  [20]. Other types of microplastic fibres present in the environmental samples may therefore have been successfully separated from the sediment samples.

#### 3.3.4 Limitations of the method

#### **Density limitation**

Typical densities for sand or other sediments are approximately 2.65 g/cm<sup>3</sup>, whereas density values for virgin plastic resins range from 0.8 to 1.4 g/cm<sup>3</sup> [21]. Density separation with zinc-chloride solution ( $\rho \sim 1.52$  g/cm<sup>3</sup>) will thus separate the lighter plastic particles from the heavier sediment grains. However, there are some types of plastic with densities higher than this, such as pure Teflon and mixtures of polymers and glass, polymers and minerals or polymers and metals. This means that plastics with a density higher than the zinc-chloride solution are not extracted from the sediment, which might have led to an underestimation of the total microplastics concentration present in the sample.

Document no.: 20210378-01-R Date: 2022-01-26 Rev.no.: 1 Page: 30

#### Particle size limitation

Due to the filter size of 43  $\mu$ m, the microplastic quantities in this report may have been underestimated. Bergmann et al. (2017) reported that a significant amount of the counted microplastic particles were smaller than 25  $\mu$ m in their study [4]. Thus, some of the smaller particles (including nanoplastics) would have gone unnoticed in this study. Though these particles would have minimum influence on the weight.

#### **Digestion** limitation

The digestion method used here was optimised to be as destructive as possible to organic matter (including cellulose, chitin, proteins, lipids, etc.), while leaving synthetic polymers intact. During the method development, this was tested systematically, and recalcitrant organic matter like cellulose was found to be digested  $98 \pm 4$  %, while there was no weight change to microplastic granules [15].

Most of the material separated in the BMSS was < 1 mm. Thus, it is likely that the digestion removed most of the organic matter, as it is more difficult and time consuming to completely digest larger organic matter particles than smaller ones. Some organic matter did survive, as evident from the FT-IR results. Further, other low-density carbonaceous materials like coal, charcoal, bitumen, etc., or possibly non-carbonaceous low-density materials such as porous glass and ceramics, would have been unaffected by digestion.

#### Characterisation by FT-IR microscopy

There are also limitations regarding to the FT-IR analysis used. In literature, it is common to use a quality index of 0.7 as the limit [22]. This limit was also used in this study. However, weathering of the polymers affects their surface and thereby their spectra, which makes comparison with reference spectra more difficult. Therefore, a score limit of 0.7 could lead to an underestimation of plastics, as particles with a lower score in fact could be plastics. At the same time, the cut-off of 0.7 could have resulted in an overestimation of plastics if the limit is not conservative enough, as the uncertainty increases with decreasing score.

Furthermore, there are uncertainties associated with the actual FT-IR apparatus. For instance, to obtain high quality spectra in transmission mode, it is best with samples that are translucent, and they should sit as flat on the window as possible. However, particles from environmental samples, like in this project, are often irregularly shaped and with an uneven surface, or they can be highly opaque and thick, which may reduce the quality of the recorded spectra using ATR. Further, in order to get good transmission signals, the beam path should not be obstructed by the steel mesh threads during analysis. To avoid this, effort was made to only scan a part of the particles that were not overlapping with the steel mesh. However, keeping the steel filters completely flat during sample preparation prior to FT-IR analysis was challenging and may have led to the pore size appearing smaller in bent areas of the filter. When slightly bent, the risk of losing particles during transfer of the filters from the filtration apparatus to the sample holder

appeared to be higher as they were more inclined to move around on the filter. It is uncertain to what extent this may have led to an underestimation of the results.

Unknown particles are particles whose FT-IR spectra gave a match score < 0.7 with the library. In addition to the fact that the particles classified as unknown may have been particles missing in the library database, their relatively low scores could be caused by other factors, such as differences between the surface of the reference sample and measurement target and bad transmission signals of opaque particles. E.g. if the surface of the sample is weathered and oxidized, or if it is coated, the spectrum will not match well with the reference. A relatively poorer match is also expected if an analysed microplastics particle consists of a mixture of different polymers and additives, such as many coatings-adhesives and epoxides. Hence, if the samples contained highly weathered microplastic concentration. It is, however, considered more likely that most of the unknowns consists of other materials such as coal, charcoal and incompletely digested organic material.

### 3.4 Microplastics in surface samples

#### 3.4.1 Microplastic abundance

In all analysed sediments, microplastics were detected above the levels in method blanks and field blanks. Microplastic concentrations in the surface samples (0 - 2 cm, n = 11)are provided Table 12. The number of microplastic particles per kg sediment ranged from 51 to 2187 (average of 679 ± 663 particles/kg). Using two different methods to estimate the amount of microplastics on weight basis (mg MP/kg sediment), the weight concentration was  $0.7 \pm 0.8$  mg/kg (range: n.d. - 2.2 mg/kg) or  $0.4 \pm 0.4$  mg/kg (range: 0 - 1.4 mg/kg). As this study was not able to quantify potential PE-particles as well as certain microplastic fibres (due to poor recovery factor for PET fibres, discussed in chapter 3.3.3), the reported concentrations may be underestimated. All results prior to blank correction is given in Appendix C.

| Sample ID           | mg MP/kg d.w.<br>(estimate 1) <sup>1</sup> | mg MP/kg d.w.<br>(estimate 2) <sup>2</sup> | MP particles/kg d.w.  |
|---------------------|--------------------------------------------|--------------------------------------------|-----------------------|
| S-01                | n.d.                                       | 0.1                                        | 194                   |
| S-02                | 2.2                                        | 1.4                                        | 2187                  |
| S-03                | 0.3                                        | 0.9                                        | 1369                  |
| S-04                | n.d.                                       | 0.4                                        | 692                   |
| S-05                | n.d.                                       | 0.0                                        | 51                    |
| S-06                | 0.6                                        | 0.5                                        | 867                   |
| S-07                | n.d.                                       | 0.4                                        | 666                   |
| S-08                | 0.1                                        | 0.0                                        | 52                    |
| S-09                | n.d.                                       | 0.1                                        | 94                    |
| S-10                | 0.5                                        | 0.2                                        | 301                   |
| S-11                | n.d.                                       | 0.6                                        | 992                   |
| Mean ± SD (min-max) | 0.7 ± 0.8 (0.1 - 2.2)                      | 0.4 ± 0.4 (0 - 1.4)                        | 679 ± 663 (51 - 2187) |

Table 12 Microplastic abundance (dry weight basis) in surface samples (blank and recovery corrected) and estimated weight concentrations. SD = standard deviation.

<sup>1</sup>Based on measured weight of floating, non-digestible material and the percentage of MP in the samples. n.d.: weight of sample material was below the limit of detection for the analytical balance (<0,001 g) <sup>2</sup>Based on an estimated mean particle diameter of 100  $\mu$ m and density of 1.2 g/cm<sup>3</sup>, assuming spherical particles.

Document no.: 20210378-01-R Date: 2022-01-26 Rev.no.: 1 Page: 33



Figure 9 Microplastic (MP) abundance (items/kg dry weight) in surface sediment (0-2 cm) from sampling stations S-01 to S-11 in the Norwegian Sea.

#### 3.4.2 Comparison of microplastic abundance with literature

Microplastic particles have been reported in marine sediments worldwide. It is difficult to make direct comparisons across different regions because of variability and differences in the sampling techniques, sample preparation and detection methods used. In the table below, there is a list of studies of microplastics in sediment from nearby geographical areas and with some methodological similarities to this study. For meaningful comparisons, it is important to define specific methodological conditions, such as the density of the density-solution used and in particular the size range of microplastics quantified, as particle number is expected to increase with decreasing particle size [4]. Differences in methodology which could affect comparison are discussed in the text.

| Table 13 Summary of reported microplastic concentrations in sediments. The concentrations       |
|-------------------------------------------------------------------------------------------------|
| are expressed as particles/kg (dry weight basis). SD = standard deviation; SE = standard error; |
| n = number of samples.                                                                          |

| Location            | Location<br>specification                                     | Particle size<br>(n)                                                  | Measured concentration<br>(min-max range and/or mean)                             | Reference                      |
|---------------------|---------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------|
| Norway              | The Norwegian<br>Sea / mid-<br>Norwegian<br>Continental Shelf | 43 μm – 1 mmª<br>(11)                                                 | 51 – 2187 particles/kg<br>(679 ± 663 SD)                                          | This study                     |
| Svalbard/<br>Arctic | Arctic and Barents<br>Sea<br>Barents Sea                      | 45 μm – 1 mm <sup>a</sup><br>(10)<br>45 μm – 1 mm <sup>a</sup><br>(4) | 0 – 560 particles/kg<br>(220 ± 180 SD)<br>46 – 430 particles/kg<br>(220 ± 190 SD) | NGU and NGI,<br>2019 [12] [19] |
| Svalbard/<br>Arctic | HAUSGARTEN<br>observatory                                     | 10 – 275 μm<br>(9)                                                    | 42 – 6595 particles/kg<br>(4356 ± 675 SE)                                         | Bergmann et<br>al., 2017 [4]   |
| Norway              | Norwegian<br>Continental Shelf                                | 5 μm – 1 mm<br>(10)                                                   | 23 – 290 particles/kg<br>(120 ± 97 SD)                                            | NGU, 2018 [7]                  |
| Norway <sup>b</sup> | Norwegian<br>Continental Shelf                                | 45 μm – 5 mm <sup>c</sup><br>(35)<br>45 μm – 5 mm <sup>c</sup>        | 0 – 3400 particles/kg<br>(370 ± 690 SD)<br>53 – 810 particles/kg                  | DNV and NGI,<br>2018 [11] [20] |
|                     | Barents Sea                                                   | (5)                                                                   | (320 ± 330 SD)                                                                    | 2010 [11] [20]                 |
| Belgium             | Belgium<br>Continental Shelf                                  | 38 μm – 1 mm<br>(6)                                                   | 72 – 270 particles/kg<br>(97 ± 19 SD)                                             | Claessens et<br>al., 2011 [23] |

<sup>a</sup>With the exception of some longer fibres, no granules/layers were over 1 mm in this study. <sup>b</sup>The concentrations in this table differ from the reported data in DNV and NGI (2018) [11], as the reported concentrations were recalculated with a FT-IR cut-off of 0.7 instead of 0.6, as show presented in NGU and NGI (2019) [12] [18].

<sup>c</sup>Most particles were in the size range 45-1000 µm, although some were in size group 1-5 mm.

Up until now, the microplastic content in marine sediments from the Norwegian Sea have only been investigated in a pilot study within the MAREANO program carried out by NGU in 2016-2017 [7]. In this pilot, microplastics were analysed in 10 sediment samples, which were sampled on several MAREANO surveys covering relatively large areas along the Norwegian Continental Shelf (NCS). The pilot study reported microplastic concentrations ranging from 23 to 290 particles/kg (mean:  $120 \pm 97$ , Table 13), which is lower than what observed in this study (range: 51-2187 particles/kg; mean 679 ± 663 particles/kg, Table 13), although it includes a wider range of particle sizes. A reason for this could potentially be explained by the differences in analytical methods applied. In the pilot study, sediment cores were sampled by either a multicorer (as in this study) or a boxcorer and the top sediment (0 – 3 cm) were analysed using a different oxidation process, density separation medium (NaI solution, 1.6 g/cm<sup>3</sup>) and an identification technique mainly based on visual inspection. In general, with microplastics analysis, confirmation of plastic identity with FT-IR, Raman, or similar methods are considered as more reliable than visual analysis.

The higher quantities reported in the present study compared to the pilot study from the NCS could also be due to the stations examined in this paper being located closer to the Norwegian coastline, as microplastics can tend to be more concentrated in coastal

environments compared to continental shelves and deep-sea sediments [24]. However, MP abundance have also been seen to vary greatly within similar environmental settings, deeming such a generalization to not be empirical [25]. One of the largest quantities of microplastics in sediments have been recorded in Arctic deep-sea sediment from the HAUSGARTEN Observatory (2340-5570 m depth) in the Fram Strait at N79°, west of Svalbard, indicating that this area is in or close to a plastic accumulation zone [4]. The HAUSGARTEN study showed concentrations of microplastics ranging from 42 to 6595 particles/kg sediment dry weight (mean:  $4356 \pm 675$  particles/kg), displaying a maximum level nearly three times as high as in this study. However, it should be kept in mind that the HAUSGARTEN study quantified microplastics  $\geq 10 \ \mu m$ , while this study investigated particles  $\geq 43 \ \mu m$ . As Bergmann et al. reported that the majority of all particles were  $\leq 25 \ \mu m$  [4], this could be one explanation of why they found more microplastics than the present study. Further, the results in this study were field blank corrected, whereas the samples in the HAUSGARTEN study were only method blank corrected, which may additionally explain why they reported higher concentrations. As this study was not able to quantify potential PE-particles as well as certain microplastic fibres (due to poor recovery factor for PET fibres, discussed in chapter 3.3.3), the reported concentrations in the present study may also be underestimated.

In 2019 NGI, on behalf of NGU/MAREANO, performed microplastic analyses of surface sediment (0-2 cm) sampled with a multicorer during the MAREANO survey of Svalbard [12] [18]. Although in a different geographical area than this study, the same methodology was used. The sediment was collected from Svalbard fjords (n = 6) as well as the Barents Sea (Bjørnøy transect, n = 4), and the microplastic abundance ranged from n.d. to 560 particles/kg (mean:  $230 \pm 180$ , Table 13), substantially lower range than what observed in this study (range: 51-2187 particles/kg; mean  $679 \pm 663$  particles/kg, Table 13). This might be due to the previous MAREANO survey being set in a more remote area with potentially less exposure to microplastics. Although the same methodology was applied in both studies, some small changes have been made since 2019. In the present analyses, a new and improved version of the BMSS (Bauta 2.0) was used, however the change in BMSS design should not affect the results as the potential loss of particles during density separation should be accounted for by the spiked recovery fraction. Further, steel mesh with a pore size of 43 µm instead of 45 µm was used in this study, and the slightly larger particle size range could have resulted in higher microplastic concentrations. This slight change in pore size is however assumed to have negligible effect on the number of particles reported.

During the regional environmental sediment monitoring on the NCS on behalf of the oil and gas industry in 2017, 35 sediment samples from the North Sea and the Barents Sea were sampled, including many stations in the vicinity of offshore oil platforms [11] [20]. The samples were collected by Van Veen Grabs, and the top 1 cm was sent to NGI for analysis of microplastics, using the same analytical method as in this study, but with the earlier BMSS design and slightly smaller particle size range (as in 2019). Microplastic concentrations in the whole study area ranged from n.d. to 3400 particles/kg (mean:  $370 \pm 690$  particles/kg, Table 13), displaying an even larger range than what recorded in this study (range: 51-2187 particles/kg; mean 679 ± 663 particles/kg, Table 13). One of

the reasons for the large range in microplastic abundance in the 2017 samples is the great diversity in geographical areas, including the proximity of some samples to oil and gas activities, which tended to have higher microplastic concentrations [11] [20]. When considering only the sediments collected from the Northern North Sea (n = 10), the sampling area in closest proximity to the stations sampled in this study, the average microplastic abundance was  $525 \pm 1030$  particles/kg (range: n.d. to 3400 particles/kg) [8], a comparable level to what is stated in this report (mean 679 ± 663 particles/kg, Table 12). There are many factors that can cause discrepancies in concentrations across different depositional settings. It should also be noted that these samples were taken with a van Veen grab sampler, and not corrected using field blanks (though some sample grab samples had no identifiable microplastics), so this previous study may had different exposure routes to potential ambient air contamination during sampling and sample processing than the current study [8].

#### 3.4.3 Composition of microplastics

PE-chlorinated, rubber resins, PS, PE:PP, PAM, phenoxy resin, nylon, organotin (paint) and plastic additives were among the most frequent plastic types encountered in the sediment samples (Table 14).

| Sample ID | Most frequent                       | Second most frequent                |
|-----------|-------------------------------------|-------------------------------------|
| Sample ID | (percentage of total microplastics) | (percentage of total microplastics) |
| S-01      | Organotin (paint) (46 %)            | Plastic (other) (21 %)              |
| S-02      | PE-chlorinated (90 %)               | Rubber (Resinall) (3 %)             |
| S-03      | PS (31 %)                           | PE-chlorinated (30 %)               |
| S-04      | Plastic (other) (20 %)              | Nylon (16 %)                        |
| S-05      | Rubber <sup>2</sup> (68 %)          | n.d.                                |
| S-06      | PE-chlorinated (30 %)               | PS (14 %)                           |
| S-07      | PE-chlorinated (66 %)               | PE:PP (24 %)                        |
| S-08      | PS (45 %)                           | PAM (32 %)                          |
| S-09      | Phenoxy resin (57 %)                | Plastic additive (43 %)             |
| S-10      | PE-chlorinated (76 %)               | PS (24 %)                           |
| S-11      | Rubber (Resinall) (44 %)            | PE:PP (18 %)                        |

Table 14 List of most frequently identified (i.e. FT-IR match > 0.7) microplastics (defined as plastic polymers, coatings-adhesives and rubber) in the surface samples.

Document no.: 20210378-01-R Date: 2022-01-26 Rev.no.: 1 Page: 37

As shown in Figure 10, the largest variety in the microplastic types identified in the surface sediment, was seen in sample S-04. In sample S-05, the sample with the lowest level of microplastics, all of the identified particles were synthetic rubber (Resinall). Generally, it appears that samples with larger number of microplastics had more a varied microplastic composition. However, this has not been investigated statistically.



Figure 10 Microplastics composition (%) of surface sample (0-2 cm) S-01 to S-11.

The microplastic types that were encountered in most of the surface samples were PS and PE:PP, which were identified in 8 or 6 out of the 11 samples, respectively. Generally, PE-chlorinated was the type most abundant microplastic, with an average of  $301 \pm 5$  particles per kg dry sediment in the analysed surface samples (Figure 11). It should be noted that PE-chlorinated particles could also be misidentified PVC particles due to their similar FT-IR. Following PE-chlorinated, highest concentrations of PE:PP, rubber, unresolved plastics, PS, organotin, PET and PP are reported.

Document no.: 20210378-01-R Date: 2022-01-26 Rev.no.: 1 Page: 38



Figure 11 Mean abundance of microplastics (items/kg dry weight sediment) in surface samples (0-2 cm).

The density of surface seawater ranges from about 1.020 to 1.029 g/cm<sup>3</sup>, while deep seawater can reach a density of 1.050 g/cm<sup>3</sup> or higher. In Table 15, typical densities of (pristine) plastic polymers identified in the surface samples are listed. As evident by the table, most polymers in the samples had a density higher than seawater, thus expected to sink in the water column after being transported by currents. However, low-density polymers like PE:PP were also found. There are several mechanisms which affect the sinking behaviour of microplastics. For instance, biofouling may increase the specific density, and thereby enhance its sinking behaviour [26]. Other mechanisms could be flocculation with higher density particles and sinking as part of phytoplankton excrement pellets [27]. Different hydrodynamic processes will also influence the distribution of microplastics in the marine environment [28].

| Polymer type       | Density (g/cm <sup>3</sup> ) | Reference                     |
|--------------------|------------------------------|-------------------------------|
| PET                | 1.37-1.45                    |                               |
| PE                 | 0.92-0.97                    |                               |
| РР                 | 0.9-0.91                     | Llidalgo Duz et al. 2012 [21] |
| PS                 | 1.04-1.1                     | Hidaigo-Ruz et al., 2012 [21] |
| PMMA               | 1.09-1.20                    |                               |
| Nylon              | 1.02-1.05                    |                               |
| PE-chlorinated/PVC | 1.1-1.45                     | Titow, W., 1984 [29]          |
| PAM                | 1.20-1.30                    | www.polymerdatabase.com       |

Table 15 Density of pristine plastic polymers identified in the surface samples in this study.

A short description of some of the most frequently detected microplastics is as follows:

- PET is the most common thermoplastic of the polyester family. Often used in fibres for clothing, containers for liquids and foods, and in combination with glass fibre for engineering resins.
- PS in its solid form is clear, hard and brittle. It is widely employed in the foodservice industry as rigid trays and containers, disposable eating utensils, lids and in protective packaging.
- PVC, or vinyl, is a hard, durable and chemically resistant plastic commonly used in plumbing pipes, electrical wires and for other building and construction applications. PVC is also often found in clear food packaging, children's toys and vinyl tablecloths or flooring. PE-chlorinated is a softer plastic that can be used in blends with PVC to improve impact and weathering resistance. As previously discussed, PVC and PE-chlorinated can be difficult to distinguish due to their similar FT-IR transmission spectra.
- PAM is a water-soluble polymer that can be used as a flocculating agent. PAM is commonly used as a flocculant in water and wastewater treatment, as well as enhanced oil recovery. It's presence in sediments could therefore be due to flocs containing PAM, from such uses [30].
- Synthetic rubbers are artificial elastomers. Rubber material is the core component in tyres, which has been suggested to be one of the most important sources of microplastics in the environment.
- Phenoxy resin is one of the most typical oxy-resin-particulates, commonly used as a marine varnish.
- PE is the most common plastic type. Its primary use is in packaging (plastic bags, containers such as shampoo bottles and more).
- Nylon is a generic designation for a family of synthetic polymers based on polyamides. It is a thermoplastic silky material that can be melt-processed into fibres, films or shapes. Nylon filaments are primarily used in toothbrushes and string trimmers, as well as in fishing lines.

#### 3.4.4 Comparison of microplastic composition with literature

Differences in microplastic detection method used, particle categorization, reporting units and surveyed particle sizes makes comparisons of microplastics composition in environmental samples somewhat biased. However, a short comparison is given in the following.

In agreement with this study, PE-chlorinated was also among the most frequent plastic identified in sediments from the Northern North Sea (NNS) [11] [20] [8]. Other common microplastics were PET, rubber and phenoxy resin, also seen in this study. PE:PP and organotin resin was also found in sediment from the NNS region, being the most frequently identified plastic type in one or two of the in total ten samples in that study.

PE-chlorinated has also been recorded as the most abundant microplastic type in Arctic deep-sea sediment from the HAUSGARTEN observatory, accounting for (38 %) of the particles, followed by polyamide (22 %) and polypropylene (16 %) [4]. PP was also found in several samples in this study, mostly identified as blends polyethylene:polypropylene (PE:PP), but also as PP in some samples. Polyamide was however not detected but could potentially refer to nylon, which was found in a few samples, and possibly also PAM (detected in one of the surface samples). As the analytical methods used and the FT-IR settings and libraries chosen will affect the results, direct comparison is not possible. In agreement this study, several different rubber types were also reported in the HAUSGARTEN samples.

According to a review by Burns et al. (2018), polymer type trends in the literature are similar in the water column and sediment, with the greatest proportion of particles being PE, followed by PET and PAM in water and PP in sediment [31]. In MAREANO sediments from the Norwegian Continental Shelf, PE and PP were also found to be dominating plastic types [7]. The frequency of PP in marine sediments stated in literature, corresponds with it being one of the most commonly detected plastics in this study. PET was also found in this study (and some PAM). As previously discussed, this study was not able to quantify PE in the sediments. Based on literature, it is likely that PE has been present in some of the sediment samples but concealed by the high background level due to contamination.

Further, PE, PP, PVC, rubbers and oxy-resins have been reported as the most common microplastics in harbour sediments close to a water treatment plant in Norway [15]. This corresponds well with the findings of the present study, taken into consideration that particles classified as PE-chlorinated could include misidentified PVC particles.

In sediments from the MAREANO survey of Svalbard, analysed at NGI in 2019, rubber resins, PS and nylon were among the most frequently encountered types of microplastics, which were also among the most abundant types in this study [12] [18]. In 2019, PE-oxidized were also frequently encountered, whereas the percentage of PE-oxidized particles stated in this report are lower, potentially due to ta higher detection limit due to contamination of the field blanks. PE particles were also frequently recorded

in the previous MAREANO study, however as this microplastic is not quantified in this report due to high background levels, comparison is not possible.

#### 3.4.5 Composition of microplastics and other particles

Most of the analysed particles in the surface samples were identified as unknown (88 %), followed by organic (4.2 %), petro-pyro (3.5 %) plastic polymers (3.2 %), and rubber particles (0.7 %), as shown in Appendix D1. Generally, minerals and coatings-adhesives contributed to a small number of particles in the samples. Overall, microplastics (defined as plastic polymers, coatings-adhesives and rubber particles) contributed to around 5 % of the analysed particles. The material composition of surface samples in this study is comparable to previous studies, but with somewhat higher percentage of unknown particles (88  $\pm$  6.1 %) than what reported for MAREANO samples in 2019 (76  $\pm$  31 %) [12]. Many of the organic particles found in the samples were cotton or rayon fibres, as shown in Appendix A.

### 3.5 Microplastics in sediment cores

#### 3.5.1 Microplastic abundance and composition

The microplastic abundance in sediment core S-06 ranged from n.d. – 1084 particles/kg with a mean concentration of  $562 \pm 472$  particles/kg in the upper 10 cm. According to dating results for this core, the sediment at 10 cm depth is well over 100 years old and should include all particles deposited in this area since the start of plastic production. As seen in Figure 13, the results showed no clear trend in microplastic abundance or composition downcore (Figure 12). PE-chlorinated was the most frequently occurring microplastic, accounting for 41 % of the identified plastic particles, followed by melamine (16 %), rubber (Plasthall) (6 %), other plastics (6 %), PE:PP (5 %), PET (5 %) and PS (5 %).

As stated in the dating report, this sediment core seems to be affected by some sediment mixing, indicated by the presence of <sup>137</sup>Cs in layers dated to well before the 1950s [9]. As dating results only are valid if bioturbation and other mixing is negligible, the chronology shown in Figure 12 should only be used indicatively.



Figure 12 Microplastic profile of sediment core S-06, displaying (a) the total microplastic abundance (number of items per kg dry weight) and (b) microplastic composition. In (a), the date (year  $\pm$  error) of the sediment at certain depths are provided as dated by the Gamma Dating Centre [9].

The highest number of microplastics were found in sediment from 6-8 cm depth, which should, according to the <sup>210</sup>Pb dating results have been deposited between approximately the early and mid-20<sup>th</sup> century. This overlaps with the start of mass production of plastics in the 1940s and 1950s, with mass production of PE-chlorinated/PVC, the most abundant plastic type in this sample, already starting in 1926 [1]. However, compared to the rest of the sediment core, the concentration found in the 6-8 cm sample appears to be an outlier which may be a result of contamination (PE-chlorinated particles detected in both field blank samples, although at a much lower level). The high abundance in the 6-8 cm level compared to concentrations in the sediment between 0 and 6 cm may be due to bioturbation. The dating report for S-06 shows a local maximum for <sup>137</sup>Cs in the 7-8 cm sample, which can be explained by bioturbation. Benthic fauna can affect the vertical distribution of particulates within the sediment, and it is possible that microplastics might have been "drawn" deeper into the sediments [32].

In the S-10 sediment core, generally, a lower level of microplastics was recorded in the upper 10 cm (range: 41 - 352 particles/kg; mean  $233 \pm 125$  particles/kg) than the other cores examined in this study. In addition to geographical differences (MP sources, transport and accumulation), this could be explained by the higher sedimentation rates at this sampling station. In the S-10 core, the sediment at 10 cm depth dates back to around the 1980s, excluding decades of plastic mass production, whereas the top 10 cm of sediment in the S-06 and S-11 includes a deposition over a larger time period.

In total, the most abundant microplastic found in the S-10 core was rubber (Plasthall, 28 %), followed by melamine (21 %), PE-chlorinated (20 %), other plastics (15 %), PP (12 %), PS (9 %), organotin (7 %) and PET (4%). The composition varied greatly downcore (Figure 13). However, it should be noted that it can be difficult to differentiate between polymer types with similar chemical structures (and thus similar FT-IR spectra) with this method. This could be the case for polyolefins such as PP and PE:PP, different resins and rubber types as well as the previously discussed PVC/PE-chlorinated. In terms of microplastic abundance, a decreasing trend is observed from 0 to 10 cm depth. For the deepest sediment sample from 20 to 22 cm below the sediment surface, a higher number of MPs is recorded. As for core S-06, the chronology (Figure 13), should only be considered as indicative due to the rather uniform content of <sup>137</sup>Cs down to depths of 23 cm, suggesting some sediment mixing [9]. According to the Gamma Dating Center, the <sup>210</sup>Pb dating results does however give confidence in the reported chronology.



Figure 13 Microplastic profile of sediment core S-10, displaying (a) the total microplastic abundance (number of items per kg dry weight) and (b) microplastic composition. In (a), the date (year  $\pm$  error) of the sediment at certain depths are provided as dated by the Gamma Dating Centre [9].

The S-11 sediment core displayed the highest level of microplastics in the 0 - 10 cm layer compared to the other cores, with a mean concentration of  $1069 \pm 331$  particles/kg (range: 654 - 1579 particles/kg). According to the sedimentation rate in this area (1 - 2 mm per year [9]), the concentration in the top 10 cm should represent the deposition of particles from present day and back to between the 1970s and 1920s. As previously discussed, radioisotope dating was not performed on the S-11 core and the chronology indicated in Figure 14 is based on a sedimentation rate of 2 mm per year.

The highest microplastic concentration in the S-11 core was found at a depth of 2-4 cm. From this depth and onwards, a decreasing trend in microplastic abundance was observed (Figure 14). Rubber particles were recorded throughout the sediment profile, which was not seen for the previously discussed sediment cores. Generally, the composition of microplastics appeared to be rather homogeneous downcore. For the whole 10 cm depth, the most abundant microplastics were PE:PP (15 %), PET (11 %), PE-chlorinated (10 %), rubber (Resinall, 10 %), organotin (10 %) and PP (9 %).



Figure 14 Microplastic profile of sediment core S-11, displaying (a) the total microplastic abundance (number of items per kg dry weight) and (b) microplastic composition. In (a), the date of the sediment at certain depths are provided as calculated from sedimentation rates in this area [9].

Document no.: 20210378-01-R Date: 2022-01-26 Rev.no.: 1 Page: 45

#### 3.5.2 Composition of microplastics and other particles

As for the surface samples, most of the analysed particles in the core samples were identified as unknowns, as shown in Figure 15 (and in more detail in Appendix D). On average, the second most frequent particle type in the S-10 core was plastic polymers (mainly due to the 6-8 cm sample containing only plastics after blank correction), In the S-11 core, organic particles accounted for a relatively large part of the scanned particles, which could be due to a less effective oxidation treatment or more airborne contamination of organic fibres in these samples. The S-06 core had the highest percentage of unknowns.



Figure 15 Average composition (%) of identified particles in the samples from sediment core S-06 (n = 5), S-10 (n = 6) and S-11 (n = 5).

#### 3.5.3 Comparison of microplastic profiles with literature

An increase in microplastic pollution of marine sediments over time has been demonstrated by several studies on microplastic abundance in sediment cores. However, to ensure more reliable results and better comparison between studies, the methodology used to chronically reconstruct MP profiles requires standardization [33]. According to a review by Martin et al. (2021), there is a qualitative global trend of decreasing microplastic abundance downcore [34]. However, variable concentrations down individual sediment cores are also frequently reported. Further, higher ratios of fibres and smaller microplastics have commonly been reported deeper within sediment cores.

In this study, variable but generally decreasing microplastic concentrations has been recorded in the S-10 and S-11 sediment cores, whereas no obvious trend was seen in the S-06 core. In the S-11 core, the highest level of microplastics was recorded in the sediment from a depth of 2 - 4 cm. Both the samples from 2 - 4 and 4 - 6 cm depth displayed higher MP contents than the surface sample (0 - 2 cm). One reason for this may be related to bioturbation. In marine sediments from the northern Baltic Sea, benthic animals have been demonstrated to transport microplastics from surface sediments to depths of 1.7 - 5.1 cm, increasing the concentration [32]. A slightly higher MP concentration in the 2-4 cm sample compared to other depths was also seen in core S-10.

In terms of microplastic composition, it appears from literature to be no clear trends in the distribution of individual polymer types downcore, except for an increased diversity of microplastics in sediment deposited later than the 1950s – 1970s. This study showed no trends in microplastic composition in the sediment profiles.

Martin et al. (2021) recently performed a quality assessment on studies investigating microplastics in sediment profiles [34]. In the assessment, the reliability of the studies was given scores in terms of their reliability according to a set of quality criteria covering critical aspects of microplastic analysis. From the criteria described by Martin et al., it appears that this study would be assigned maximum reliability score in terms of sampling method, negative controls, positive controls, sample treatment, polymer ID (criteria: > 50 particles analysed per sample; this study: > 200 particles analysed) and study limitations. Where this study falls short, is however related to lab conditions and sample processing, evident through the high contamination levels found in method blanks and field blank. In terms of sample processing, limited reliability is described to be due to e.g. sediment sides not being cut away and not filtering all chemicals used in the lab. In this study, zinc-chloride and Milli-Q water is filtered, but not methanol used for rinsing and chemical oxidation solutions (although samples were enclosed in the steel mesh during oxidation). In addition, a smaller sample size (100 g ww) was used in this study than what is recommended (400 g ww) for more robust results. Further, the laboratory and air conditions during these analyses do not meet the criteria for maximum reliability.

Document no.: 20210378-01-R Date: 2022-01-26 Rev.no.: 1 Page: 47

### 4 Conclusions

The following conclusions can be drawn based on this study:

- Method blanks (n = 10) were prepared and analysed to control contamination from the analytical method used in the laboratory. At least one method blank was analysed each week of analyses. Microplastic was found in all blank samples, with an average number of 72 particles per method blank (ranging from 16 to 176 particles/blank). The main contributor to this, was the high level of PE particles found in some of the blanks, ranging from 2 to 128 particles per method blank. Despite efforts to identify and eliminate the contamination, the source remains a mystery. Due to the high and variable background level of PE, quantifying this plastic type was not possible in this study. As expected, high numbers of PTFE particles were also found in the method blanks. This is a known contaminant from the unit used during density separation. For remaining microplastic types identified in this study, the concentrations in the method blanks were used to correct the results for the sediment samples.
- Field blanks (n = 2) were prepared by sampling deep-sediment (> 20 cm depth) 7 from two of the sediment cores, assuming the sediment to be from a time prior to plastic production (meaning they should in theory be free from microplastics). This type of blank controls for both field and analytical contamination. The purpose of the field blanks was to correct for microplastics abundance in the environmental samples. The microplastic concentrations ranged from 471 to 899 particles/kg (mean; 685 ± 303 particles/kg) after method blank correction. PEchlorinated, rubber and PE:PP were the most abundant microplastics in the field blanks. The microplastics detected are likely due to contamination during sample processing, since the sediments were pre-date plastic. The source of this contamination is unknown, as no plastic equipment was used during sample preparation (steel cores and cutting gear). Exposure to ambient air can always be a cause. Field blanks from deep in the sediment core are the best type of blank to use for sediment analysis, provided that the grain size and other properties are similar throughout the entire core. For areas with highly varying sediment deposits over time, deep core field blanks would be less representative. Reported results were also corrected for field blank concentrations when they were higher than those in the method blank.
- Sediment samples from the mid-Norwegian Continental Shelf in the Norwegian Sea (n = 24) have been analysed for microplastics (43-1000 µm). In top sediment (0-2 cm, n = 11), the amount of microplastics ranged widely, from 51 to 2187 particles/kg dry sediment (mean ± standard deviation: 679 ± 663 particles/kg).
- The microplastic profile in three sediment cores was investigated by analysing deeper sediment (n = 13). A generally decreasing abundance downcore was observed, with some variations. The MP concentration in samples from the top 10 cm of the cores S-06, S-10 and S-11 ranged from n.d. − 1084 particles/kg (mean: 562 ± 472 particles/kg), 41 − 352 particles/kg (mean: 233 ± 125 particles/kg) and 654 − 1579 particles/kg (mean: 1069 ± 331), respectively. In two of the cores (S-10 and S-11), the highest concentration of MP was found in

sediment from 2-4 cm, whereas sediment from 6-8 cm depth displayed highest MP levels in the last core (S-06). This is likely due to bioturbation, as dating results suggests that this core has been affected by sediment mixing. No clear trend in microplastic composition was seen downcore. One of the cores (S-11) had a rather homogenous distribution of plastic types downcore, however the other cores displayed more variable microplastic composition.

The results for the Norwegian Sea sediments compare well with an earlier study [8] [20], using the same method and in relatively close geographical proximity to the present study. The previous study reported microplastic concentrations ranging from n.d. to 3400 particles/kg (mean: 525 ± 1030 particles/kg) in 10 surface samples (0 - 1 cm) from the northern North Sea, overlapping the range of microplastic concentrations found in surface samples from this study (51 − 2187 particles/kg; mean: 679 ± 663 particles/kg. In both studies, PE-chlorinated/PVC and rubber particles were frequently encountered, along with other microplastics.

### 5 **Recommendations**

Based on the results in this study, the following recommendations are suggested for the future:

Future field sampling:

- Continue to use steel corers for sediment sampling and be sure to keep the tubes sealed as much as possible to limit airborne contamination.
- Instead of using sediment samples from the bottom of the core, samples 1-3 cm up may be preferred to avoid exposure to air/lid, etc.
- The use of any plastic equipment should be limited as much as possible. Continue to use glass jars (or other non-plastic containers) sealed with aluminium foil to store the sediment samples, as well as steel spatulas to cut samples etc. Make sure that all equipment is rinsed prior to use.
- Continue the use of deep sediment (i.e. deep in the sampling tubes, ideally older than 1900) as field blanks to correct for contamination during sampling, transport and laboratory analysis.
- Consider cutting off the sides of the sediment cores prior to microplastic analysis to prevent potential cross-contamination downcore. However, to increase robustness, enough sample material is crucial (400 g wet sediment) [34]. Hence there is a trade-off between sample size and contamination control that should be considered.
- Continue with field blanks and method blanks as part of the sampling strategy and as a control of whether recommendations have worked well or not.
- Consider including sampling blanks (as in the 2018 and 2019 MAREANO surveys) to be able to identify potential contamination sources from the transport route, the containers themselves etc. This can be done by taking pre-washed, empty glass jars on the field trip and exposing them to the surroundings during

sampling and sample processing. The sampling blanks would not be in direct contact with sampling equipment but can be included to control for other field effects. A minimum of three sampling blanks is recommended.

To see the continuity of samples from years to years, a reference sample could be established, which is a several kg of homogenized sample, were each time the survey is repeated, the results from the reference sample are compared each year to see if they give similar data. This reference sample could be spiked with known quantities of plastic.

Laboratory considerations:

- If field blanks are not available, include as a minimum method blanks to control for laboratory contamination. In this study, the method blanks showed that the laboratory method was the most substantial source of plastic contamination in the samples. Weekly (or more) method blanks are recommended, as the contamination in this study was seen to vary greatly throughout the analyses.
- Conduct as much of the experiment as possible in fume hoods that blow filtered air out, as ambient atmospheric microplastic in dust is a major source of contamination.
- Include air contamination blanks during future analyses to quantify airborne contamination in the lab.
- During sample preparation prior to FT-IR analysis, keep the steel mesh filters as flat as possible to optimize transmissions signals and limit the potential loss of particles.
- Limit the use of plastic equipment as much as possible (e.g. use of glass bottles instead of plastic bottles for Milli-Q). If plastic is considered essential and could not be avoided, take regular checks to make sure this equipment is not contributing to microplastic. This check can be done by filtering liquid that has been in long contact with the plastic (e.g. shaken for several days) and filtered through the steel mesh used for FT-IR analysis, to see if it is a major contributor to the method blank.
- Report method specific details, as these are important for comparison of results (e.g. size of microplastics investigated, chemicals for oxidation, density of separation fluid if used, etc.).
- Compare the dry weight percentages of the sediments obtained in the lab with those obtained by NGU/MAREANO from freeze-drying and consider correcting for any differences in the results.

### 6 References

- [1] R. C. Thompson, S. H. Swan, C. J. Moore and F. S. vom Saal, "Our plastic age," *Phil. Trans. R. Soc.*, vol. 364, no. 1526, 2009.
- [2] R. Geyer, J. R. Jambeck and K. L., "Law, Production, use, and fate of all plastics ever made," *Science advances*, pp. 3, e1700782, 2017.
- [3] L. Lebreton and A. Andrady, "Future scenarios of global plastic waste generation and disposal," *Palgrave Communications*, pp. 5, 6, 2019.
- [4] M. Bergmann, V. Wirzberger, T. Krumpen, C. Lorenz, S. Primpke, M. B. Tekman and G. Gerdts, "High quantities of microplastic in Arctic deep-sea sediments from the HAUSGARTEN observatory," *Environmental science & technology*, pp. 51, 11000-11010, 2017.
- [5] E. Goldberg, "Plasticizing the seafloor: an overview," *Environ. Technol.*, pp. 18, 195-201., 1997.
- [6] L. C. Woodall, A. Sanchez-Vidal, M. Canals, G. L. Paterson, R. Coppock, V. Sleight, A. Calafat, A. D. Rogers, B. E. Narayanaswamy and R. C. Thompson, "The deep sea is a major sink for microplastic debris," *Royal Society open science*, pp. 1, 140317., 2014.
- [7] NGU, "MAREANOs pilotprosjekt på mikroplast resultater og forslag til videre arbeid," 2018. [Online]. Available: https://www.ngu.no/upload/Publikasjoner/Rapporter/2017/2017\_043.pdf.
- [8] Knutsen H., Cyvin J. B., Totland C., Lilleeng Ø., Wade E. J., Castro V., Pettersen A., Laugesen J, Møskeland T., Arp H. P. H., "Microplastic accumulation by tubedwelling, suspension feeding polychaetes from the sediment surface: A case study from the Norwegian Continental Shelf," *Marine Environmental Research*, p. Volume 161, 2020.
- [9] NGU, MAREANO. NGU-rapport 2021.028, In preparation.
- [10] H.K. Imhof, J. Schmid, R. Niessner, N. P. Ivleva and C. Laforsch, "A novel, highly efficient method for the separation and quantification of plastic particles in sediments of aquatic environments," *Limnology and Oceanography: Methods*, vol. 10, pp. 524-537, 2012.
- [11] DNV and NGI, "Microplastic in sediments on the Norwegian Continental Shelf II: Identification through FT-IR analysis, Report 2018-1226, Rev. 00," 2018.
- [12] NGI, "Microplastics in Svalbard fjords and the Bjørnøy transect sediments. MAREANO survey of Svalbard. Rapport 20190263-01-R.," 2019.
- [13] C. Hudgins, "Solubility and Density Studies of the CaCl2-ZnCl2-H2O System at 0 and 25 C," *Journal of Chemical & Engineering Data*, pp. 9, 434-436, 1964.
- [14] S. Zhang, W.-C. Wang, F.-X. Li and J.-Y. Yu, "Swelling and dissolution of cellulose in NaOH aqueous solvent systems," *Cellul. Chem. Technol.*, pp. 47, 671-679, 2013.
- [15] Olsen, L. M. B., Knutsen H., Mahat S., Wade, E. J., Arp H. P. H, "Facilitating microplastic quantification through the introduction of a cellulose dissolution step

prior to oxidation: Proof-of-concept and demonstration using diverse samples from the Inner Oslofjord, Norway," *Marine Environmental Research*, vol. 16, no. 105080, 2020.

- [16] T. A. Aragaw, "Surgical face masks as a potential source for microplastic pollution in the COVID-19 scenario," *Marine Pollution Bulletin*, vol. 159, 2020.
- [17] H. Chowdhury, T. Chowdhury, S. M. Sait, "Estimating marine plastic pollution from COVID-19 face masks in coastal regions," *Marine Pollution Bulletin*, vol. 168, 2021.
- [18] NGU, "Miljøgeokjemiske data og dateringsresultater fra indre Kongsfjorden og indre Rijpfjorden samt områdene SK01 og SK02 vest for Svalbard - MAREANO. NGU-rapport 2019.027," 2019.
- [19] NGU, "Miljøgeokjemiske data og dateringsresultater fra Bjørnøya-transektet, Kvitøyrenna, indre Kongsfjorden, ytre Kongsfjorden og SK03 - MAREANO.," 2020.
- [20] DNV and NGI, "Microplastics in sediments on the Norwegian Continental Shelf. Report no. 2018-0051, Rev. 1," 2018.
- [21] V. Hidalgo-Ruz, L. Gutow, R. C. Thompson and M. Thiel, "V. Hidalgo-Ruz, L. Gutow, R. C. Thompson and M. Thiel, Microplastics in the marine environment: a review of the methods used for identification and quantification," *Environmental science & technology*, vol. 46, pp. 3060-3075, 2012.
- [22] R. W. Obbard, S. Sadri, Y. Q. Wong, A. A. Khitun, I. Baker and R. C. Thompson, "Global warming releases microplastic legacy frozen in Arctic Sea ice," *Earth's Future*, vol. 2, pp. 315-320, 2014.
- [23] M. Claessens, S. De Meester, L. Van Landuyt, K. De Clerck and C. R. Janssen, "Occurrence and distribution of microplastics in marine sediments along the Belgian coast," *Marine pollution bulletin*, vol. 62, pp. 2199-2204, 2011.
- [24] P. T. Harris, "The fate of microplastic in marine sedimentary environments: A review and synthesis," *Marine Pollution Bulletin*, vol. 158, 2020.
- [25] S. Uddin, S. W. Fowler, M. F. Uddin, M. Behbehani, A. Naji, "A review of microplastic distribution in sediment profiles," *Marine Pollution Bulletin*, vol. 163, 2021.
- [26] C. D. Rummel, A. Jahnke, E. Gorokhova, D. Kühnel and M. Schmitt-Jansen, "Impacts of biofilm formation on the fate and potential effects of microplastic in the aquatic environment," *Environmental Science & Technology Letters*, vol. 4, pp. 258-267., 2017.
- [27] M. Cole, P. K. Lindeque, E. Fileman, J. Clark, C. Lewis, C. Halsband and T. S. Galloway, "Microplastics alter the properties and sinking rates of zooplankton faecal pellets," *Environmental science & technology*, vol. 50, pp. 3239-3246, 2016.
- [28] H. Zhang, "Transport of microplastics in coastal seas," *Estuarine, Coastal and Shelf Science*, vol. 199, pp. 74-86, 2017.
- [29] W. Titow, PVC Technology, London: Elseviever Applied Science Publishers, 1984.

- [30] H. P. H. Arp, H. Knutsen, "Could We Spare a Moment of the Spotlight for Persistent, Water-Soluble Polymers?," *Environmental Science and Technology*, vol. 51, no. 1, pp. 3-5, 2020.
- [31] E. E. B. a. A. B. Boxall, "Microplastics in the aquatic environment: Evidence for or against adverse impacts and major knowledge gaps," *Environ. Toxicol. Chem.*, vol. 37, pp. 2776-2796, 2018.
- [32] P. Näkki, O. Setälä, M. Lehtiniemi, "Bioturbation transports secondary microplastics to deeper layers in soft marine sediments of the northern Baltic Sea," *Marine Pollution Bulletin*, vol. 119, no. 1, pp. 255-261, 2017.
- [33] F. G. Torres, G. E. De-la-Torre, "Historical microplastic records in marine sediments: Current progress and methodological evaluation," *Regional Studies in Marine Science*, vol. 46, 2021.
- [34] J. Martin, A. L. Lusher, F. C. Nixon, "A review of the use of microplastics in reconstructing dated sedimentary archives," *Science of The Total Environment*, vol. 806, 2021.

Document no.: 20210378-01-R Date: 2022-01-26 Rev.no.: 1 Appendix: A, page 1

### Appendix A

PHOTOS FROM MICROSCOPY

### Contents

| A1 | Method blanks         | 3  |
|----|-----------------------|----|
|    | A1.1 MB-01            | 3  |
|    | A1.2 MB-03            | 4  |
|    | A1.3 MB-05            | 5  |
|    | A1.4 MB-07            | 7  |
|    | A1.5 MB-08            | 9  |
|    | A1.6 MB-10            | 12 |
|    | A1.7 MB-12            | 13 |
|    | A1.8 MB-13            | 14 |
|    | A1.9 MB-16            | 15 |
|    | A1.10 MB-21           | 16 |
| A2 | Sediment samples      | 17 |
|    | A2.1 S-01 (0-2 cm)    | 17 |
|    | A2.2 S-02 (0-2 cm)    | 19 |
|    | A2.3 S-03 (0-2 cm)    | 21 |
|    | A2.4 S-04 (0-2 cm)    | 23 |
|    | A2.5 S-05 (0-2 cm)    | 25 |
|    | A2.6 S-06 (0-2 cm)    | 27 |
|    | A2.7 S-06 (2-4 cm)    | 29 |
|    | A2.8 S-06 (4-6 cm)    | 31 |
|    | A2.9 S-06 (6-8 cm)    | 33 |
|    | A2.10 S-06 (8-10 cm)  | 35 |
|    | A2.11 S-07 (0-2 cm)   | 37 |
|    | A2.12 S-08 (0-2 cm)   | 39 |
|    | A2.13 S-09 (0-2 cm)   | 41 |
|    | A2.14 S-10 (0-2 cm)   | 43 |
|    | A2.15 S-10 (2-4 cm)   | 45 |
|    | A2.16 S-10 (4-6 cm)   | 47 |
|    | A2.17 S-10 (6-8 cm)   | 49 |
|    | A2.18 S-10 (8-10 cm)  | 51 |
|    | A2.19 S-10 (20-22 cm) | 53 |
|    | A2.20 S-11 (0-2 cm)   | 55 |
|    | A2.21 S-11 (2-4 cm)   | 57 |



Document no.: 20210378-01-R Date: 2022-01-26 Rev.no.: 1 Appendix: A, page 2

|    | A2.22 S-11 (4-6 cm)        | 59 |
|----|----------------------------|----|
|    | A2.23 S-11 (6-8 cm)        | 61 |
|    | A2.24 S-11 (8-10 cm)       | 63 |
| A3 | Field blanks               | 65 |
|    | A3.1 S-10-FB-01 (30-32 cm) | 65 |
|    | A3.2 S-11-FB-02 20-22 cm   | 67 |

Document no.: 20210378-01-R Date: 2022-01-26 Rev.no.: 1 Appendix: A, page 3

### A1 Method blanks

### A1.1 MB-01



Figure A1.1 Method blank MB-01. Mostly PTFE granules, organic (rayon) fibres, and some PE and PET particles. Photo taken in polarized mode.
Document no.: 20210378-01-R Date: 2022-01-26 Rev.no.: 1 Appendix: A, page 4

#### A1.2 MB-03



Figure A1.2 Method blank MB-03. Mostly organic (rayon) fibres, also some PP, PET, PTFE and melamine particles. Photo taken in polarized mode.

Document no.: 20210378-01-R Date: 2022-01-26 Rev.no.: 1 Appendix: A, page 5

#### A1.3 MB-05



Figure A1.3 Method blank MB-05, filter 1. Mostly PTFE granules and organic (cotton and rayon) fibres. Some PE and PP particles. Photo taken in polarized mode.



*Figure A1.4 Method blank MB-05, filter 2. Mostly PE particles and organic (azlon and rayon) particles. Photo taken in polarized mode.* 

Document no.: 20210378-01-R Date: 2022-01-26 Rev.no.: 1 Appendix: A, page 7

#### A1.4 MB-07



Figure A1.5 Method blank MB-07, filter 1. Mainly PTFE particles, some PE and PET.



Figure A1.6 Close-up of MB-07, filter 1, with an identified PTFE sheet.



Figure A1.7 Method blank MB-07, filter 2. Mainly PE and PTFE particles. Photo taken in polarized mode.

Document no.: 20210378-01-R Date: 2022-01-26 Rev.no.: 1 Appendix: A, page 9

#### A1.5 MB-08



Figure A1.8 Method blank MB-08, filter 1. Mainly PTFE and PE particles, some PP, and organic (azlon, ryon). Photo taken in polarized mode.



*Figure A1.9 Method blank MB-08, filter 1, with identified particles. Photo taken in bright-field mode.* 





*Figure A1.10 Method blank MB-08, filter 2, with an identified rayon fibre. Mainly PE and organic (rayon) particles. Photo taken in polarized mode.* 

Document no.: 20210378-01-R Date: 2022-01-26 Rev.no.: 1 Appendix: A, page 12

#### A1.6 MB-10



Figure A1.11 Method blank MB-10. Lots of PE, some PTFE, PE-pxidized and PET particles.



Figure A1.12 Close-up of method blank MB-10, showing an identified PE particle.

Document no.: 20210378-01-R Date: 2022-01-26 Rev.no.: 1 Appendix: A, page 13

#### A1.7 MB-12



Figure A1.13 method blank MB-12. Mostly PE, some PE-oxidized, PP and PET particles. Photo taken in polarized mode.

Document no.: 20210378-01-R Date: 2022-01-26 Rev.no.: 1 Appendix: A, page 14

#### A1.8 MB-13



Figure A1.14 Method blank MB-13. Mostly PE, some PTFE, PE-oxidized and PET. Photo taken in polarized mode.

Document no.: 20210378-01-R Date: 2022-01-26 Rev.no.: 1 Appendix: A, page 15

#### A1.9 MB-16



Figure A1.15 Method blank MB-16. Mostly PTFE and PE. Photo taken in polarized mode.



*Figure A1.16 Close-up of method blank MB-16, showing an identified rayon fibre and PE sheet. Photo taken in polarized mode.* 

Document no.: 20210378-01-R Date: 2022-01-26 Rev.no.: 1 Appendix: A, page 16

#### A1.10 MB-21



*Figure A1.17 Method blank MB-21. Mostly PTFE, PE and PP. Some organic fibres (mostly rayon). Photo taken in polarized mode.* 

Document no.: 20210378-01-R Date: 2022-01-26 Rev.no.: 1 Appendix: A, page 17

#### A2 Sediment samples

A2.1 S-01 (0-2 cm)



Figure A2.1 Sample S-01 (0-2 cm), filter 1. Mostly petro-pyro particles, some PTFE, PE:PP and organotin particles. Photo taken in polarized mode.





Figure A2.2 Sample S-01 (0-2 cm), filter 2. Mostly PE particles. Photo taken in polarized mode.

Document no.: 20210378-01-R Date: 2022-01-26 Rev.no.: 1 Appendix: A, page 19

#### A2.2 S-02 (0-2 cm)



Figure A2.3 Sample S-02 (0-2 cm), filter 1. Mostly PE-chlorinated, some PTFE, PE:PP and PE-oxidized particles. Photo taken in polarized mode.





*Figure A2.4 Sample S-02 (0-2 cm), filter 2. Mostly PE-chlorinated, some PTFE and organic (azlon) particles. Photo taken in polarized mode.* 

Document no.: 20210378-01-R Date: 2022-01-26 Rev.no.: 1 Appendix: A, page 21

#### A2.3 S-03 (0-2 cm)



*Figure A2.5 Sample S-03 (0-2 cm), filter 1. Mostly PTFE and PE-chlorinated particles, followed by PS, PE:PP, rubber (Resinall) and PE particles.* 



Figure A2.6 Close-up of S-03 (0-2 cm), filter 1, with identified PE and PTFE sheets. Visible mode.



*Figure A2.7 Sample S-03 (0-2 cm), filter 2. Some organic (rayon), PE:PP, rubber (Resinall). Photo taken in polarized mode.* 



*Figure A2.8 Close-up of S-03 (0-2 cm), filter 2, with identified rubber and PE:PP particles. Visible mode.* 



Document no.: 20210378-01-R Date: 2022-01-26 Rev.no.: 1 Appendix: A, page 23

#### A2.4 S-04 (0-2 cm)



Figure A2.9 Sample S-04 (0-2 cm), filter 1. Mostly PE-oxidized, PP, rubber, organotin. Photo taken in bright field mode.

.



Figure A2.10 Sample S-04 (0-2 cm), filter 2. Mostly PE and PE-chlorinated, some nylon, PE:PP, melamine particles. Photo taken in bright field mode.

Document no.: 20210378-01-R Date: 2022-01-26 Rev.no.: 1 Appendix: A, page 25

#### A2.5 S-05 (0-2 cm)



Figure A2.11 Sample S-05 (0-2 cm), filter 1. Mostly PTFE and rubber (Plasthall). Photo taken in polarized mode.



Figure A2.12 Sample S-05 (0-2 cm), filter 2. Mostly PTFE particles. Photo taken in polarized mode.

Document no.: 20210378-01-R Date: 2022-01-26 Rev.no.: 1 Appendix: A, page 27

#### A2.6 S-06 (0-2 cm)



*Figure A2.13 Sample S-06 (0-2 cm), filter 1. Mostly PE-chlorinated, rubber (Resinall) and PTFE. Photo taken in polarized mode.* 



Figure A2.14 Close-up of S-06 (0-2 cm), filter 1, showing identified PET fibre. Visible mode.



Figure A2.15 Sample S-06 (0-2 cm). filter 2. Mostly PTFE and PE-chlorinated. Photo taken in polarized mode.



Figure A2.16 Close-up of S-06 (0-2 cm), filter 2, showing PTFE layer and rubber granule. Visible mode.

Document no.: 20210378-01-R Date: 2022-01-26 Rev.no.: 1 Appendix: A, page 29

#### A2.7 S-06 (2-4 cm)



Figure A2.17 Sample S-06 (2-4 cm), filter 1. Mainly PE and PE-chlorinated, some rubber. Photo taken in polarized mode.



Figure A2.18 Sample S-06 (2-4 cm), filter 2. Mostly PE and melamine. Photo taken in visible mode.

Document no.: 20210378-01-R Date: 2022-01-26 Rev.no.: 1 Appendix: A, page 31

#### A2.8 S-06 (4-6 cm)



*Figure A2.19 Sample S-06 (4-6 cm), filter 1. Mostly PTFE, some PE-chlorinated, PE and rubber (Resinall) particles. Photo taken in polarized mode.* 

Document no.: 20210378-01-R Date: 2022-01-26 Rev.no.: 1 Appendix: A, page 32



Figure A2.20 Sample S-06 (4-6 cm). filter 2. Mostly PE particles. Photo taken in visible mode.

Document no.: 20210378-01-R Date: 2022-01-26 Rev.no.: 1 Appendix: A, page 33

#### A2.9 S-06 (6-8 cm)



*Figure A2.21 Sample S-06 (6-8 cm), filter 1. Mostly PE-chlorinated, some PE PTFE and rubber (Resinall). Photo taken in visible mode.* 



Figure A2.22 Sample S-06 (6-8 cm), filter 2. Mostly PE, PE-chlorinated and PE-oxidized. Photo taken in visible mode.

Document no.: 20210378-01-R Date: 2022-01-26 Rev.no.: 1 Appendix: A, page 35

#### A2.10 S-06 (8-10 cm)



Figure A2.23 Sample S-06 (8-10 cm), filter 1. Mostly PTFE, some PE-chlorinated and PE. Photo taken in bright field mode.



Figure A2.24 Sample S-06 (8-10 cm), filter 2. Some PE and rubber (Resinall). Photo taken in bright field mode.



Document no.: 20210378-01-R Date: 2022-01-26 Rev.no.: 1 Appendix: A, page 37

#### A2.11 S-07 (0-2 cm)



Figure A2.25 Sample S-07 (0-2 cm), filter 1. Mostly PE-chlorinated. Photo taken in polarized mode.



Figure A2.26 Close-up of S-07 (0-2 cm), filter 1, with an identified PET fibre.



Figure A2.27 Sample S-07 (0-2 cm), filter 2. Mostly PE-chlorinated, PTFE and PE. Photo taken in polarized mode.



Figure A2.28 Close-up of S-07 (0-2 cm), filter 2. Showing identified particles. Visible mode.

Document no.: 20210378-01-R Date: 2022-01-26 Rev.no.: 1 Appendix: A, page 39

#### A2.12 S-08 (0-2 cm)



Figure A2.29 Sample S-08 (0-2 cm), filter 1. Mostly PTFE, some PE-chlorinated. Photo taken in polarized mode.



Figure A2.30 Close-up of S-08 (0-2 cm), filter 1, with identified particles. Polarized mode.




Figure A2.31 Close-up of S-08 (0-2 cm), filter 1, showing some identified microplastics and organic (rayon) fibres. Visible mode.



Figure A2.32 Sample S-08 (0-2 cm), filter 2. Mostly PTFE and PE. Polarized mode.



#### A2.13 S-09 (0-2 cm)



Figure A2.33 Sample S-09 (0-2 cm), filter 1. Mostly PTFE and PE-chlorinated. Polarized mode (with visible light from top).



*Figure A2.34 Sample S-09 (0-2 cm), filter 2. Mostly PE-chlorinated. Polarized mode (with visible light from top).* 



### A2.14 S-10 (0-2 cm)



Figure A2.35 Sample S-10 (0-2 cm), filter 1. Mostly PE-chlorinated. Polarized mode.



Figure A2.36 Close-up of S-10 (0-2 cm), filter 1, with identified particles. Visible mode.



Figure A2.37 Sample S-10 (0-2 cm), filter 2. Mainly PE. Polarized mode.



Figure A2.38 Close-up of S-10 (0-2 cm), filter 2, with identified PE particles. Polarized mode.



### A2.15 S-10 (2-4 cm)



Figure A2.39 Sample S-10 (2-4 cm), filter 1. Mostly PE-chlorinated, PE, melamine and PTFE. Polarized mode.



*Figure A2.40 Sample S-10 (2-4 cm), filter 2. Mostly PE. Some Melamine and organic (rayon/cotton) fibres. Photo taken in polarized mode.* 



### A2.16 S-10 (4-6 cm)



Figure A2.41 Sample S-10 (4-6 cm), filter 1. Mostly plastic additives and PE. Polarized mode.



Figure A2.42 Sample S-10 (4-6 cm), filter 2. Mostly PTFE and PS particles. Photo taken in polarized mode.



### A2.17 S-10 (6-8 cm)



Figure A2.43 Sample S-10 (6-8 cm) filter 1. Mostly PE. Polarized mode.



Figure A2.44 Close-up of S-10 (6-8 cm), filter 1, with identified plastics. Polarized mode.



Figure A2.45 Sample S-10 (6-8 cm), filter 2. Mostly PP and PE. Polarized mode.



Figure A2.46 Close-up of S-10 (6-8 cm), filter 2, with PE-oxidized granule. Bright field mode.

Document no.: 20210378-01-R Date: 2022-01-26 Rev.no.: 1 Appendix: A, page 51

### A2.18 S-10 (8-10 cm)



Figure A2.47 Sample S-10 (8-10 cm), filter 1, with some identified particles. Photo taken in polarized mode.



Figure A2.48 Sample S-10 (8-10 cm), filter 2. Mostly PTFE. Lots of small particles that looked like zinc-chloride crystals on the outer parts of the filter (scanned only some of these, classified as "unknown"). Photo taken in bright field mode.



### A2.19 S-10 (20-22 cm)



*Figure A2.49 Sample S-10 (20-22 cm), filter 1. Mostly PTFE and PE-chlorinated particles. Photo taken in polarized mode.* 



Figure A2.50 Sample S-10 (20-22 cm), filter 2. Mostly PE, PE-chlorinated and PTFE. Photo taken in polarized mode.



Figure A2.51 Close-up of S-10 (20-22 cm), filter 2, with identified PTFE particles. Visible mode.



#### A2.20 S-11 (0-2 cm)



Figure A2.52 Sample S-11(0-2 cm), filter 1. Mostly PTFE, some PE-oxidized, PMMA, PE-chlorinated, PE:PP. Photo taken in polarized mode.



Figure A2.53 Close-up of S-11 (0-2 cm), filter 1, with identified PE-oxidized particle. Visible mode.



Figure A2. 54 Sample S-11 (0-2 cm), filter 2. Mostly PTFE, then PE and PE:PP. Polarized mode.



Figure A2.55 Close-up of S-11 (0-2 cm), filter 2, with some identified particles. Visible mode.



### A2.21 S-11 (2-4 cm)



*Figure A2.56 Sample S-11 (2-4 cm), filter 1. Mostly rubber (Resinall), PE:PP, PE-chlorinated and organotin. Photo taken in polarized mode.* 



Figure A2.57 Close-up of S-11 (2-4 cm), filter 1, with identified particles. Visible mode.





Figure A2.58 Sample S-11 (2-4 cm), filter 2. Mostly PE, PTFE and PE-oxidized. A blue fibre identified as PMMA is shown. Photo taken in polarized mode.



### A2.22 S-11 (4-6 cm)



Figure A2.59 Sample S-11 (4-6 cm), filter 1. Mostly PTFE and PE-chlorinated. Polarized mode.



Figure A2.60 Close-up of S-11 (4-6 cm), filter 1, with identified PTFE particles. Visible mode.



Figure A2.61 Sample S-11 (4-6 cm), filter 2. Mostly PTFE, PE-chlorinated and some PP and PE. Photo taken in polarized mode.



### A2.23 S-11 (6-8 cm)



Figure A2.62 Sample S-11 (6-8 cm), filter 1. Mostly rubber (Resinall), organotin, PE-chlorinated and PTFE. Photo taken in polarized mode.



Figure A2.63 Close-up of S-11 (6-8 cm), filter 1, with rubber and PTFE particles. Visible mode.



Figure A2.64 Sample S-11 (6-8 cm), filter 2. Mostly PE, PTFE, PE and PET. Polarized mode.



Figure A2.65 Close-up of PTFE particle in S-11 (6-8 cm), filter 2. Visible mode.



### A2.24 S-11 (8-10 cm)



Figure A2.66 Sample S-11 (8-10 cm), filter 1. Mostly rubber (Resinall) and PE:PP. Visible mode.



Figure A2.67 Sample S-11 (8-10 cm), filter 2. Mostly PE, PTFE and PE-chlorinated. Visible mode.

Document no.: 20210378-01-R Date: 2022-01-26 Rev.no.: 1 Appendix: A, page 65

#### A3 Field blanks

### A3.1 S-10-FB-01 (30-32 cm)



Figure A3.1 Field blank S-10-FB-01 (S-10, 30-32 cm), filter 1. Mostly PTFE. Polarized mode.



Figure A3.1 Field blank S-10-FB-01 (S-10, 30-32 cm), filter 1. Mostly PTFE. Polarized mode.

Document no.: 20210378-01-R Date: 2022-01-26 Rev.no.: 1 Appendix: A, page 67

#### A3.2 S-11-FB-02 20-22 cm



Figure A3.3 Field blank S-11-FB-02 (S-11, 20-22 cm), filter 1. Mostly PTFE, rubber (Resinall) and PE-chlorinated. Many unknown particles. Photo is taken in polarized mode.





*Figure A3.4 Field blank S-11-FB-02 (S-11, 20-22 cm), filter 2. Mostly PE-chlorinated. Many unknown particles. Photo is taken in polarized mode.* 



### Appendix B

RESULTS FOR METHOD BLANKS AND FIELD BLANKS (RAW DATA)

Contents

B1 Method blanks

B2 Field blanks

2 4

Document no.: 20210378-01-R Date: 2022-01-26 Rev.no.: 1 Appendix: B, page 2

#### **B1** Method blanks

The number of microplastics and other particles found in analysed method blanks are given in Table B1.1. The abundance of different microplastic types identified in the blanks are given in Table B1.2.

Table B1.1 Number of microplastics and other particles in method blanks. In this report, microplastics are defined as coatings-adhesives, plastic polymers and rubber particles. The stated weeks represents the start of density-separation.

| Method<br>blank ID | Week | Unknown | Mineral | Organic | Coatings-<br>adhesives | Petro-<br>pyro | Plastic | Rubber |
|--------------------|------|---------|---------|---------|------------------------|----------------|---------|--------|
| MB-01              | 22   | 156     | 0       | 37      | 0                      | 0              | 29      | 0      |
| MB-03              | 23   | 108     | 2       | 116     | 2                      | 4              | 46      | 0      |
| MB-05              | 24   | 214     | 0       | 96      | 0                      | 0              | 94      | 2      |
| MB-07              | 24   | 128     | 0       | 104     | 0                      | 0              | 104     | 2      |
| MB-08              | 24   | 76      | 0       | 91      | 0                      | 1              | 58      | 0      |
| MB-10              | 25   | 148     | 2       | 64      | 0                      | 0              | 158     | 0      |
| MB-12              | 26   | 84      | 0       | 132     | 0                      | 0              | 184     | 0      |
| MB-13              | 33   | 166     | 0       | 108     | 0                      | 0              | 122     | 0      |
| MB-16              | 34   | 134     | 0       | 66      | 0                      | 0              | 102     | 0      |
| MB-21              | 43   | 100     | 0       | 112     | 0                      | 2              | 184     | 0      |
| me                 | ean  | 129     | 1       | 92      | 0                      | 1              | 114     | 0      |
| S                  | D    | 42      | 1       | 29      | 1                      | 1              | 55      | 1      |

| Table B1.2 Number c | of microplastic | particles ident | ified in method blanks. | The stated weeks re | presents the start o | f density-separation. |
|---------------------|-----------------|-----------------|-------------------------|---------------------|----------------------|-----------------------|
|---------------------|-----------------|-----------------|-------------------------|---------------------|----------------------|-----------------------|

|                       |      |     |    |     |    |      |                 |                     |                 | Pla | astic | polyn | ner |             |       |     |          |       |     |          |       |          | F         | Rubbe | er      |       | Co            | pating      | gs-ad     | hesiv | es    |
|-----------------------|------|-----|----|-----|----|------|-----------------|---------------------|-----------------|-----|-------|-------|-----|-------------|-------|-----|----------|-------|-----|----------|-------|----------|-----------|-------|---------|-------|---------------|-------------|-----------|-------|-------|
| Method<br>blank<br>ID | Week | PE  | dd | PET | Sd | PTFE | PE-chlorina ted | PE-chlorosulfonated | PP-chlorina ted | MAM | AMMA  | PU    | PVF | PE-oxidized | PE:PP | PVC | Melamine | νοιγν | EVA | Additive | Other | Resinall | Plasthall | SBR   | Silicon | Other | Phenoxy Resin | Epoxy Resin | Organotin | Zonyl | Other |
| MB-01                 | 22   | 7   | 1  | 4   | 0  | 13   | 0               | 0                   | 0               | 0   | 0     | 0     | 0   | 3           | 0     | 0   | 1        | 0     | 0   | 0        | 0     | 0        | 0         | 0     | 0       | 0     | 0             | 0           | 0         | 0     | 0     |
| MB-03                 | 23   | 2   | 10 | 6   | 0  | 12   | 0               | 0                   | 0               | 0   | 0     | 0     | 0   | 0           | 4     | 0   | 8        | 0     | 0   | 2        | 2     | 0        | 0         | 0     | 0       | 2     | 0             | 0           | 0         | 0     | 2     |
| MB-05                 | 24   | 28  | 6  | 0   | 0  | 48   | 2               | 0                   | 0               | 0   | 2     | 0     | 0   | 0           | 0     | 2   | 2        | 2     | 0   | 0        | 0     | 0        | 0         | 0     | 0       | 0     | 0             | 0           | 0         | 0     | 0     |
| MB-07                 | 24   | 30  | 2  | 8   | 0  | 54   | 0               | 0                   | 0               | 0   | 0     | 0     | 0   | 2           | 0     | 0   | 0        | 4     | 0   | 2        | 2     | 0        | 0         | 0     | 0       | 2     | 0             | 0           | 0         | 0     | 2     |
| MB-08                 | 24   | 29  | 3  | 2   | 0  | 20   | 0               | 0                   | 0               | 1   | 0     | 0     | 0   | 1           | 0     | 1   | 0        | 0     | 0   | 0        | 0     | 0        | 0         | 0     | 0       | 0     | 0             | 0           | 0         | 0     | 0     |
| MB-10                 | 25   | 88  | 4  | 6   | 0  | 20   | 2               | 0                   | 0               | 0   | 0     | 2     | 0   | 26          | 0     | 0   | 0        | 0     | 0   | 2        | 4     | 0        | 0         | 0     | 0       | 0     | 0             | 0           | 0         | 0     | 0     |
| MB-12                 | 26   | 128 | 10 | 4   | 0  | 8    | 2               | 0                   | 0               | 0   | 0     | 0     | 0   | 26          | 0     | 0   | 0        | 0     | 0   | 4        | 2     | 0        | 0         | 0     | 0       | 0     | 0             | 0           | 0         | 0     | 0     |
| MB-13                 | 33   | 82  | 0  | 4   | 2  | 26   | 0               | 0                   | 0               | 0   | 0     | 0     | 0   | 2           | 0     | 0   | 2        | 0     | 0   | 0        | 4     | 0        | 0         | 0     | 0       | 0     | 0             | 0           | 0         | 0     | 0     |
| MB-16                 | 34   | 12  | 2  | 2   | 0  | 80   | 0               | 0                   | 0               | 0   | 0     | 0     | 0   | 0           | 0     | 0   | 2        | 0     | 2   | 0        | 2     | 0        | 0         | 0     | 0       | 0     | 0             | 0           | 0         | 0     | 0     |
| MB-21                 | 43   | 38  | 10 | 6   | 0  | 126  | 0               | 0                   | 0               | 0   | 0     | 2     | 0   | 0           | 2     | 0   | 0        | 0     | 0   | 0        | 0     | 0        | 0         | 0     | 0       | 0     | 0             | 0           | 0         | 0     | 0     |
| me                    | an   | 48  | 5  | 4   | 0  | 41   | 1               | 0                   | 0               | 0   | 0     | 1     | 0   | 7           | 1     | 0   | 2        | 0     | 0   | 1        | 2     | 0        | 0         | 0     | 0       | 0     | 0             | 0           | 0         | 0     | 0     |
| SC                    | )    | 41  | 4  | 2   | 1  | 38   | 1               | 0                   | 0               | 0   | 1     | 1     | 0   | 11          | 1     | 1   | 2        | 1     | 1   | 1        | 2     | 0        | 0         | 0     | 0       | 1     | 0             | 0           | 0         | 0     | 1     |

Document no.: 20210378-01-R Date: 2022-01-26 Rev.no.: 1 Appendix: B, page 4

#### B2 Field blanks

The number of microplastics and other particles found in analysed method blanks are given in Table B2.1. The abundance of different microplastic types are given in Table B2.2.

Table B2.1 Number of microplastics (coatings-adhesives, plastic polymers and rubber) and other particles in field blank samples. The dry-weight% of the samples and the amount of dry sediment added to the bauta (g) is also given. The stated weeks represents the start of density-separation.

| Field blank<br>ID | Week | Dry-<br>weight % | Amount of dry<br>sediment added<br>to bauta (g) | Unknown | Mineral | Organic | Coatings-<br>adhesives | Petro-<br>pyro | Plastic | Rubber |
|-------------------|------|------------------|-------------------------------------------------|---------|---------|---------|------------------------|----------------|---------|--------|
| S-10-FB-01        | 26   | 50               | 51                                              | 252     | 2       | 126     | 4                      | 1              | 52      | 8      |
| S-11-FB-02        | 43   | 64               | 65                                              | 2282    | 2       | 72      | 4                      | 10             | 64      | 24     |
|                   |      | mean             | -                                               | 1267    | 2       | 99      | 4                      | 6              | 58      | 16     |
|                   |      | SD               |                                                 | 1435    | 0       | 38      | 0                      | 6              | 8       | 11     |

Table B1.2 Number of identified microplastic particles in the field bank samples. The stated weeks represents the start of density-separation.

|                      |      |    |    |     |    |      |                 |                      |                 | Pla | astic | polyn | ner |              |       |     |          |       |     |          |       |          | F         | Rubbe | r       |       | Сс            | ating       | gs-adl    | nesiv | es    |
|----------------------|------|----|----|-----|----|------|-----------------|----------------------|-----------------|-----|-------|-------|-----|--------------|-------|-----|----------|-------|-----|----------|-------|----------|-----------|-------|---------|-------|---------------|-------------|-----------|-------|-------|
| Field<br>blank<br>ID | Week | þE | dd | PET | Sd | PTFE | PE-chlor inated | PE-chlor osulfonated | PP-chlor inated | MA  | AMMA  | Nd    | PVF | PE-oxidi zed | PE:PP | PVC | Melamine | Nylon | EVA | Additive | Other | Resinall | Plasthall | SBR   | Silicon | Other | Phenoxy Resin | Epoxy Resin | Organotin | Zonyl | Other |
| S-10-FB-<br>01       | 22   | 4  | 3  | 6   | 0  | 21   | 8               | 0                    | 0               | 1   | 0     | 0     | 0   | 2            | 7     | 0   | 0        | 0     | 0   | 0        | 0     | 8        | 0         | 0     | 0       | 0     | 0             | 0           | 2         | 0     | 2     |
| S-11-FB-<br>02       | 43   | 10 | 0  | 2   | 0  | 12   | 24              | 0                    | 0               | 0   | 2     | 0     | 0   | 4            | 10    | 0   | 0        | 0     | 0   | 0        | 0     | 16       | 0         | 0     | 0       | 8     | 0             | 0           | 4         | 0     | 0     |
| me                   | an   | 7  | 2  | 4   | 0  | 17   | 16              | 0                    | 0               | 1   | 1     | 0     | 0   | 3            | 9     | 0   | 0        | 0     | 0   | 0        | 0     | 12       | 0         | 0     | 0       | 4     | 0             | 0           | 3         | 0     | 1     |
| SE                   | )    | 4  | 2  | 3   | 0  | 6    | 11              | 0                    | 0               | 1   | 1     | 0     | 0   | 1            | 2     | 0   | 0        | 0     | 0   | 0        | 0     | 6        | 0         | 0     | 0       | 6     | 0             | 0           | 1         | 0     | 1     |



### Appendix C

**RESULTS FOR SEDIMENT SAMPLES (RAW DATA)** 

### C1 Sediment samples

The number of microplastics and other particles found in sediment samples are given in Table C1.1 (raw data, not blank or recovery corrected). The dry-weight% of the samples and the amount of dry sediment added to the Bauta during density separation is also included as these were used to calculate the MP abundance per kg dry sediment. The abundance of different microplastic types identified in the samples are given in Table C1.2.

Document no.: 20210378-01-R Date: 2022-01-26 Rev.no.: 1 Appendix: C, page 3

| Sediment<br>sample | Week | Dry-<br>weight % | Amount of dry<br>sediment added to<br>bauta (g) | Unknown | Mineral | Organic | Coatings-<br>adhesives | Petro-<br>pyro | Plastic | Rubber |
|--------------------|------|------------------|-------------------------------------------------|---------|---------|---------|------------------------|----------------|---------|--------|
| S-01 0-2 cm        | 34   | 73               | 73                                              | 440     | 0       | 156     | 10                     | 22             | 72      | 6      |
| S-02 0-2 cm        | 26   | 35               | 67                                              | 1746    | 16      | 186     | 8                      | 26             | 190     | 22     |
| S-03 0-2 cm        | 25   | 53               | 53                                              | 1076    | 0       | 140     | 8                      | 16             | 180     | 18     |
| S-04 0-2 cm        | 25   | 60               | 62                                              | 716     | 0       | 206     | 12                     | 24             | 120     | 16     |
| S-05 0-2 cm        | 25   | 51               | 46                                              | 263     | 1       | 107     | 0                      | 9              | 81      | 16     |
| S-06 0-2 cm        | 25   | 47               | 48                                              | 1798    | 6       | 142     | 10                     | 18             | 128     | 22     |
| S-06 2-4 cm        | 25   | 55               | 51                                              | 782     | 2       | 186     | 2                      | 20             | 140     | 10     |
| S-06 4-6 cm        | 24   | 59               | 58                                              | 937     | 7       | 63      | 0                      | 9              | 91      | 15     |
| S-06 6-8 cm        | 24   | 61               | 62                                              | 1060    | 2       | 182     | 6                      | 14             | 168     | 16     |
| S-06 8-10 cm       | 24   | 64               | 65                                              | 1000    | 0       | 114     | 2                      | 18             | 62      | 26     |
| S-07 0-2 cm        | 25   | 55               | 55                                              | 1232    | 0       | 144     | 4                      | 130            | 122     | 12     |
| S-08 0-2 cm        | 24   | 56               | 56                                              | 746     | 2       | 112     | 0                      | 4              | 102     | 6      |
| S-09 0-2 cm        | 24   | 42               | 43                                              | 380     | 2       | 84      | 2                      | 14             | 58      | 2      |
| S-10 0-2 cm        | 24   | 54               | 53                                              | 630     | 4       | 162     | 0                      | 6              | 90      | 8      |
| S-10 2-4 cm        | 26   | 54               | 54                                              | 281     | 0       | 142     | 0                      | 6              | 73      | 4      |
| S-10 4-6 cm        | 23   | 55               | 54                                              | 560     | 4       | 84      | 0                      | 0              | 27      | 4      |
| S-10 6-8 cm        | 23   | 54               | 52                                              | 143     | 1       | 78      | 0                      | 0              | 71      | 3      |
| S-10 8-10 cm       | 22   | 54               | 52                                              | 364     | 1       | 91      | 1                      | 11             | 33      | 5      |
| S-10 20-22 cm      | 22   | 53               | 49                                              | 276     | 3       | 120     | 8                      | 8              | 77      | 16     |
| S-11 0-2 cm        | 34   | 61               | 60                                              | 702     | 2       | 164     | 4                      | 20             | 192     | 48     |
| S-11 2-4 cm        | 33   | 61               | 58                                              | 990     | 2       | 215     | 16                     | 8              | 196     | 49     |
| S-11 4-6 cm        | 33   | 58               | 57                                              | 886     | 2       | 270     | 6                      | 12             | 168     | 42     |
| S-11 6-8 cm        | 33   | 60               | 59                                              | 756     | 4       | 332     | 14                     | 4              | 224     | 30     |
| S-11 8-10 cm       | 33   | 60               | 59                                              | 722     | 4       | 144     | 6                      | 20             | 104     | 34     |

Table C1.1 Number of microplastics (coatings-adhesives, plastic polymers and rubber) and other particles in sediment samples. The dry-weight% of the samples and the amount of dry sediment added to the bauta (g) is also given. The stated weeks represents the start of density-separation.
# NG

Document no.: 20210378-01-R Date: 2022-01-26 Rev.no.: 1 Appendix: C, page 4

Table C1.2 Number of identified microplastic particles in the sediment samples. The stated weeks represents the start of density-separation.

|                    |      |    |    |     |    |      |                |                     |                | Pla | astic | polyn | ner |             |       |     |          |       |     |          |       | Rubber   |           |     |         | Coatings-adhesives |               |             |           |       |       |
|--------------------|------|----|----|-----|----|------|----------------|---------------------|----------------|-----|-------|-------|-----|-------------|-------|-----|----------|-------|-----|----------|-------|----------|-----------|-----|---------|--------------------|---------------|-------------|-----------|-------|-------|
| Sediment<br>sample | Week | PE | РР | PET | PS | PTFE | PE-chlorinated | PE-chlorosulfonated | PP-chlorinated | PAM | PMMA  | PU    | PVF | PE-oxidized | PE:PP | PVC | Melamine | Nylon | EVA | Additive | Other | Resinall | Plasthall | SBR | Silicon | Other              | Phenoxy Resin | Epoxy Resin | Organotin | Zonyl | Other |
| S-01 0-2 cm        | 34   | 36 | 0  | 0   | 2  | 10   | 2              | 0                   | 0              | 0   | 0     | 0     | 0   | 0           | 12    | 0   | 0        | 0     | 0   | 4        | 6     | 6        | 0         | 0   | 0       | 0                  | 0             | 0           | 10        | 0     | 0     |
| S-02 0-2 cm        | 26   | 2  | 0  | 2   | 4  | 16   | 140            | 0                   | 0              | 0   | 0     | 0     | 0   | 10          | 12    | 0   | 0        | 0     | 0   | 2        | 2     | 22       | 0         | 0   | 0       | 0                  | 2             | 0           | 2         | 0     | 4     |
| S-03 0-2 cm        | 25   | 14 | 10 | 4   | 20 | 48   | 46             | 0                   | 0              | 0   | 0     | 0     | 0   | 4           | 24    | 0   | 0        | 2     | 0   | 0        | 8     | 14       | 2         | 0   | 0       | 2                  | 0             | 2           | 6         | 0     | 0     |
| S-04 0-2 cm        | 25   | 18 | 12 | 6   | 2  | 8    | 14             | 0                   | 0              | 0   | 0     | 0     | 0   | 14          | 14    | 2   | 6        | 10    | 0   | 0        | 14    | 12       | 2         | 0   | 0       | 2                  | 0             | 0           | 10        | 0     | 2     |
| S-05 0-2 cm        | 25   | 11 | 0  | 0   | 0  | 51   | 7              | 0                   | 0              | 0   | 2     | 0     | 0   | 4           | 3     | 0   | 0        | 0     | 0   | 2        | 0     | 14       | 2         | 0   | 0       | 0                  | 0             | 0           | 0         | 0     | 0     |
| S-06 0-2 cm        | 25   | 14 | 0  | 10  | 6  | 40   | 38             | 0                   | 2              | 0   | 0     | 0     | 0   | 2           | 8     | 0   | 0        | 0     | 0   | 0        | 8     | 20       | 2         | 0   | 0       | 0                  | 4             | 0           | 6         | 0     | 0     |
| S-06 2-4 cm        | 25   | 46 | 0  | 0   | 0  | 8    | 24             | 0                   | 0              | 2   | 0     | 0     | 2   | 12          | 14    | 0   | 24       | 0     | 0   | 6        | 2     | 4        | 2         | 0   | 0       | 4                  | 0             | 0           | 2         | 0     | 0     |
| S-06 4-6 cm        | 24   | 27 | 0  | 4   | 0  | 33   | 17             | 0                   | 0              | 0   | 1     | 0     | 0   | 5           | 0     | 1   | 1        | 0     | 0   | 0        | 0     | 15       | 0         | 0   | 0       | 0                  | 0             | 0           | 0         | 0     | 0     |
| S-06 6-8 cm        | 24   | 28 | 2  | 10  | 2  | 14   | 74             | 0                   | 0              | 0   | 0     | 0     | 0   | 18          | 8     | 2   | 0        | 4     | 0   | 0        | 6     | 16       | 0         | 0   | 0       | 0                  | 0             | 0           | 4         | 0     | 2     |
| S-06 8-10 cm       | 24   | 12 | 2  | 4   | 0  | 8    | 10             | 0                   | 0              | 0   | 0     | 0     | 0   | 10          | 14    | 0   | 0        | 0     | 0   | 0        | 2     | 16       | 4         | 0   | 0       | 6                  | 0             | 0           | 2         | 0     | 0     |
| S-07 0-2 cm        | 25   | 18 | 8  | 6   | 2  | 16   | 48             | 0                   | 0              | 0   | 2     | 0     | 0   | 4           | 18    | 0   | 0        | 0     | 0   | 0        | 0     | 10       | 0         | 0   | 0       | 2                  | 2             | 0           | 2         | 0     | 0     |
| S-08 0-2 cm        | 24   | 12 | 0  | 4   | 2  | 52   | 18             | 0                   | 0              | 2   | 0     | 0     | 0   | 4           | 4     | 0   | 0        | 0     | 0   | 0        | 4     | 4        | 0         | 0   | 0       | 2                  | 0             | 0           | 0         | 0     | 0     |
| S-09 0-2 cm        | 24   | 4  | 2  | 6   | 0  | 16   | 18             | 0                   | 0              | 0   | 0     | 0     | 0   | 2           | 2     | 0   | 4        | 0     | 0   | 4        | 0     | 2        | 0         | 0   | 0       | 0                  | 2             | 0           | 0         | 0     | 0     |
| S-10 0-2 cm        | 24   | 32 | 2  | 0   | 4  | 6    | 38             | 0                   | 0              | 0   | 0     | 0     | 0   | 0           | 8     | 0   | 0        | 0     | 0   | 0        | 0     | 6        | 0         | 0   | 0       | 2                  | 0             | 0           | 0         | 0     | 0     |
| S-10 2-4 cm        | 26   | 25 | 0  | 0   | 0  | 8    | 19             | 0                   | 0              | 0   | 0     | 0     | 0   | 0           | 2     | 2   | 15       | 0     | 0   | 0        | 2     | 0        | 4         | 0   | 0       | 0                  | 0             | 0           | 0         | 0     | 0     |
| S-10 4-6 cm        | 23   | 7  | 0  | 0   | 3  | 3    | 0              | 0                   | 0              | 0   | 0     | 0     | 0   | 0           | 0     | 0   | 0        | 0     | 0   | 11       | 4     | 0        | 4         | 0   | 0       | 0                  | 0             | 0           | 0         | 0     | 0     |
| S-10 6-8 cm        | 23   | 37 | 17 | 2   | 0  | 1    | 0              | 0                   | 0              | 0   | 0     | 0     | 0   | 5           | 5     | 0   | 0        | 2     | 0   | 0        | 2     | 2        | 0         | 0   | 0       | 1                  | 0             | 0           | 0         | 0     | 0     |
| S-10 8-10 cm       | 22   | 4  | 4  | 9   | 0  | 7    | 5              | 0                   | 0              | 0   | 0     | 0     | 0   | 0           | 3     | 1   | 0        | 0     | 0   | 0        | 0     | 5        | 0         | 0   | 0       | 0                  | 0             | 0           | 1         | 0     | 0     |
| S-10 20-22 cm      | 22   | 17 | 2  | 4   | 0  | 17   | 16             | 0                   | 0              | 0   | 0     | 0     | 0   | 3           | 11    | 0   | 4        | 1     | 2   | 0        | 0     | 9        | 7         | 0   | 0       | 0                  | 0             | 0           | 8         | 0     | 0     |
| S-11 0-2 cm        | 34   | 26 | 2  | 10  | 0  | 88   | 10             | 0                   | 0              | 0   | 4     | 0     | 0   | 12          | 20    | 0   | 0        | 6     | 0   | 6        | 8     | 40       | 2         | 0   | 0       | 6                  | 0             | 0           | 4         | 0     | 0     |
| S-11 2-4 cm        | 33   | 56 | 13 | 0   | 0  | 29   | 20             | 0                   | 2              | 0   | 2     | 0     | 0   | 24          | 33    | 0   | 0        | 4     | 0   | 5        | 8     | 39       | 2         | 0   | 0       | 9                  | 0             | 0           | 16        | 0     | 0     |
| S-11 4-6 cm        | 33   | 14 | 20 | 4   | 0  | 52   | 40             | 0                   | 0              | 0   | 2     | 0     | 0   | 12          | 12    | 0   | 2        | 0     | 0   | 2        | 8     | 38       | 0         | 0   | 0       | 4                  | 0             | 0           | 6         | 0     | 0     |
| S-11 6-8 cm        | 33   | 70 | 18 | 22  | 2  | 60   | 16             | 0                   | 0              | 0   | 0     | 0     | 0   | 10          | 12    | 0   | 2        | 8     | 0   | 2        | 2     | 26       | 2         | 0   | 0       | 2                  | 0             | 0           | 14        | 0     | 0     |
| S-11 8-10 cm       | 33   | 26 | 4  | 0   | 2  | 18   | 18             | 0                   | 0              | 0   | 0     | 0     | 0   | 12          | 20    | 0   | 2        | 0     | 0   | 2        | 0     | 32       | 2         | 0   | 0       | 0                  | 2             | 4           | 0         | 0     | 0     |



Document no.: 20210378-01-R Date: 2022-01-26 Rev.no.: 1 Appendix: D, page 1

## Appendix D

MATERIAL COMPOSITION

#### Contents

- D1 Surface samples
- D2 Sediment core samples

2 3

#### **NG** D1 Surface samples

Document no.: 20210378-01-R Date: 2022-01-26 Rev.no.: 1 Appendix: D, page 2

The composition of microplastics (defined as coatings-adhesives, plastic polymers and rubbers) and other particles in surface samples (0-2 cm) is given in Table D1. Based on blank corrected results (number of microplastics are method blank and field blank corrected, whereas number of unknowns organic and petro-pyro particles are only method blank corrected), as described in the full report.

Table D1 Composition (%) of particles in the surface sediment samples, as classified by FT-IR. Unknown = particles with a match score < 0.7 with the FT-IR library.

| Sample ID        | Depth (cm) | Unknown | Mineral   | Organic   | Coatings-adhesives <sup>1</sup> | Petro-pyro | Plastic polymer <sup>1</sup> | Rubber <sup>1</sup> |
|------------------|------------|---------|-----------|-----------|---------------------------------|------------|------------------------------|---------------------|
| S-01             | 0 – 2      | 82      | 0.0       | 11        | 2.0                             | 3.1        | 2.3                          | 0.0                 |
| S-02             | 0 – 2      | 87      | 0.8       | 3.6       | 0.2                             | 0.1        | 7.6                          | 0.3                 |
| S-03             | 0 – 2      | 90      | 0.0       | 2.0       | 0.4                             | 1.0        | 6,6                          | 0.2                 |
| S-04             | 0 – 2      | 78      | 0,0       | 12        | 0.9                             | 3.3        | 4.9                          | 0.3                 |
| S-05             | 0 – 2      | 89      | 0.0       | 0.0       | 0.0                             | 8.4        | 0.0                          | 2.3                 |
| S-06             | 0 – 2      | 95      | 0.3       | 1.3       | 0.4                             | 1.1        | 1.7                          | 0.3                 |
| S-07             | 0 – 2      | 85      | 0.0       | 1.9       | 0.2                             | 10         | 2.7                          | 0.0                 |
| S-08             | 0 – 2      | 99      | 0.1       | 0.0       | 0.0                             | 0.7        | 0.5                          | 0.0                 |
| S-09             | 0 – 2      | 92      | 0.3       | 0.0       | 1.0                             | 6.2        | 0.8                          | 0.0                 |
| S-10             | 0 – 2      | 87      | 0.5       | 7.9       | 0.0                             | 1.2        | 3.0                          | 0.0                 |
| S-11             | 0 – 2      | 81      | 0.1       | 6.7       | 0.0                             | 3.1        | 4.7                          | 4.3                 |
| All stations (me | ean ± SD)  | 88 ± 6  | 0.2 ± 0.3 | 4.2 ± 4.5 | 0.5 ± 0.6                       | 3.5 ± 3.4  | 3.2 ± 2.5                    | 0.7 ± 1.4           |

<sup>1</sup>Total microplastic concentrations were in this report calculated based on the number of coatings-adhesives, plastic polymers and rubber particles.

#### **NG** D2 Sediment core samples

Document no.: 20210378-01-R Date: 2022-01-26 Rev.no.: 1 Appendix: D, page 3

The composition of microplastics (defined as coatings-adhesives, plastic polymers and rubbers) and other particles in sediment core samples is given in Table D2. Based on blank corrected results (number of microplastics are method blank and field blank corrected, whereas number of unknowns organic and petro-pyro particles are only method blank corrected), as described in the full report.

Coatings-Plastic Rubber<sup>1</sup> Sediment core ID Depth (cm) Organic Petro-pyro Unknown adhesives<sup>1</sup> polymer<sup>1</sup> 95 0-2 1.3 0.4 1.7 0.3 1.1 83 9.0 2.7 0.3 2-4 0.0 4.7 4-6 98 0.0 0.0 1.2 0.0 0.0 S-06 6.0 6-8 86 0.0 1.4 6.5 0.0 97 8-10 0.0 0.0 2.1 0.5 0.5 All 92 ± 6.8  $3.2 \pm 4.0$  $0.1 \pm 0.2$  $1.7 \pm 0.7$ 2.7 ± 2.8  $0.2 \pm 0.2$ (mean ± SD) 0-2 87 7.9 0.0 1.2 3.0 0.0 14 9.4 2-4 70 0.0 3.8 2.7 4-6 96 0.0 0.0 0.0 2.8 1.0 6-8 0.0 0.0 0.0 0.0 100 0.0 S-10 8-10 94 0.0 0.0 5.2 1.0 0.0 20-22 82 0.0 3.3 6.2 1.0 6.4 All  $71 \pm 36$  $3.6 \pm 5.9$  $0.5 \pm 1.3$ 2.7 ± 2.7  $20 \pm 40$  $1.7 \pm 2.5$ (mean ± SD)

Table D2 Composition (%) of particles in the sediment core samples, as classified by FT-IR. Unknown = particles with a match score < 0.7 with the FT-IR library.

| NG               |                    |          |          |                                     |            |                                 |                     | Document no.: 20210378-01-R<br>Date: 2022-01-26<br>Rev.no.: 1<br>Appendix: D. page 4 |
|------------------|--------------------|----------|----------|-------------------------------------|------------|---------------------------------|---------------------|--------------------------------------------------------------------------------------|
| Sediment core ID | Depth (cm)         | Unknown  | Organic  | Coatings-<br>adhesives <sup>1</sup> | Petro-pyro | Plastic<br>polymer <sup>1</sup> | Rubber <sup>1</sup> | · · · · · · · · · · · · · · · · · · ·                                                |
|                  | 0-2                | 81       | 6.7      | 0.0                                 | 3.1        | 4.7                             | 4.3                 |                                                                                      |
|                  | 2-4                | 82       | 9.4      | 1.3                                 | 0.8        | 5.0                             | 2.6                 |                                                                                      |
|                  | 4-6                | 76       | 16       | 0.2                                 | 1.3        | 3.7                             | 2.5                 |                                                                                      |
| S-11             | 6-8                | 68       | 25       | 1.3                                 | 0.5        | 4.5                             | 1.4                 |                                                                                      |
|                  | 8-10               | 87       | 3.7      | 1.1                                 | 3.1        | 1.9                             | 3.0                 |                                                                                      |
|                  | All<br>(mean ± SD) | 78 ± 7.1 | 12 ± 8.3 | 0.8 ± 0.6                           | 1.8 ± 1.3  | 4.0 ± 1.2                       | 2.8 ± 1.1           |                                                                                      |

<sup>1</sup>Total microplastic concentrations were in this report calculated based on the number of coatings-adhesives, plastic polymers and rubber particles.

### **NG** Kontroll- og referanseside/ Review and reference page

| Dokumentinformasjon/Document information                                                                                                                                              |                                             |                          |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--------------------------|--|--|--|--|--|--|
| Dokumenttittel/Document title                                                                                                                                                         |                                             | Dokumentnr./Document no. |  |  |  |  |  |  |
| MAREANO                                                                                                                                                                               |                                             | 20210378-01-R            |  |  |  |  |  |  |
| Dokumenttype/Type of document                                                                                                                                                         | Oppdragsgiver/Client                        | Dato/Date                |  |  |  |  |  |  |
| Rapport / Report                                                                                                                                                                      | Geological Survey of Norway (NGU)           | 2021-11-29               |  |  |  |  |  |  |
| Rettigheter til dokumentet iht kontrakt/<br>according to contract<br>NGI                                                                                                              | Rev.nr.&dato/Rev.no.&date<br>1 / 2022-01-26 |                          |  |  |  |  |  |  |
| <b>Distribusjon/Distribution</b><br>BEGRENSET: Distribueres til oppdragsgiver og er tilgjengelig for NGIs ansatte / LIMITED: Distributed to client and<br>available for NGI employees |                                             |                          |  |  |  |  |  |  |
| Emneord/Keywords                                                                                                                                                                      |                                             |                          |  |  |  |  |  |  |
| Sediment, microplastic, Bauta, density separation                                                                                                                                     |                                             |                          |  |  |  |  |  |  |

| Stedfesting/Geographical information |                                         |  |  |  |  |  |  |
|--------------------------------------|-----------------------------------------|--|--|--|--|--|--|
| Land, fylke/Country                  | Havområde/Offshore area                 |  |  |  |  |  |  |
| Kommune/Municipality                 | Feltnavn/Field name                     |  |  |  |  |  |  |
| ······                               |                                         |  |  |  |  |  |  |
| Sted/Location                        | Sted/Location                           |  |  |  |  |  |  |
| Kartblad/Map                         | Felt, blokknr./ <i>Field, Block No.</i> |  |  |  |  |  |  |
| UTM-koordinater/UTM-coordinates      | Koordinater/Coordinates                 |  |  |  |  |  |  |
| Zone: East: North:                   | Projection, datum: East: North:         |  |  |  |  |  |  |

| Dokumentkontroll/Document control<br>Kvalitetssikring i henhold til/Quality assurance according to NS-EN ISO9001                                           |                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Revisjonsgrunnlag/Reason for revision                                                                                                                      | Egenkontroll<br>av/<br>Self review by:                                                                                                                                                                                                       | Sidemanns-<br>kontroll av/<br>Colleague<br>review by:                                                                                                                                                                                                                                                                                            | Uavhengig<br>kontroll av/<br>Independent<br>review by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Tverrfaglig<br>kontroll av/<br>Interdisciplinary<br>review by:                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
|                                                                                                                                                            | 2021-11-28                                                                                                                                                                                                                                   | 2021-11-29                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
| Original document                                                                                                                                          | Maren Valestrand                                                                                                                                                                                                                             | Hans Peter Arp                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
|                                                                                                                                                            | Tjønneland                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
|                                                                                                                                                            | 2022-01-26                                                                                                                                                                                                                                   | 2022-01-26                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
| Change from " <lod" "n.d."="" 10="" 12<="" and="" in="" table="" td="" to=""><td>Maren Valestrand</td><td>Mari Engvig Løseth</td><td></td><td></td></lod"> | Maren Valestrand                                                                                                                                                                                                                             | Mari Engvig Løseth                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
|                                                                                                                                                            | Tjønneland                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
|                                                                                                                                                            |                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
|                                                                                                                                                            |                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
|                                                                                                                                                            |                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
|                                                                                                                                                            |                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
|                                                                                                                                                            | Immentkontroll/Document control      tetssikring i henhold til/Quality assurance      Revisjonsgrunnlag/Reason for revision      Original document      Change from " <lod" "n.d."="" 10="" 12<="" and="" in="" table="" td="" to=""></lod"> | Revisionsgrunnlag/Reason for revision    Egenkontroll av/<br>self review by:      Original document    2021-11-28      Maren Valestrand    Jignneland      Change from " <lod" "n.d."="" 10="" 12<="" and="" in="" table="" td="" to="">    Maren Valestrand      Tjønneland    Tjønneland      Image: Self review by:    Self review by:</lod"> | Revision control      Revisjonsgrunnlag/Reason for revision    Egenkontroll<br>av/<br>Self review by:    Sidemanns-<br>kontroll av/<br>Colleague<br>review by:      Original document    2021-11-28<br>Maren Valestrand<br>Tjønneland    2021-11-29<br>Hans Peter Arp<br>2022-01-26<br>Maren Valestrand<br>Tjønneland    2022-01-26<br>Mari Engvig Løseth      Change from " <lod" "n.d."="" 10="" 12<="" and="" in="" table="" td="" to="">    Maren Valestrand<br/>Tjønneland    2022-01-26<br/>Mari Engvig Løseth      Image from "<lod" "n.d."="" 10="" 12<="" and="" in="" table="" td="" to="">    Image from Image for the table 10 and 12    Image for the table 10 and 12</lod"></lod"> | amentkontroll/Document control      tetssikring i henhold til/Quality assurance according to NS-EN ISO9001      Revisjonsgrunnlag/Reason for revision    Egenkontroll<br>av/<br>Self review by:    Sidemanns-<br>kontroll av/<br>Colleague<br>review by:    Uavhengig<br>kontroll av/<br>Independent<br>review by:      Original document    2021-11-28    2021-11-29      Maren Valestrand<br>Tjønneland    Hans Peter Arp |  |  |  |  |  |

NGI (Norwegian Geotechnical Institute) is a leading international centre for research and consulting within the geosciences. NGI develops optimum solutions for society and offers expertise on the behaviour of soil, rock and snow and their interaction with the natural and built environment.

NGI works within the following sectors: Offshore energy – Building, Construction and Transportation – Natural Hazards – Environmental Engineering.

NGI is a private foundation with office and laboratories in Oslo, a branch office in Trondheim and daughter companies in Houston, Texas, USA and in Perth, Western Australia

#### www.ngi.no

NGI (Norges Geotekniske Institutt) er et internasjonalt ledende senter for forskning og rådgivning innen ingeniørrelaterte geofag. Vi tilbyr ekspertise om jord, berg og snø og deres påvirkning på miljøet, konstruksjoner og anlegg, og hvordan jord og berg kan benyttes som byggegrunn og byggemateriale.

Vi arbeider i følgende markeder: Offshore energi – Bygg, anlegg og samferdsel – Naturfare – Miljøteknologi.

NGI er en privat næringsdrivende stiftelse med kontor og laboratorier i Oslo, avdelingskontor i Trondheim og datterselskaper i Houston, Texas, USA og i Perth, Western Australia.

www.ngi.no



 
 NORWEGIAN GEOTECHNICAL INSTITUTE
 Main office
 Trondheim office
 T (+47)22 02 30 00
 BIC NO. DNBANOKK
 ISO 9001/14001

 NGI.NO
 PO Box 3930 Ullevaal St. PO Box 5687 Torgarden
 F (+47)22 23 04 80
 BIAN NO26 5005 0501 281
 CERTIFIED BY BSI

 NO-0806 Oslo
 NO-7485 Trondheim
 NGI@ngi.no
 ORGANISATION NO.
 FS 32989/EMS 6120
Norway Norway

958 254 318MVA

FS 32989/EMS 612006



· NGU ·

Norges geologiske undersøkelse Postboks 6315, Slüppen 7491 Trondheim, Norge

Besøksadresse Leiv Eirikssons vei 39 7040 Trondheim

Telefon 73 90 40 00 E-post ngu@ngu.no Nettside www.ngu.no