NGU Report 2012.016

Soil geochemical data from the Nordkinn Peninsula, Finnmark

[Blank]

Geological Survey of Norway Postboks 6315 Sluppen NO-7491 Trondheim, Norway Tel.: 47 73 90 40 00 Telefax 47 73 92 16 20

Report no.: 2012.016		ISSN	Grading: Open						
Title: Soil geochemical data	from the Nordki	nn peninsula, Fir	nsula, Finnmark						
Authors: Clemens Reimann, To Filzmoser	r Erik Finne, Pet	er N	ıt: IGU						
County:		Com	mune:	2000					
Map-sheet name (M=1:250.000))		sheet no. and -name (M=1:50.000)					
Nordkapp, Honningsvå	g, Vadsø								
Deposit name and grid-reference	e:	Num	ber of pages: 95 enclosures:	Price (NOK): 395					
Fieldwork carried out: Aug-Sep 2011	Date of report: 15.02.2012	Proje	ct no.: 338500	Person responsible:					
Summary:									
Reimann et al., 1996, re-a geochemical anomalies (ra Nordkinn and adjacent Va to cover the Nordkinn Pen 1 site per 2 km ² . During th distance along ca. 30 trave between the traverses. Due parts of the Digermul Peni permits for the helicopter. 65 elements, including all extraction and following to geological boundaries. Ma the high REE values are co anomalies could be outline	nalysis of old No are earth element ranger Peninsula isula (ca. 2000 k e summer of 201 erses cutting the l e to logistical rea insula remained u All samples wer REEs, were carr ight quality contri- taimum concentri- tearly bound to o ed.	ordkalott samples as - REEs, U, and a. Because of the cm ²) with a local and and a local and a local and a local and and a local and and and a local and and and and a local and and and and and and and and and and	- Reimann et al., Th, but also Pb, B numerous unexpla scale geochemical rere collected from a in east-west dire h-/Sandfjellet area se Tana commune eved to pass a 2 m mercial laboratory he regional distribu- for the sum of the I ne units. Several a	2011) show distinct i, Zn, and Sb) on the ined anomalies it was decided survey at a sample density of 808 locations at 1 km ction with 2 km spacing could not be covered and did not provide landing m nylon screen. Analyses for based on an aqua regia ution of most elements depicts REEs exceed 2000 mg/kg and dditional geochemical					
Keywords:		Finnmark		Nordland-Troms					
till		geochemistry	ochemistry Geochemical m						

[Blank]

CONTENTS

1. I	NTRODUCTION	6
MET	HODS	9
1.1	Planning Stage and Field work	9
1.2	2 Sample preparation	
1.3	Analytical method	
1.4	Quality control	
1.5	Data analysis	
2. F	RESULTS AND COMMENTS	
2.1	Data tables	
2.2	2 Cumulative Probability (CP-) Plot	
2.3	3 Mapping	
3. (CONCLUSIONS	
4. <i>A</i>	ACKNOWLEDGEMENTS	
5. F	REFERENCES	

FIGURES

Figure 1. Index map showing location in Norway and available bedrock maps in scale	6
1:50000 in green.	
Figure 2. Maps covering the survey area. Five digit numbers are map sheet numbers in	7
the M711 series.	
Figure 3. Quternary deposits of the Nordkinn-Bekkarfjord area.	8
Figure 4. Typical sample pit with sampling tool and sample.	9
Figure 5. X-chart for Cu and Dy, depicting stability for project standard "MINN".	11
Figure 6. Excerpt from legend of 1:250000 bedrock maps.	13

TABLES

16
17
18
19
20
21

APPENDIX

Appendix 1. Cumulative frequency diagrams.	9 pages.
Appendix 2. Geochemical maps from the Nordkinn peninsula.	65 pages.

1. INTRODUCTION

The Nordkinn Peninsula consists of a series of Neoproterozoic fluvial, cross-bedded sandstones belonging to the Kalak Nappe complex which are derived from basement terraines of the Fennoscandian shield (Roberts, 2007). On first glance the area appears to hold little promise for mineral exploration. However, numerous low density geochemical surveys (Nordkalott project – Bølviken et al., 1986, Kola project – Reimann et al., 1996, re-analysis of old Nordkalott samples – Reimann et al., 2011) show distinct geochemical anomalies (REEs, U, Th but also Pb, Bi, Zn, Sb) on the Nordkinn and adjacent Varanger Peninsula. Because of these numerous unexplained anomalies it was decided to cover the Nordkinn Penisula (ca. 2000 km²) with a local scale geochemical survey at a sample density of 1 site per 2 km². NGU has not carried out such local scale geochemical surveys aimed at mineral exploration since almost 20 years. This survey was thus also aimed at providing the needed experience for planning further investigations.

Figure 1. Index map showing location in Norway and available bedrock maps in scale 1:50000 in green.

In addition to the 1:50000 scale bedrock maps that partially cover the target area, three bedrock maps in 1:250000 scale cover the whole area. In Figure 2, these are outlined in purple, namely Nordkapp, Honningsvåg and Vadsø (North to East).

Figure 2. Maps covering the survey area. Five digit numbers are map sheet numbers in the M711 series.

Quaternary deposits of the area are dominated by regolith and thin till layer. Figure 3 also displays small areas of marine deposits and glaciofluvial sediments that were avoided during sampling.

Figure 3. Quternary deposits of the Nordkinn-Bekkarfjord area.

METHODS.

1.1 Planning Stage and Field work

During the planning stage the Nordkinn Peninsula was covered by a grid of ca. 30 traverses in east-west direction at 2 km distance. Along the traverses the sample spacing was 1 km. It was estimated that with the resources available for field work, it would be possible to cover the whole area as far south as to the base of Bekkarfjord with some 1100samples

In the field sample pits were dug by paint free steel spade down to well into the mineral soil layer. Glaciofluvial deposits were consciously avoided during sampling. Samples were collected into RILSAN® plastic bags using a small steel trowel. Figure 4 shows a typical sample pit, the equipment used and a typical sample. Sample weight was on average 1,2 kg. The field crew was not allowed to wear any jewelry while handling samples. Most sample sites were accessed on foot from the closest road along the traverses. Some areas were accessed from the sea-side by the 37' "Polarjo" of SNO and for 4 days helicopter transport was used to drop off samplers in the field in the morning and collect them again in the evening.

Figure 4. Typical sample pit with sampling tool and sample.

Because the landing permits for the helicopter from Tana commune were not received for the desired time span, parts of the Digermul peninsula remained uncovered. Early on it also transpired that it was impossible to collect samples from the whole Nordkinn Peninsula within the given budget and it was decided to drop sampling of the rather difficult to access Koifjord-/Sandfjellet area. Supporting this decision was the fact that this was a low priority area based on earlier results. In total 808 localities were sampled. The samplers worked individually, and on the average, 1 sampler was able to collect 7,2 samples per day. Field work was carried out in the period 08.08 – 05.09.2011, with the crew fluctuating between 2 and 7 people.

Field duplicate samples were collected at a rate of one in every twenty five samples. At one site a large (35 kg) sample was collected for the preparation of a project standard.

1.2 Sample preparation

Upon arrival at the NGU laboratories, samples were dried at temperatures below 40 °C. Subsequently all samples were dry sieved to <2mm (9 mesh) until 2 alliquots of 30+ g and one of 60+ g was obtained, sparing the surplus material and discarding the >2mm fraction. Nylon sieves were used, and no jewelry was allowed during preparation work. Cross contamination via sample dust during sieving was controlled by sieving samples one at a time in a vented box, and cleaning all tools in water in between every sample. Following the preparation all samples were randomized and a split of the project standard MINN was inserted at a rate of one in twenty samples (36 in total). In addition 8 splits of the project standard NIDELV were also inserted at random positions. The laboratory inserted further 33 splits of its own QC sample DS8. The laboratory also prepared analytical duplicates of 51 samples.

1.3 Analytical method

Alliquots of 30+ g of all samples were shipped to ACME laboratories in Vancouver, Canada. For the GEMAS project this laboratory had won the international tender for analysis in aqua regia extraction (Reimann et al., 2009). A 15 g sample weight was used for the extraction. The samples were digested in 90 ml aqua regia and leached for one hour in a hot (95 °C) water bath. After cooling, the solution was made up to a final volume of 300 ml with 5% HCl. The sample weight to solution volume ratio is 1g per 20 ml. The solutions were analyzed using a Spectro Ciros Vision emission spectrometer (ICP-AES) and a Perkin Elmer Elan 6000/9000 inductively coupled plasma emission mass spectrometer (ICP-MS). Analytical results were returned within 1 month after receiving the samples.

1.4 Quality control

Table 1, 2 and 3 show the analytical results for the standards MINN, NIDELV and DS8. Table 4 shows the estimate of precision based on the analytical duplicates. All in all most results were satisfactory, Tables 1-3 clearly identify the "problematic" elements, where maps should be viewed with care: Ge, Ta, W, In, Pd, Pt, Re, Te. In most cases the observed problems were due to very low concentrations of these elements in our standards MINN and NIDELV, i.e. analytical results at or below the limit of detection. Standard NIDELV was used as project standard when submitting the stored samples from Nordland/Troms (Reimann et al., 2011) and median results for Nidelv analysed this time compared to the ones received earlier are also provided in Table 2. In laboratory standard DS8 only Ge and Ta have so low concentrations that they remain problematic (Table 3). X-charts (for an example see Figure 5) indicate that there exist no problems with time trends or breaks in analytical results. To be able to estimate analytical precision based on analytical duplicates and to calculate the practical detection limits, it was agreed with the laboratory that all instrument readings were reported, independent of detection limit. Duplicate results (Table 4) reveal the following elements as plagued by poor reproducibility: Re, Pd, Pt, Te, Au, and Ta. In some cases it was decided to show the instrument readings below the official detection limit in a map, these maps are clearly marked as such. For a few elements (e.g. S) it was decided to use the much lower practical detection limit rather than the "official" laboratory detection limit (see Table 5).

Figure 5. X-chart for Cu and Dy, depicting stability for project standard "MINN".

1.5 Data analysis

Geochemical data are compositional data (Aitchison, 1986; Filzmoser et al., 2009) and thus require special care during data analysis. Compositional data do not plot into the standard Euclidian room but rather on the Aitchison simplex. All statistical methods that are based on Euclidian distances (like calculating the mean and the standard deviation or calculating a correlation matrix) will thus return faulty results (Filzmoser et al., 2009, 2010). Thus here EDA (exploratory data analysis) techniques and simple order statistics as suggested by Reimann et al., (2008) are used.

2. RESULTS AND COMMENTS

2.1 Data tables

A statistical overview for the datset is provided in Table 5. The table is built around minimum, maximum and median value and provides the values for a number of additional quantiles (percentiles) of the distribution. When using (for the data at hand unsuited) classical statistical methods and calculating mean and standard deviation to derive at "thresholds" for anomalies in the case of a normal distribution 2.6% of all data will be identified as anomalies at both ends of the distribution – thus Q2 and Q98 (or Q5 and Q95) can be taken as lower and upper threshold for the data. However, quite often CP-Plots (see below) provide a better means of identifying anomalies in the data.

The "MAD" is the median absolute deviation (Reimann et al., 2008). For compositional data it should replace the standard deviation and is as such a measure of variation of the data. However, it is not allowed to calculate this measure for untransformed, "raw" data, they have to be either log-transformed MAD.log) or, better, "ilr" (isometric logratio, Egozcue et al.,

2003) transformed (MAD.ilr) prior to the calculation. Unfortunately they cannot be backtransformed to the original data space because the log transformation changes the distances of the observations from the center asymmetrically. The MAD.log (MAD.ilr) can thus not really replace the standard deviation. It rather informs about the stability of the part x on the remainder 1-x and small values indicate a high stability. As an additional measure of variation the "powers" are thus provided, they provide a direct impression of the orders of magnitude variation for each variable.

To get a better "feeling" for the data, Table 6 shows median, 98th percentile value and maximum concentration for the Nordkinn and the directly comparable Nordland/Troms dataset (Reimann et al., 2011). They are comparable in terms of grain size, laboratory procedures, and number of samples, but of course the Nordland/Troms dataset covers a much larger area and represents a different geological setting. For all three percentiles the highest value is marked in bold print. The table shows that the analytical results for the Nordkinn samples returned unusually high values for Au, Fe, all REEs, Hg, Mn, Nb, Sb, Ti, Tl, U, Y and Zr. It is obvious that especially the REEs returned very unusual results on the Nordkinn Peninsula (see for example the maximum value of Dysprosium (Dy) with 49 mg/kg).

2.2 Cumulative Probability (CP-) Plot

Plots of the cumulative distribution function are one of the most informative displays of geochemical distributions (Reimann et al., 2008). In the plots the concentration is plotted along the X-axis and the cumulative probability is plotted along the Y-axis, and it allows the direct visual recognition of breaks in the curve which may be indicative of different geochemical processes. Breaks in the uppermost few percentiles of the distribution are often used as threshold for anomaly identification.

2.3 Mapping

There exist many different methods for producing geochemical maps (see discussion in Reimann, 2005 or in Chapter 5 of Reimann et al., 2008). In mineral exploration so called "growing dot maps" as introduced by Bjørklund and Gustavsson (1987) are probably most often used. However, they focus the attention almost exclusively on the high values, the "anomalies" and are less well suited to study the data in more detail, e.g., in relation to geology or to detect more local anomalies that may not be characterized by especially high values in relation to the whole dataset but rather display barely high values for their surroundings.

To detect such more subtle features in the dataset it has proved helpful to use classes and to base these classes on percentiles of the distribution. EDA has developed an own symbolset, which is based on 5 classes, and was developed to provide an even optical weight of the symbols associated with these classes in a map. Here the EDA symbolset with accentuated outliers was used (Reimann et al., 2008) and the symbols were directly plotted on geological maps. The percentiles for a change in the symbols are 2 - 25 - 75 - 98%. The lowest values (0-2 %) are marked by large open circles, the values from 2 - 25% of the data by small open circles, the inner 50% of the dataset are marked by a dot, the values from 75 to 98% by a cross and all values above the 98th percentile by a black square that grows in addition in direct relation to the analytical result (in order to be able to detect the highest value in the

maps). As all the maps are prepared on a backdrop of a generalized bedrock map based on the available maps in scale 1:50000 and 1:250000 hosted by http://geo.ngu.no/kart/berggrunn/ (Roberts, 1973, 1981, 1998, 2006a, 2006b, Roberts & Siedlecka 2011, Siedlecka 2009 and Siedlecka et al), the reader will note that for many elements the chosen classes are able to depict geology more or less 1:1. An excerpt of the legend for the 1:250000 scale map series is showed in Figure 6.

Le	gend
	Gimmerskifer, med overgang til fylitt i nordøst, granat-, kyanit- og sillimanttførende i vestlige og nordvestlige områder
	Metasandslein i veksling med fyllat eller med glimmerskiller, granatførende i veslige områder senproterozoikum
	Metasandstein, stort sett arkosisk, stedvis med kvartsitt- og amfibolitlag, noen steder med konglomeratlag variabel forgneisning og omdannelse til migmatitt i vestlige og nordvestlige områder
	Metaslamstein, tynnbåndet, fyllittek med noen lag av metasandstein i bunnen
	Melasandstein, stedvis kvartsittisk, stedvis feltspatferende med noen tynne lag av fyllitt og konglomerat
	Fyllitisk metaslamstein i øvre ledd; polymikt metakonglomerat i nedre ledd
	Morkogrå kvartsitt og gråvakke i veksling med gråsvart slamskifer
	Gråhvit og rød kvartsitt med slamskifer i nedre halvdel av formasjonen
	Slamstein, grågronn, stedvis med lag av kvartsitt og gråvakke
	Rød sandstein med lag av slamskifer

Figure 6. Excerpt from legend of 1:250000 bedrock maps.

Because the dataset is provided with this report it is possible and up to the reader to use different mapping techniques. Note, however, that in the provided data files all values below detection are marked as "<DL" while NGU had the original instrument readings available, i.e. values for every sample. When using large datasets with hundreds of samples and more, these results do often still contain valuable information. For example, for S the laboratory's official detection limit is 200 mg/kg, while the QC results indicate that values down to 2 mg/kg are still reliable. Thus a full order of magnitude real, natural variation would have been lost when setting all values below the DL to ½ of the detection limit. For producing the maps in this report the dataset with all instrument readings was used (negative instrument readings were set to a very small positive value).

3. CONCLUSIONS

Studying the maps the following features draw attention:

(1) The area is clearly divided into several geochemically distinct geological units, following by and large the established divisions in the geological map.

(2) A gold anomaly consisting of several high values occurs in the north-eastern part of the survey area.

(3) A distinct As, B, Fe, (Hg), Mo, P, S, Sr, and Te anomaly occurs on the Digermul Peninsula. This is the area where the original low density survey had also indicated a Pd anomaly (see maps in Reimann et al., 2011), but this is not re-established. Given the element combination the most likely source would appear to be the occurrence of a black (organic rich) shale/schist unit on the Digermul Peninsula. The occurrence of black shales would also explain erratic high Pd and Pt concentrations in the samples.

(4) A distinct band of high Cr, Mg, Ni-values in the southernmost part of the survey area. This anomaly either indicates the presence of an un-mapped mafic dyke or of a mafic layer in the sediments. A feature like this could be used as a marker to study the extent of glacial transport in this area.

(5) The most distinct feature is probably the occurrence of a large central sandstone unit, running in a north-east south-west direction over the whole Nordkinn Peninsula. This unit is enriched in a large number of elements and especially in the REEs – the maximum value for the sum of the REEs (excluding Y) reaches a stunning value of over 2000 mg/kg. Within this

unit more local anomalies of a variety of elements occur, e.g. Cu, Ba and K (see (8)) in the central parts or Ti (see (9) in the southwestern parts. Furthermore, based on the analytical results of some other elements (e.g., Cs, Sb), it is possible to subdivide this large unit into a number of geochemically distinct subunits all running in a northeastern-southwestern direction.

(6) Lead (Pb) shows a number of high values in the northernmost part of the survey are. These values are not bound to any of the mapped geological units.

(7) A number of enhanced Zn concentrations were observed in the central sandstone unit (see 5). Especially the easternmost subdivision of the unit appears to be enriched in Zn, P, Ni, Nb, Mg, and Cs (depleted in Sb).

(8) A Cu-Bi-Ba-K anomaly is observed in the central parts of the survey area within the central sandstone unit (see (5). The maximum Cu concentration is over 600 mg/kg.
(9) A Ti-Nb-Sn-V-(Ta)-(W) anomaly is observed in the southwestern corner of the survey area, again within the central sandstone unit (see (5)).

In summary the maps show the power of a detailed geochemical soil survey in aiding geological mapping in an area that is difficult to subdivide based on geological field observations alone. The high values of the REEs are very unusual even in a European perspective.

4. ACKNOWLEDGEMENTS

The field crew did a formidable job: John F Alston, Malin Andersson, Simen Berger, Ola Anfin Eggen, Tor Erik Finne, Henning K B Jensen, Øystein Jæger, Agnes M Raaness, and Gaute Storrø. Gamvik Municipality provided landing permits for helicopter on Digermulhalvøya and the area NW of Langfjorden, utilized during 4 days by LN-OFC from Helitrans. Statens Naturoppsyn Lakselv's Petter Kaald and Bernt Thomassen provided excellent service transporting crew by sea from Kjøllefjord to and from various locations on the west coast. John Alston also conducted all sieving and subsequent handling of samples at the NGU facilities.

5. REFERENCES

Aitchison, J., 1986. The statistical analysis of compositional data. Chapman and Hall, London.

Bølviken, B., Bergström, B., Björklund, A., Konti, M., Lehmuspelto, P., Lindholm, T., Magnusson, J., Ottesen, R.T., Steenfelt, A., Volden, T. 1986. Geochemical Atlas of Northern Fennoscandia, Scale 1:4 000 000. Geological Survey of Norway.

Bjørklund, A., Gustavsson, N., 1987. Visualization of geochemical data on maps: New options. Journal of Geochemical Exploration 29, 89-103.

Egozcue, J.J., Pawlowsky-Glahn, V., Mateu-Figueras, G., Barcelo-Vidal, C., 2003. Isometric logratio transformations for compositional data analysis. Mathematical Geology, 35 (3), 279-300.

Filzmoser, P. Hron, K., Reimann, C., 2009. Univariate statistical analysis of environmental (compositional) data – Problems and possibilities. Science of the Total Environment 407, 6100-6108.

Filzmoser, P., Hron, K., Reimann, C., 2010. The bivariate statistical analysis of environmental (compositional) data. Science of the Total Environment 408, 4230-4238.

Olsen, Lars; Reite, Arne; Riiber, Knut; Sørensen, Erling. 1996. Kvartærgeologisk kart Finnmark fylke; M=1:500 000; trykt i farger. Norges geologiske undersøkelse.

Reimann, C., Äyräs, M., Chekushin, V., Bogatyrev, I., Boyd, R., Caritat, P. De, Dutter, R., Finne, T.E., Halleraker, J.H., Jæger, Ø., Kashulina, G., Lehto, O., Niskavaara, H., Pavlov, V., Räisänen, M.L., Strand, T., Volden, T., 1998. Environmental Geochemical Atlas of the Central Barents Region. ISBN 82-7385-176-1. NGU-GTK-CKE Special Publication, Geological Survey of Norway, Trondheim, Norway.

Reimann, C., Demetriades, A., Eggen, O.A., Filzmoser, P. and the EuroGeoSurveys Geochemistry Expert Group, 2009. The EuroGeoSurveys geochemical mapping of agricultural and grazing land soils project (GEMAS) – Evaluation of quality control results of aqua regia extraction analysis. NGU report 2009.049.

Reimann, C., Filzmoser, P., Garrett, R.G., Dutter, R., 2008. Statistical data analysis explained. Applied environmental statistics with R. Wiley, Chichester, U.K.

Reimann, C., Finne, T.E., Filzmoser, P., 2011. New geochemical data from a collection of till samples from Nordland, Troms and Finnmark. NGU report 2011.45.

Roberts, D. 1973. Berggrunnskart Hammerfest, M=1:250 000; trykt i farger; NGU Skrifter nr.10. Norges geologiske undersøkelse.

Roberts, D. 1981. Berggrunnskart Nordkapp, M=1:250 000; trykt i farger. NGU Skrifter nr.61. Norges geologiske undersøkelse.

Roberts, D. 1998. Berggrunnskart Honningsvåg, M=1:250 000; trykt i farger Norges geologiske undersøkelse.

Roberts, D. 2006. Berggrunnskart SKJØTNINGBERG 2237 III, M:1:50000, Norges geologiske undersøkelse

Roberts, D. 2006. Berggrunnskart MEHAMN 2237 II, M:1:50000. Norges geologiske undersøkelse.

Roberts, D. & Siedlecka, A. 2011. Berggrunnskart FINNKONGKEILA 2336-4, 1:50000, revidert foreløpig utgave. Norges geologiske undersøkelse.

Roberts, D., 2007. Palaeocurrent data from the Kalak Nappe Complex, northern Norway: a key element in models of terrane affiliation. Norwegian Journal of Geology 87: 319-328.

Siedlecka, A., 2009. Berggrunnsgeologisk kart TROLLFJORDEN 2336 3, M 1:50000, foreløpig utgave 2, revidert. Norges geologiske undersøkelse-

Siedlecka, A., Reading, H.G., Williams, G.D. & Roberts, D. 2006. Berggrunnsgeologisk kart LANGFJORDEN 2236 2, M:1:50000 foreløpig utgave Norges geologiske undersøkelse

MINN	n=36			Alpha	betio	cal				Sorted by precision			
Eleme	ent		Pre	cision	Eler	nent		Pre	cision	Eleme	nt	Eleme	nt
	Min	Q50	Max			Min	Q50	Max		Pre	ecision	Pre	cision
Ag	1,62	1,75	2	4,4	Мо	12	13,2	15,2	4,9	Ge	n.d	U	6,1
Al	8705	9574	10985	5,4	Na	844	1014	1307	12,1	Та	n.d	Er	5,9
As	22,1	24,9	28,2	5,4	Nb	1,14	1,38	1,61	8,7	В	18,5	К	5,5
Au	0,0969	0,112	0,159	7,7	Nd	8,62	11,2	13,9	12,2	Tm	18,0	Al	5,4
В	1,73	2,61	5,17	18,5	Ni	34,7	37,7	40,7	3,8	Hf	16,2	As	5,4
Ва	230	276	309	4,1	Ρ	704	796	952	5,4	Lu	14,1	Ρ	5,4
Ве	4,47	5,13	6,6	9,4	Pb	116	124	135	4,3	Re	13,6	Cr	5,3
Bi	5,75	6,5	7,62	4,5	Pd	0,089	0,115	0,135	7,9	Pr	13,3	In	5,2
Са	6589	7223	8091	6,3	Pr	2,54	3,2	3,88	13,3	Eu	13,0	Ga	5,2
Cd	2,14	2,3	2,67	6,1	Pt	0,316	0,343	0,378	4,5	Tb	12,5	Sb	5,1
Ce	22,1	28,7	33,7	11,7	Rb	35,5	37,8	42,2	3,4	Nd	12,2	Mn	5,0
Со	6,94	7,43	8,84	4,9	Re	0,0433	0,056	0,067	13,6	Na	12,1	Со	4,9
Cr	106	120	135	5,3	S	1472	1605	1748	4,1	Sc	11,9	Мо	4,9
Cs	2,28	2,39	2,78	3,6	Sb	4,82	5,59	6,29	5,1	Ce	11,7	Ti	4,8
Cu	101	111	120	3,1	Sc	1,95	2,27	3,1	11,9	Yb	10,5	V	4,8
Dy	0,827	1,15	1,39	7,3	Se	4,32	5,02	5,96	4,8	La	10,4	Se	4,8
Er -	0,483	0,612	0,765	5,9	Sm	1,53	1,89	2,28	9,4	Y	9,7	Sn	4,6
Eu	0,31	0,409	0,544	13,0	Sn	6	6,41	/,41	4,6	Zr	9,6	Pt	4,5
Fe	23114	24630	26759	3,0	Sr _	55,1	66,3	/6,/	7,6	Be	9,4	Bi	4,5
Ga	4,32	4,67	5,44	5,2		0,025	0,025	0,025	0,0	Sm	9,4	Ag	4,4
Ga	1,15	1,45	1,77	8,9	d I	0,162	0,206	0,257	12,5	Ga	8,9	70	4,3
Ge	0,05	0,05	0,178	0,0	Th	4,45	4,96	5,54	6,3	HO	8,7		4,2
HT	0,0624	0,0879	0,116	16,2		6,13	6,93	8,08	8,2		8,7	3	4,1
Hg	0,168	0,193	0,238	4,1		990	E 22	1342	4,8	חו הים	8,2	ва	4,1
П0 Ім	0,171	0,237	0,29	٥,/ د ۲	іі т	5,04	5,33	5,80 0 11E	4,2 10 0	P0	7,9	пg w/	4,1
III V	2,01	12,10	2,32 1727	5,2		0,0703	0,0333	0,113	10,0 6 1		7,0 77		4,0 2 0
N 12	12.2	4200	4/3/	10.4	v	2,41	2,70	3,13	0,1 1 Q	Au Sr	7,7	Ce	3,0
La 11	12,2 24 1	13,0	21.0	7 0	v 	27,1 261	2 02	43,5	4,0		7,0	CS Dh	5,0 2 /
	24,1	20,9	0 1/2	7,0 1/1 1	v	∠,01 ∕I QQ	2,95 6 10	5,52 7 30	4,0 0 7	Ca	63	Ma	22
Ma	5702	6152	6717	22	y h	4,00	0,19	0 726	10 5	To	6.2	Cu	2,5
Mn	562	607	6011	5,5 5 (1	7n	0,403 282	306	2//	2 5	CY	6 1	Fo	3,1 2 N
	502	007	050	5,0	Zr	1.56	1.94	2.48	2,5 9,6	Cu	0,1	Zn	2.5
						1,50	±,54	07,2	5,0				- ,J

Table 1. Project standard "Minn" - Min, Q50, Max and precision values.

NIDEL	V n=8				Al	Iphabetical							Sorted by precision			
Elemer	nt		Nordland +Troms	Pre	ecision	Elemen	t		Nordland +Troms O50	Pre	ecision	Eleme	nt	Eleme	nt	
	Min	Q50	Q50 (N=53)	Max			Min	Q50	(N=53)	Max		Pr€	ecision	Pr	ecision	
Ag	0,0253	0,0378	0,0405	0,0463	16,8	Мо	0,248	0,282	0,287	0,335	6,4	Ge	nd	Eu	8,9	
AI	7491	8422	7883	9507	6,0	Na	106	138	105	175	18,2	In	nd	Но	8,9	
As	2	2,5	2,27	3,12	23,7	Nb	0,426	0,536	0,37	0,608	11,6	Pd	nd	Yb	8,8	
Au	0,0005	0,00101	0,000704	0,00387	55,0	Nd	10,1	11,3	10,3	12,7	6,1	Pt	nd	Cu	8,6	
В	0,5	1,21	0,982	2,37	87,0	Ni	25,6	27,5	27,9	30,2	4,2	Re	nd	Lu	8,6	
Ва	28,5	30,1	29,6	33,2	4,7	Р	403	443	434	471	5,4	S	nd	Th	8,6	
Be	0,124	0,163	0,158	0,211	32,4	Pb	6,26	7,1	6,99	7,66	10,1	Та	nd	Zr	8,4	
Bi	0,01	0,0669	0,0609	0,128	55,6	Pd	0,005	0,005	-0,0002028	0,005	0,0	Те	nd	Sn	7,9	
Са	1970	2220	2072	2591	3,8	Pr	2,84	3,08	2,68	3,83	3,7	В	87	Tb	7,7	
Cd	0,0552	0,0826	0,0829	0,102	29,1	Pt	0,001	0,001	0,000059	0,001	0,0	Se	81	Sr	7,6	
Ce	23,9	25,3	25	29	6,0	Rb	10,3	11,6	11,6	12,3	6,5	Bi	56	TI	7,2	
Со	7,2	8,03	8,07	8,89	5,4	Re	0,0005	0,0005	0,0000895	0,00144	0,0	Au	55	К	6,9	
Cr	37	39	37,2	45,7	3,9	S	100	100	56,6	100	0,0	Hg	33	Rb	6,5	
Cs	0,738	0,802	0,818	0,859	3,1	Sb	0,0713	0,0867	0,0841	0,104	11,9	Be	32	Мо	6,4	
Cu	18,7	21,1	21,5	22,5	8,6	Sc	1,48	1,69	1,76	2,01	9,4	Cd	29	La	6,2	
Dy	1,1	1,29	1,14	1,37	9,1	Se	0,05	0,11	0,186	0,227	81,0	As	24	Zn	6,2	
Er	0,577	0,659	0,588	0,752	14,5	Sm	1,84	1,99	1,75	2,49	5,8	Na	18	Nd	6,1	
Eu	0,367	0,403	0,323	0,451	8,9	Sn	0,463	0,52	0,575	0,734	7,9	Ag	17	Ce	6,0	
Fe	12912	14238	13125	15990	3,3	Sr	8,9	10,4	8,79	12,2	7,6	W	16	Al	6,0	
Ga	2,31	2,48	2,37	2,73	9,0	Та	0,025	0,025	0,000179	0,025	0,0	Er	15	Sm	5,8	
Gd	1,31	1,61	1,38	1,82	9,3	Tb	0,216	0,245	0,202	0,282	7,7	Tm	13	Со	5,4	
Ge	0,05	0,05	0,0414	0,05	0,0	Те	0,01	0,01	0,0135	0,0263	0,0	Ti	12	Р	5,4	
Hf	0,0224	0,0407	0,049	0,0512	10,6	Th	2,61	2,95	3,05	3,25	8,6	Sb	12	Y	5,0	
Hg	0,0241	0,0548	0,0499	0,0937	33,2	Ti	495	570	520	665	12,0	Nb	12	V	4,8	
Но	0,219	0,261	0,222	0,321	8,9	ТΙ	0,0884	0,102	0,0904	0,112	7,2	Li	11	Ba	4,7	
In	0,01	0,01	0,00777	0,0296	0,0	Tm	0,0819	0,099	0,0762	0,116	13,0	Hf	11	Ni	4,2	
К	1276	1360	1325	1544	6,9	U	0,537	0,588	0,549	0,658	9,6	Pb	10	Mn	4,1	
La	11,3	12,3	12,1	13,9	6,2	v	21	23,4	21,3	26,8	4,8	U	9,6	Cr	3,9	
Li	8,8	10,1	9,06	11,6	11,2	W	0,133	0,179	0,138	0,202	15,8	Sc	9,4	Са	3,8	
Lu	0,0674	0,086	0,078	0,131	8,6	Y	5,63	6,18	5,88	7,03	5,0	Gd	9,3	Pr	3,7	
Mg	5636	6137	5722	6895	3,6	Yb	0,458	0,569	0,523	0,657	8,8	Dy	9,1	Mg	3,6	
Mn	239	258	252	300	4,1	Zn	36,1	39,6	38,2	42,4	6,2	Ga	9,0	Fe	3,3	
						Zr	1,69	2,45	3,21	2,68	8,4			Cs	3,1	

Table 2. Project standard "Nidelv" - Min, Q50, Max and precision values. Q50 values for Nordland+Troms dataset given in addition.

DS8 (la	poratory st	tandard) n	=33 A	lphabetica	al						Sorted by precision			
Element	t		F	Precision	Element			Pr	ecision	Eleme	nt	Elen	nent	
	Min	Q50	Max			Min	Q50	Мах			Precision		Precision	
Ag	1,62	1,75	2	4,4	Мо	12	13,2	15,2	4,9	Ge	nd	U	6,1	
AI	8705	9574	10985	5,4	Na	844	1014	1307	12,1	Та	nd	Er	5,9	
As	22,1	24,9	28,2	5,4	Nb	1,14	1,38	1,61	8,7	В	18,5	К	5,5	
Au	0,0969	0,112	0,159	7,7	Nd	8,62	11,2	13,9	12,2	Tm	18,0	Al	5,4	
В	1,73	2,61	5,17	18,5	Ni	34,7	37,7	40,7	3,8	Hf	16,2	As	5,4	
Ba	230	276	309	4,1	Р	704	796	952	5,4	Lu	14,1	Ρ	5,4	
Ве	4,47	5,13	6,6	9,4	Pb	116	124	135	4,3	Re	13,6	Cr	5,3	
Bi	5,75	6,5	7,62	4,5	Pd	0,089	0,115	0,135	7,9	Pr	13,3	In	5,2	
Са	6589	7223	8091	6,3	Pr	2,54	3,2	3,88	13,3	Eu	13,0	Ga	5,2	
Cd	2,14	2,3	2,67	6,1	Pt	0,316	0,343	0,378	4,5	Tb	12,5	Sb	5,1	
Ce	22,1	28,7	33,7	11,7	Rb	35,5	37,8	42,2	3,4	Nd	12,2	Mn	5,0	
Со	6,94	7,43	8,84	4,9	Re	0,0433	0,056	0,067	13,6	Na	12,1	Со	4,9	
Cr	106	120	135	5,3	S	1472	1605	1748	4,1	Sc	11,9	Мо	4,9	
Cs	2,28	2,39	2,78	3,6	Sb	4,82	5,59	6,29	5,1	Ce	11,7	Ti	4,8	
Cu	101	111	120	3,1	Sc	1,95	2,27	3,1	11,9	Yb	10,5	V	4,8	
Dy	0,827	1,15	1,39	7,3	Se	4,32	5,02	5,96	4,8	La	10,4	Se	4,8	
Er	0,483	0,612	0,765	5,9	Sm	1,53	1,89	2,28	9,4	Y	9,7	Sn	4,6	
Eu	0,31	0,409	0,544	13,0	Sn	6	6,41	7,41	4,6	Zr	9,6	Pt	4,5	
Fe	23114	24630	26759	3,0	Sr	55,1	66,3	76,7	7,6	Be	9,4	Bi	4,5	
Ga	4,32	4,67	5,44	5,2	Та	0,025	0,025	0,025	0,0	Sm	9,4	Ag	4,4	
Gd	1,15	1,45	1,77	8,9	Tb	0,162	0,206	0,257	12,5	Gd	8,9	Pb	4,3	
Ge	0,05	0,05	0,178	0,0	Те	4,45	4,96	5,54	6,3	Ho	8,7	ΤI	4,2	
Hf	0,0624	0,0879	0,116	16,2	Th	6,13	6,93	8,08	8,2	Nb	8,7	S	4,1	
Hg	0,168	0,193	0,238	4,1	Ti	990	1179	1342	4,8	Th	8,2	Ba	4,1	
Но	0,171	0,237	0,29	8,7	TI	5,04	5,33	5,86	4,2	Pd	7,9	Hg	4,1	
In	2,01	2,16	2,52	5,2	Tm	0,0705	0,0939	0,115	18,0	Li	7,8	W	4,0	
к	3857	4286	4737	5,5	U	2,41	2,78	3,13	6,1	Au	7,7	Ni	3,8	
La	12,2	15,8	19,2	10,4	V	37,1	40,9	45,3	4,8	Sr	7,6	Cs	3,6	
Li	24,1	26,9	31,9	7,8	W	2,61	2,93	3,52	4,0	Dy	7,3	Rb	3,4	
Lu	0,0758	0,096	0,143	14,1	Y	4,88	6,19	7,39	9,7	Са	6,3	Mg	3,3	
Mg	5703	6153	6717	3,3	Yb	0,463	0,615	0,726	10,5	Те	6,3	Cu	3,1	
Mn	562	607	690	5,0	Zn	288	306	344	2,5	Cd	6,1	Fe	3,0	
					Zr	1,56	1,94	2,48	9,6			Zn	2,5	

Table 3. Laboratory standard "DS8" - Min, Q50, Max and precision values.

Analytical	(weighing)	duplica	ates N=86	pairs	Field duplicates N=30 pairs						
Alphabeth	ical		Sorted		Alphabeth	ical		Sorted			
Element	Precision		Element	Precision	Element	Precision		Element	Precision		
Aq	22.9		Re	1741	Aa	42		Re	389		
AĬ	2,6		Pd	262	AĬ	12		Pt	299		
As	8,5		Pt	151	As	40		Pd	251		
Au	72,1		Те	99	Au	82		Те	99		
В	33,6		Au	72	В	54		Au	82		
Ba	4,3		Та	61	Ba	19		Та	69		
Be	17,2		В	34	Be	32		Cd	58		
Bi	14,4		Ge	32	Bi	21		Ge	55		
Са	5,7		Hg	30	Са	34		В	54		
Cd	20,5		In	30	Cd	58		Hg	48		
Ce	5,2		W	28	Ce	29		Š	46		
Со	3,2		Ag	23	Со	16		Ag	42		
Cr	4,1		Cď	21	Cr	15		As	40		
Cs	3,6		Be	17	Cs	9		In	36		
Cu	3,2		S	16	Cu	22		Мо	35		
Dy	5,5		Se	16	Dy	28		Gd	35		
Ēr	5,7		Bi	14	Ēr	29		Ca	34		
Eu	5,8		Hf	11	Eu	32		La	34		
Fe	3,2		Sb	8,6	Fe	10		Nd	34		
Ga	3,6		As	8,5	Ga	11		Pr	34		
Gd	7,2		Lu	8,4	Gd	35		Be	32		
Ge	32,2		Tm	7,7	Ge	55		Eu	32		
Hf	10,7		Мо	7,6	Hf	27		Sm	32		
Hg	30,3		Gd	7,2	Hg	48		Se	32		
Ho	4,6		Sn	6,3	Hõ	27		Tb	31		
In	30,3		Sr	6,2	In	36		Y	29		
К	2,9		Nb	6	К	15		Er	29		
La	4,5		Eu	5,8	La	34		W	29		
Li	4,7		Yb	5,8	Li	15		Ce	29		
Lu	8,4		Ca	5,7	Lu	25		Dy	28		
Mg	2,5		Er	5,7	Mg	16		Ho	27		
Mn	3,4		Tb	5,6	Mn	22		Tm	27		
Мо	7,6		Dy	5,5	Мо	35		Hf	27		
Na	4,5		Ce	5,2	Na	14		Lu	25		
Nb	6		Nd	4,9	Nb	23		Р	24		
Nd	4,9		Р	4,8	Nd	34		Yb	24		
Ni	2,9		Li	4,7	Ni	13		Nb	23		
Р	4,8		Zr	4,7	Р	24		Cu	22		
Pb	3,7		Но	4,6	Pb	11		Mn	22		
Pd	262,4		Sm	4,6	Pd	251		Th	21		
Pr	4,3		La	4,5	Pr	34		Bi	21		
Pt	151,2		Na	4,5	Pt	299		Zr	20		
Rb	4,1		U	4,4	Rb	14		Ba	19		
Re	1741,1		Ba	4,3	Re	389		Sr	19		
S	16,3		Pr	4,3	S	46		Sb	18		
Sb	8,6		Cr	4,1	Sb	18		U	18		
SC	3,8		RD	4,1	SC	11		Co	16		
Se	15,7			4	Se	32		Mg	16		
Sm	4,6		V T	4	Sm	32			15		
Sn	6,3			3,9	Sn	13		LI	15		
Sr	0,2		Ŷ	3,9	Sr	19		Ur V	15		
Id Th	01,3		- 30 ть	3,8	Th Th	09		N Dh	10		
	0,C			3,8		31		RD	14		
те	98,8		PD 7n	3,7	те	99		Na	14		
	3,0 2,0			3,1		2 I 11		INI Sn	10		
	3,9 1			ວ,0 ວ ⁄		11			13		
Tm	4		Mn	3,0 2 4	Tm	10 77		Ai Zn	12		
	1,1			3,4 2.2		2/ 10		Z11 Ti	12		
v	4,4		Cu	3,Z	V	10		Ga	11		
1	4 20 2		Eo	3,Z 2 0	\N/	10		Sc	11		
v	∠0,3 20		K	3,Z 2 0	V	29 20		Ph	11		
Vh	5,9 5 0		Ni	∠,≯ ጋበ	Vh	∠9 04		V	10		
7n	3,0		ΔI	2,9	7n	24 12		Fe	10		
Zr	4,7		Mg	2,5	Zr	20		Cs	.0		

Table 4. Precision of analytical duplicates and field duplicates.

Table	5. Stat	tistical	parameters of the mapped dataset. N=808	•
Elo	official	Dracti		_

Ele-	official	Practi-														
ment	DI	cal DI	Min	02	05	010	025	050	075	090	095	098	Max	MAD log	MAD ilr	Powers
Inch.	0.002		0.001	0.001	0.001	0.001	0.005/	0.011	0.010	0.000	- 0.040	0.077	0.00	0.254		1000013
Ag	0,002	0,002	0,001	0,001	0,001	0,001	0,0056	0,011	0,018	0,029	0,042	0,077	0,22	0,354	0,577	2,3
AI	100	100	546	2149	3671	5780	10262	15105	18261	21186	22994	25453	32809	0,157	0,261	1,8
As	0,1	0,1	<0,1	0,14	0,37	0,62	1,2	2,3	4,3	8,1	13	18	67	0,411	0,669	3,1
Au	0,0002	0,0002	<0,0002	0,0001	0,0001	0,0001	0,00024	0,00070	0,0013	0,0023	0,0033	0,0049	0,034	0,495	0,806	2,5
B	1	1	<1	<1	<1	<1	<1	<1	10	15	19	22	3.8		.,	0.9
Po	0.5	05	21	0	11	15	24	45	40	05	115	127	100	0 222	0 5 4 2	1.0
Da	0,5	0,0	3,1	7	0.1	0.11	24	40	00	90	0.74	127	190	0,333	0,042	1,0
ве	0,1	0,1	<0,1	<0,1	<0,1	0,11	0,21	0,34	0,47	0,63	0,74	0,91	1,91	0,244	0,398	1,6
Bi	0,02	0,02	<0,02	0,036	0,049	0,067	0,10	0,13	0,18	0,24	0,28	0,36	0,96	0,18	0,293	2
Ca	100	50	<50	<50	58	98	287	619	1039	1567	1965	2357	11714	0,398	0,648	2,7
Cd	0.01	0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.014	0.024	0.037	0.056	0.079	0.13	0.71			1.5
Ce	0.1	0.1	21	77	13	18	30	54	91	127	149	174	799	0 352	0 573	2.6
00	0,1	0,1	.0 1	0,72	1 5	2.0	60	10	10	127	17	20	170	0,002	0,070	2,0
00	0,1	0,1	<0,1	0,73	1,3	2,0	0,2	10	13	10	17	20	1/9	0,100	0,300	3,0
Cr	0,5	0,5	0,61	3,1	5,7	8,9	16	21	26	30	35	43	187	0,154	0,251	2,5
Cs	0,02	0,02	0,092	0,51	0,73	1,0	1,7	2,8	3,8	4,7	5,1	5,9	11	0,24	0,391	2,1
Cu	0,01	0,01	0,51	1,5	2,9	5,0	10	16	23	28	33	42	660	0,249	0,405	3,1
Dv	0.02	0.02	0.18	0.34	0.56	0.80	13	22	3.8	57	7.0	87	49	0 336	0 547	24
Er	0,02	0,02	0,10	0,54	0,00	0,00	0.64	1.0	17	2 1	20	27	17	0,000	0,547	2,4
	0,02	0,02	0,040	0,10	0,20	0,37	0,04	1,0	1,7	Z,4	2,9	3,7	17	0,300	0,001	2,0
Eu	0,02	0,02	0,033	0,083	0,14	0,22	0,38	0,63	1,1	1,7	2,2	2,7	22	0,349	0,568	2,8
Fe	100	100	1010	5207	9074	14198	22109	28010	32589	36646	39524	45063	158298	0,116	0,195	2,2
Ga	0.1	0.1	0.16	1.0	1.8	2.5	3.7	5.2	6.5	7.6	8.2	9.0	12	0.168	0.273	1.9
Cd	0.02	0.02	0,10	0.40	0.63	0.85	1.6	2 0,2	5.0	7,0 7 7	0,2	12	80	0 371	0,270	28
Gu	0,02	0,02	0,14	0,40	0,03	0,00	1,0	2,0	0,10	0.15	7,7	0.00	00	0,371	0,004	2,0
Ge	0,1	0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	0,10	0,15	0,18	0,23	0,46			1
Hf	0,02	0,02	<0,02	<0,02	0,023	0,034	0,059	0,089	0,13	0,17	0,20	0,25	0,57	0,234	0,381	1,8
Ha	0.005	0.005	< 0.0025	< 0.0025	< 0.0025	0.0027	0.0062	0.011	0.017	0.025	0.032	0.040	0.17	0.331	0.538	2.5
Ho	0.02	0.02	0.031	0.060	0.11	0.15	0.25	0.42	0.70	10	13	16	81	0 329	0 536	24
In	0,02	0,02	-0.02	-0.02	-0.02	-0 02	-0.02	-0.02	0,10	0 0 20	0 024	0.040	0.1	0,02,	0,000	0.0
	0,02	0,02	<u,uz< td=""><td><u,uz< td=""><td><u,uz< td=""><td><u,uz< td=""><td><u,uz< td=""><td><u,uz< td=""><td>0,023</td><td>0,027</td><td>0,034</td><td>0,040</td><td>0,000</td><td>0.000</td><td>0 474</td><td>0,0</td></u,uz<></td></u,uz<></td></u,uz<></td></u,uz<></td></u,uz<></td></u,uz<>	<u,uz< td=""><td><u,uz< td=""><td><u,uz< td=""><td><u,uz< td=""><td><u,uz< td=""><td>0,023</td><td>0,027</td><td>0,034</td><td>0,040</td><td>0,000</td><td>0.000</td><td>0 474</td><td>0,0</td></u,uz<></td></u,uz<></td></u,uz<></td></u,uz<></td></u,uz<>	<u,uz< td=""><td><u,uz< td=""><td><u,uz< td=""><td><u,uz< td=""><td>0,023</td><td>0,027</td><td>0,034</td><td>0,040</td><td>0,000</td><td>0.000</td><td>0 474</td><td>0,0</td></u,uz<></td></u,uz<></td></u,uz<></td></u,uz<>	<u,uz< td=""><td><u,uz< td=""><td><u,uz< td=""><td>0,023</td><td>0,027</td><td>0,034</td><td>0,040</td><td>0,000</td><td>0.000</td><td>0 474</td><td>0,0</td></u,uz<></td></u,uz<></td></u,uz<>	<u,uz< td=""><td><u,uz< td=""><td>0,023</td><td>0,027</td><td>0,034</td><td>0,040</td><td>0,000</td><td>0.000</td><td>0 474</td><td>0,0</td></u,uz<></td></u,uz<>	<u,uz< td=""><td>0,023</td><td>0,027</td><td>0,034</td><td>0,040</td><td>0,000</td><td>0.000</td><td>0 474</td><td>0,0</td></u,uz<>	0,023	0,027	0,034	0,040	0,000	0.000	0 474	0,0
K	100	100	181	547	667	853	1/54	3/12	5202	6599	/420	8298	12902	0,288	0,471	1,9
La	0,5	0,5	0,632	2,0	3,3	5,8	11	20	37	56	65	82	408	0,389	0,634	2,8
Li	0,1	0,1	<0,1	0,61	1,5	3,2	7,1	12	17	21	25	29	59	0.248	0.403	3,1
1.0	0.02	0.02	-0.02	0.02	0.032	0.047	0.075	0.11	0.16	0.24	0.29	0.34	12	0.246	0.401	21
Ma	100	0,02 E0	<0,02	0,02	0,032	1500	2020	4022	4400	7161	0,27	0,04	21057	0,240	0,401	2,1
Iviy	100	50	<00	213	111	1523	3020	4733	64Zŏ	/404	8043	9280	21057	0,197	0,323	۲,۲
Mn	1	1	<1	22	43	69	136	229	343	471	567	791	18372	0,29	0,473	4,6
Mo	0,01	0,01	0,018	0,085	0,12	0,15	0,24	0,39	0,61	1,2	2,1	4,3	23	0,297	0,483	3,1
Na	10	1	<1	<1	<1	7.4	20	38	59	84	93	122	373	0.335	0.545	2.9
Nb	0.02	0.02	-0.01	0.082	0.15	0.31	0.90	1.6	25	3.2	3.6	11	6.5	0,000	0,503	2.8
No	0,02	0,02	<0,01	0,002	0,15	0,51	0,70	1,0	2,5	J,∠	5,0	4,1	100	0,303	0,000	2,0
Na	0,02	0,02	0,591	1,9	3,1	5,4	10	١ð	34	51	64	/9	498	0,384	0,625	2,9
Ni	0,1	0,1	0,142	1,3	3,4	5,5	11	18	21	25	28	32	81	0,174	0,283	2,8
Р	10	10	23	73	102	148	235	357	508	682	769	890	2126	0,247	0,402	2
Ph	0.01	0.01	16	33	45	53	6.8	89	12	17	20	28	134	0 169	0 275	19
Dd	0.01	0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	0.011	0 0 2 2	0,10,	0,210	0.7
Pu	0,01	0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	0,011	0,023	0.07	0 (0 0	0,7
Pr	0,02	0,02	0,182	0,538	0,865	1,5	2,9	5,0	9,1	14	17	21	131	0,37	0,603	2,9
Pt	0,002	0,002	<0,002	<0,002	<0,002	<0,002	<0,002	<0,002	<0,002	<0,002	<0,002	0,0021	0,0036			0,6
Rb	0,1	0,1	0,89	4,9	6,3	8,3	21	42	57	69	75	83	135	0,251	0,409	2,2
Re	0.001	0.001	~0.001	~0.001	~0.001	~0.001	~0.001	~0.001	-0.001	0.0011	0.0014	0 0019	0.0031		C ,	0.8
c C	200	0,001	<0,001 20	12	20,00	12	, 00,07 60	110	150	22/	211	440	17/16	0.26	0 424	2.0
3	200	2	<2	12	27	42	07	110	107	234	311	440	1/40	0,20	0,424	3,Z
SD	0,02	0,02	<0,02	0,032	0,037	0,047	0,068	0,106	0,168	0,232	0,296	0,38	1,2	0,294	0,479	2,1
Sc	0,1	0,1	0,11	0,23	0,45	0,64	1,2	1,9	2,4	2,8	3,2	3,6	5,7	0,206	0,336	1,7
Se	0,1	0,05	<0,05	<0,05	0,08	0,14	0,24	0,36	0,53	0,75	0,94	1,2	4,1	0,255	0,416	2,2
Sm	0.02	0.02	0.16	0.41	0.66	11	2.0	3.4	61	95	12	14	101	0 361	0 588	2.8
Sin Sin	0,02	0,02	-0.1	0,11	0,00	0.00	2,0 0.2E		0,1	0,0	10	1 1	17	0,001	0,000	2,0
211	U, I	U, I	<u, i<="" td=""><td>U, I I</td><td>U, I O</td><td>U,Z3</td><td>U,30</td><td>U,55</td><td>U,/4</td><td>0,90</td><td>1,0</td><td>1,1</td><td>1,7</td><td>U,ZZ4</td><td>0,300</td><td>1,0</td></u,>	U, I I	U, I O	U,Z3	U,30	U,55	U,/4	0,90	1,0	1,1	1,7	U,ZZ4	0,300	1,0
Sr	0,5	0,5	<0,5	1,3	1,8	2,5	3,9	5,6	9,0	15	19	23	52	0,267	0,434	2,3
Та	0,05	0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05			
Tb	0.02	0.02	0.031	0.064	0.096	0.14	0.24	0.42	0.74	1.1	1.4	1.7	10	0.352	0.573	2.5
Το	0.02	0.02	<0.02	<0.02	<0.02	~0.02	~0.02	~0.02	0.023	0.033	0.038	0.049	0.083	0,002	0,010	0.0
TL	0,02	0,02	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02	0,023	0,033	0,030	10.7	10.0	0.000	0.22	0,7
In	U, I	0,1	<u, i<="" td=""><td>1,1</td><td>1,9</td><td>2,6</td><td>3,8</td><td>5,Z</td><td>7,1</td><td>9,0</td><td>9,8</td><td>10,7</td><td>19,8</td><td>0,203</td><td>0,33</td><td>2,0</td></u,>	1,1	1,9	2,6	3,8	5,Z	7,1	9,0	9,8	10,7	19,8	0,203	0,33	2,0
Ti	10	10	<10	28	58	223	981	1527	2024	2406	2658	3060	4303	0,202	0,33	2,9
TI	0,02	0,02	<0,02	0,032	0,053	0.070	0,18	0,33	0,43	0,51	0,56	0,63	1,9	0,212	0,345	2,3
Tm	0.02	0.02	< 0.02	0.021	0.035	0.055	0.089	0.14	0.21	0.31	0.37	0.46	19	0.28	0.456	23
	0,02	0,02	0,02	0,021	0,035	0,000	0,007	1.0	1 7	0,01	2.0	4.0	24	0,20	0,430	2,5
U	0,1	U, I	0,10	0,33	0,48	0,07	0,91	Ι,Ζ	1,7	Z,3	3,0	4,Z	34	0,209	0,341	2,5
V	2		<2	6,8	9,9	14	19	29	37	43	48	56	89	0,19	0,31	2
W	0,1	0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	0,22			0,6
Y	0.01	0.01	0.80	15	25	35	61	10	18	26	32	42	163	0 357	0 581	23
Vh	0,01	0,01	0.041	0.14	0.01	0,0	0.52		11	17	20	24	0.4	0.254	0 /11/	2,0
	0,02	0,02	0,001	0,14	0,21	0,33	0,32	0,77	1,1	7.1	2,0	2,0	9,0	0,234	0,414	2,2
Zn	0,1	0,1	0,36	4,6	9,9	15	31	49	64	/4	83	94	254	0,207	0,337	2,9
Zr	0.1	0.1	< 0.1	0.65	1.1	1.6	2.7	4.2	5.9	7.7	9.8	12	29	0.252	0.411	2.8

· ·		Nordkinn N-909			Nordland J Trama N-082		
	<u> </u>	INUI		000	INDIGIA		IN=902
ELEMENI	DL	MEDIAN	Q98	MAX	MEDIAN	Q98	MAX
Aq	0,002	0,011	0,077	0,22	0,0151	0,12	0,45
AÏ	100	15105	25453	32809	9864	27054	44069
Ac	0.1	23	18	67	1 0	17.7	376
A5	0,1	2,3	10	07	1,9	17,7	370
Au	0,0002	0,001	0,005	0,034	0,001	0,004	0,026
В	1	<1	2,2	3,8	<1	2,8	9,4
Ba	0.5	45	127	100	30.6	165	405
Da	0,5	+5	121	150	50,0	105	+00
ве	0,1	0,3	0,9	1,9	0,2	0,8	3,2
Bi	0.02	0,1	0,4	1.0	0,1	0,3	4,4
Ca	100	619	2357	11714	1687	22245	207605
04	100	015	2001	0.74	1007	22240	201005
Cd	0,01	0,02	0,13	0,71	0,03	0,20	0,65
Ce	0,1	54	174	799	36,1	121	685
Co	01	10	20	170	Ó	24	55
00	0,1	10	20	179	0	24	
Cr	0,5	21	43	187	20,9	88,4	475
Cs	0.02	2,8	5,9	11.0	1,2	4,6	8,4
Cu	0,01	16	40	660	15.0	70.7	100
Cu	0,01	10	42	000	15,6	12,1	123
Dy	0,02	2	9	49	1	5	20
Fr	0.02	1.0	3.7	17.0	0.6	2.2	9.2
 	0,02	0,6	0,1	22.0	0,0	1.2	5, <u></u>
Eu	0,02	0,6	2,7	22,0	0,3	1,3	5,4
Fe	100	28010	45063	158298	18037	43188	89669
Ga	0.1	5	9	12	3	10	14
Ou	0,1	, i i i i i i i i i i i i i i i i i i i	40		0	10	
Ga	0,02	3	12	80	2	6	24
Ge	0,1	<0,1	0,23	0,46	<0,1	0,20	0,77
Hf	0 02	0 00	0 25	0 57	0 03	0 10	0 38
11.	0,02	0,05	0,25	0,57	0,00	0,10	0,00
Нg	0,005	0,011	0,040	0,170	0,007	0,033	0,062
Ho	0.02	0,4	1,6	8,1	0,2	0,8	3,4
In	0.02	~0 02	0 04	0 07	~0 02	0 05	0 12
	0,02	<0,02	0,04	0,07	<0,02	0,05	0,12
К	100	3712	8298	12902	1659	8487	13630
La	0.5	20	82	408	15,7	59,2	413
1.1	01	12	20	50	11	37	76
	0,1	12	29	59	11	57	10
Lu	0,02	0,1	0,3	1,2	0,1	0,3	1,0
Ma	100	4933	9280	21057	5044	17559	49350
Mo	1	220	701	10272	105	751	1660
IVITI	1	229	791	10372	195	751	1556
Мо	0,01	0	4	23	0	4	40
Na	10	38	122	373	73.6	347	2010
NIL	0.00	1.6		6.5	0,0	2.0	2010
IND	0,02	1,0	4,1	6,5	0,5	3,0	6,5
Nd	0,02	18	79	498	12,5	47,7	256
Ni	0.1	18	32	81	14 4	53.3	157
	10	257	000	0400	540	4550	7400
Р	10	357	890	2126	518	1550	7430
Pb	0,01	8,9	28	134	4,9	23,9	180
Pd	0.01	-0.01	0.011	0 023	~0.01	~0.01	0.030
n u	0,01	<0,01	0,011	0,023	<0,01	<0,01	0,030
Pr	0,02	5	21	131	3	13	65
Pt	0.002	< 0.002	0.0021	0.0036	< 0.002	0.0022	0.0065
Dh	0.1	42	92	125	17.1	72.0	205
	0,1	42	03	133	17,1	12,9	295
Re	0,001	<0,001	0,0019	0,0031	<0,001	0,0014	0,0028
S	200	110	440	1746	<200	467	2655
Sh	0.02	0.11	0.20	1 20	0.04	0.22	0.06
30	0,02	0,11	0,50	1,20	0,04	0,55	0,90
Sc	0,1	1,9	3,6	5,7	1,72	5,83	11
Se	0.1	0.4	1.2	4.1	0.3	1.2	4.3
Sm	0.02	2	14	101	2	ý	33
SIII	0,02	3	14	101	2	0	
Sn	0,1	0,6	1,1	1,7	0,3	1,5	3,5
Sr	0.5	5.6	23	52	7.44	82.6	934
To	0.05	-0.05	-0.05	-0 OE	-0.05	-0.05	0.070
Id	0,05	<0,05	<0,05	<0,05	<0,05	<0,05	0,072
Tb	0,02	0,4	1,7	10,0	0,2	0,8	3,9
Te	0.02	<0.02	0.05	0.08	<0.02	0.08	0 49
Th	0,02	E III	4.4	0,00	.0,0Z	47	70
	0,1	5		20	5	17	12
Ti	10	1527	3060	4303	797	2583	3629
Т	0.02	0.3	0.6	1.9	0.1	0.5	1.4
Tm	0,02	0,0	0,0	1.0	0,1	0,0	1.7
	0,02	0,1	0,5	1,9	0,1	0,3	1,2
U	0,1	1	4	34	1	4	33
V	2	29	56	89	24.4	91.5	209
10/	0.1	-0.1	-0.1	0.00	-0.1	0.44	0.04
vv	0,1	<0,1	<0,1	0,22	<0,1	0,44	0,94
Y	0,01	10	42	163	5,77	22,7	106
Yb	0.02	0.8	2.6	9.6	0.5	1.9	7.7
Zn	0.4	40	_,3	25,0	2,0	107	220
20	0,1	49	94	254	32	107	230
Zr	0,1	4	12	29	1	10	16

Table 6. Comparison of the Nordkinn and Nordland+Troms datasets.

[mg/kg] 5 B 10 km 0 ■ > 2.22 - 3.84 + > 1.03 - 2.22> 1 - 1.03 000 00 0000+ 0 <= 1 00000+ 000+0+000000 S 0 000000 00000++0+000+00++++000+ 000000 +0000000+ 0+0000+000+0000 .00+0+0 0+0000+000+000 · 0+000+0 0+0000+0 600000+ 0000000+000000+00800000++0000000 0000+0040+0+0+0000000+00000000 0+++0.+00.+0000000000+00 000+ 00++0+00000+0+00000+0 0.+0++0+00+000000 0000.00000+0+0000000 0000000+00+0+000+ 0++00 ++00000.00+ 000++00 +000++00000000+0+0 000++0000000+00000 000 +0000000+0000 000000+00000 000000 0.0+0000+000000000000000000 +0 000000++000000000+0+0+0 0+0000+000000000000000000+0 000000+000+0000000 +++++ 000++0+0+0+00 +0+ +0+++0+ +0++0+++++0+ ++0000 0++++0 Till samples, <2 mm ++0+0 aqua regia extraction ATTENTION: most values are under the detection limit, only the

maximum class (growing square) provides reliable data

Ge [mg/kg] 5 10 km 0 ■ > 0.23 - 0.46 + > 0.103 - 0.23> 0.1 - 0.103 0 <= 0.1</p> 00+00 00+0+000 000.0+0+ 00 000000 +00+000+++0000 .0+000+0 0000000000 00+0000+ . 0000+0+00+00 000000+0 0000+00+00+0000 -+ 6000000 0+000++0+00**-**++++++ 0000+0+0+00++ ++0++00+00000 -000000++00=+000+0+++++00+00+++++000 00000+04000=+000+0=00.000000.0+0+ +00000+++000000000000000+ +00+00+000+0++00000 +0+++0++000+0++++0+0 0+0+0++0000+=0+00++00 000000+00+0000++0 00.00 0+0+0+0+0+0 0000000 0000000+++000+000 000+0+0000+0+00+000 00+000 00+00+00+0+0=00 00000000+0000 +000+000+00+0 0++++0+000000+00000000 0000000 ++000 00000 ++000++ 000000 to 100 +000000000 0 +++0 0 00 0000 0000 0+000000+000++00+00000000000 00000000 0000000000000000000000 0000000000000 0000000000000 0000000000 000008000000 +00000 00000000 Till samples, <2 mm 00000 000 aqua regia extraction TENTION: most values are under the detection limit, QC results AΙ

indicate poor reproducibility for this element

maximum class (growing square) provides reliable data

and duplicate results indicate poor reproducibility for this element

and duplicate results indicate poor reproducibility for this element

and duplicate results indicate very poor reproducibility for this element

Sm [mg/kg] 5 10 km ■ > 14 - 101 0 + > 6.1 - 14 > 2.0 - 6.1 ○ > 0.41 - 2.0 0.16 - 0.41 .00 0 00 .00. 000.0 0 0 +0 0.0.000) 00. 00+ + + . . +000... +0+++00.... ·0·1+ .00 0.00.000+++++ 0 +0 ++ .+++ +000000 ..0.+ 0+0+. 00 · · 0/4 00 + . .+ +0+:0 0 0 · + · 0+ +0.0000 +0 0. 0 00.00 0 +.+0 · 00+=++ · 0+ · 0 · .+0 00+ +0 00+..0+0 0+++++.. +++++ .00 00. . 0. 0+ · · +++++ · · · 0+ · · 00+ · 0+ · +0.0.+0.+++. ·++·0 +++···+·0·+· ··0. 00 · · 00. + · +++++ · · 0 · · 000.0 · 6 0...0.+..0+.0+++..00...00/ 000000 .0 0 ... 0.0.00.000.0 .00. 0....0.0 Till samples, <2 mm aqua regia extraction

of 0.05 mg/kg - the map shows the instrument readings below the DL

Tb [mg/kg] 5 10 km 0 ■ > 1.7 - 10 + > 0.74 - 1.7> 0.24 - 0.74 . > 0.064 - 0.24 .00 0.031 - 0.064 0 .00. 000.0 0 00 on +000.000 00 + 00 0 :000.... 00.. + . . 0000 ...+ 0. .00 0.00.000.++++ 0 ..000000... 0.+ 00 0 + 80000 ...+. 0000 +++++ . .+ · + · 0+ +0.0000 +0 . 0 0.+ 00.00 0 +.+0 +0+.0 +0 0+ 00+..0.0 ++++ · · +++++ · 00 · 00 · · · · + 00 · 0 0 +++++ ... 0 . . +0 . . . 0+ 0 · +0 · +++ · ++.0 .+++..+.0.+. ...0 00 · o.· · · +++++ · · · · · 000. · · 6 . . 0 0.+..0...0+++...00...00 00000.0. 00....0000000 . 0 . . 0 0 .00... 0.0000...0 0..0000000 ..00.0 0...00.0 Till samples, <2 mm ..0.. aqua regia extraction

for this element

AITENTION: with the exception of the maximum value all results are below the official detection limit of 0.1 mg/kg, the map shows the instrument readings below the DL

