NGU Report 2006.067 Sediment composition and heavy metal distribution in Barents Sea surface samples: Results from Institute of Marine Research 2003 and 2004 cruises

Geological Survey of Norway N-7441 Trondheim, Norway Tel.: 47 73 90 40 00 Telefax 47 73 92 16 20

REPORT

Title:

Sediment composition and heavy metal distribution in Barents Sea surface samples: Results from Institute of Marine Research 2003 and 2004 cruises

Authors:		Client:		
Knies J., Jensen H. K.	B., Finne T. E., Lepland	MAREANO		
A., and Sæther O. M.	_			
County:		Municipality:		
Map-sheet name (M=1:250.000)		Map-sheet no. and -name (M=1:50.000)		
Deposit name and grid-reference:		Number of pages: 183	Price (NOK): 435.00	
		Map enclosures:		
Fieldwork carried out: Date of report:		Project no.:	Person responsible:	
2003, 2004 15.09.2006		311700	Reidulf Bøe	
Map-sheet name (M=1:250.000) Deposit name and grid-reference: Fieldwork carried out: Date of report: 2003, 2004 15.09.2006		Number of pages: 183 Map enclosures: Project no.: 311700	Price (NOK): 435.00 Person responsible: Reidulf Bøe	

Summary:

A total of 73 marine sediment samples from the Barents Sea collected with multicorer equipment in 2003 and 2004 have been analysed for grain size distribution, TOC, carbonate content, clay mineralogy, main elements and trace elements, including heavy metals. This report gives the analytical results for the 0-1cm sediment samples.

The 73 sampled locations cover different depositional settings, including marine environments influenced by the North Atlantic Current (NAC) and the Norwegian Coastal Current (NCC) in the southern part of the Barents Sea. In the northern part of the sampled area, where the marginal ice zone forms a marine environment with high biological productivity and ice-transported material,

The Storfjord Trough south is a depositional environment influenced by the erosion and transport of land-derived sedimentary material from Spitsbergen to the north.

The grain size distribution, divided into clay ($< 2 \mu m$), silt ($2 - 63 \mu m$), sand ($63 - 2000 \mu m$) and gravel $(> 2000 \,\mu\text{m})$ shows that the top 1 cm varies significantly. Silt and clay, i.e. $< 63 \mu\text{m}$ grain-size, defined as the "mud"-fraction of sediments, constitute 5 - 85 % of the sediments.

Inorganic contaminant concentrations are generally low, with a few exceptions.

Arsenic (As) is the single inorganic contaminant, which is present in high concentrations, corresponding to Class III (marked pollution level) according to the Norwegian state pollution authority guidance (SFT 1997).

Nickel (Ni) has 28 samples classified as class II contamination sediments (significant concentration). The heavy metals including mercury (Hg), lead (Pb), cadmium (Cd), copper (Cu), chromium (Cr), Zinc (Zn) all have concentrations within the Norwegian Pollution Control Authority Class I (no - insignificant contamination concentration).

Elevated barium (Ba) concentrations are encountered in the Håkon Mosby mud volcano area at the continental margin and near the Snøhvit gas/condensate field. The latter might be due to emissions of barite (BaSO₄) additive during drilling operations according to reported dispersion during drilling operation of well NOCS 7121/5-3 in 2000.

Keywords: Barents Sea	Marine sediments	Sediment composition
Heavy metals	Arsenic	Barium
PCA-analysis		

CONTENTS

1. Introd	uction	5
2. Object	ives and Dataset	5
3. Region	nal Setting	5
4. Material	and Methods	6
4.1 Bul	k Parameters	9
4.1.1	Total Carbon (TC), Total Sulphur (TS) and Total Organic Carbon (TOC)	9
4.1.2	Grain Size Distribution	9
4.1.3	Clay Minerals	9
4.2 Ino	rganic Geochemistry	9
4.2.1	X-ray fluorescence analysis	9
4.2.2	ICP-AES	. 10
4.2.3	Atomic Absorption Spectrometry	. 10
5. Result	S	. 10
5.1 Gra	in size	. 10
5.2 Clay	y mineral assemblages	. 10
5.3 Geo	ochemical Properties	. 11
5.3.1	Total Organic Carbon and Calcium Carbonate	. 11
5.3.2	Heavy metals and trace elements	. 11
6. Discus	ssion	. 12
6.1 Sed	imentary environment	. 12
6.2 Sele	ected inorganic pollution indicators	. 14
6.2.1	Mercury (Hg)	. 14
6.2.2	Lead (Pb)	. 14
6.2.3	Cadmium (Cd)	. 15
6.2.4	Arsenic (As)	. 15
6.2.5	Chromium (Cr), copper (Cu), nickel (Ni) and zinc (Zn)	. 15
6.2.6	Barium (Ba)	. 16
6.3 Prin	cipal Component Analysis (PCA)	. 17
6.3.1	Q-mode analysis.	. 17
6.3.2	R-mode analysis.	. 18
7 Conclu	usions	. 18
8. Refere	nces	. 20

FIGURES

- Figure 1Barents Sea ocean current systems
- Figure 2 Depositional settings in the Barents Sea
- Figure 3 2003 and 2004 sample stations
- Figure 4 Sediment grain size distribution
- Figure 5 Mud-fraction of surface sediments
- Figure 6 Clay-mineralogy illite percentage
- Figure 7 Clay-mineralogy kaolinite percentage
- Figure 8Clay-mineralogy smectite percentage
- Figure 9 Clay-mineralogy chlorite percentage
- Figure 10 Total organic carbon (TOC)
- Figure 11 Carbonate concentrations
- Figure 12 Mercury (Hg) concentrations
- Figure 13 Lead (Pb) concentrations
- Figure 14 Arsenic (As) concentrations
- Figure 15 Nickel (Ni) concentrations
- Figure 16 Barium (Ba) concentrations
- Figure 17 Q-mode analysis cluster diagram (factor 1 vs. factor 2)
- Figure 18 Q-mode analysis cluster diagram (factor 1 vs. factor 3)
- Figure 19 Q-mode analysis cluster diagram (factor 2 vs. factor 3)
- Figure 20 R-mode analysis cluster diagram (factor 1 vs. factor 2)
- Figure 21 R-mode analysis cluster diagram (factor 1 vs. factor 3)
- Figure 22 R-mode analysis cluster diagram (factor 2 vs. factor 3)

TABLES

- 1A The Institute of Marine Research multicore sample stations in 2003.
- 1B The Institute of Marine Research multicore sample stations in 2004.
- 2 Norwegian State Pollution Control Authorities (SFT) inorganic contaminant classes
- 3 Reported consumption and emission of barite from Snøhvit well NOCS 7121/5-3 as reported by Statoil

APPENDICES (CD attached in back of the report)

- 1 Sample station data and analytical data (grain-size, LECO, ICP-AES, CV-AAS, XRF, XRD) for IMR 2003-cruise 0 1 cm sediment samples
- 2 Sample station data and analytical data (grain-size, LECO, ICP-AES, CV-AAS, XRF, XRD) for IMR 2004-cruise 0 1 cm sediment samples
- 3 Cumulative grain-size diagrams
- 4 Additional geochemical maps
- 5 Q-mode analysis and R-mode analysis figures and tables
- 6 National and international marine sediment environmental mapping and monitoring activities.

1. Introduction

The Barents Sea supports one of the world's major fisheries and is as such, already economically very important. The Barents Sea also holds an important hydrocarbon potential and may become a major gas and oil supplier in the future, leading to an increase in ship operations and risk for oil spills. Increased transport of oil and gas is inevitable in the forthcoming years. Thus, expanded activity in the Barents Sea requires a proper knowledge of the current environmental status, how this has developed over time, and the vulnerability of the Barents Sea with respect to human impact. This includes a wider understanding of the processes that govern the distribution of the sediments in the investigated area.

2. Objectives and Dataset

The main objective of the current work-package is to advance the regional knowledge of modern sedimentation processes in the southern Barents Sea, including identification of main accumulation and erosion areas, sediment transport pathways and physical and geochemical sediment properties and their implications for marine habitats. This knowledge is required in order to forecast dispersion, accumulation and distribution of possible future pollutants from e.g. oil and gas exploration/exploitation and transport, power plants and fisheries.

To achieve the main objective an integrated, multidisciplinary approach has been performed on a regional grid of sediment surface samples during cruises in 2003 and 2004 with the RV "Håkon Mosby" of the Institute of Marine Research (IMR) (Fig. 1). The dataset will be integrated in a geographically related database and made accessible to the public via the Internet (i.e. <u>www.mareano.no</u>). Based on detailed mapping of modern sediments in the southern Barents Sea we address the following problems:

- What are the physical, geochemical and biological characteristics of the sediments?
- What are the main source areas and transport pathways for the sediments?
- Where are the main areas for sediment accumulation and sediment erosion?

Contributions to each problem will be given by:

- Studying the physical, geochemical, and biological properties of surface sediments.
- Identifying sediment transport mechanisms and depo-centres that act as potential pathways and sinks for contaminants.
- Integrate multiproxy data on web-based GIS system (<u>www.mareano.no</u>).

Inorganic pollutants data from the Mareano sediment samples will constitute valuable information concerning both spatial and temporal variations for metal contaminants in marine sediments. National as well as international environmental activities can benefit from new data generated from Mareano. Appendix 6 gives an overview over relevant national and international environmental monitoring activities and programs.

3. Regional Setting

The Barents Sea is a rather deep shelf sea with a 200 - 500 m depth range (average depth is 230 m), bordered by the shelf edge towards the Norwegian Sea in the west, the island of Spitsbergen (Norway) in the northwest, and the islands of Franz Josef Land and Novaya Zemlya (Russia) in the northeast and east (Fig. 1). The total area is 1,3 million km². The

southern half of the Barents Sea remains ice-free throughout the year due to the warm North Atlantic Current (NAC). In September, the entire Barents Sea is more or less completely ice-free. There are three main types of water masses in the Barents Sea: (1) warm, saline Atlantic water (temperature $>3^{\circ}$ C, salinity >35 ‰) being part of the NAC including the West Spitsbergen Current (WSC), (2) cold Arctic water (temperature $<0^{\circ}$ C, salinity <35 ‰) coming from the north as part of the East Spitsbergen Current, and (3) warm, less saline coastal water (temperature $>3^{\circ}$ C, salinity <34,7 ‰). Between the Atlantic and Polar waters, the Polar Front is formed. In the western parts of the Barents Sea (close to Bjørnøya; Fig. 1), this front is determined by the bottom topography and is therefore relatively sharp and stable from year to year. In the east (towards Novaya Zemlya), it can be quite diffuse and its position varies considerably between years. Dense cold ($<0^{\circ}$ C) and saline (>35 ‰) water is formed below sea-ice and sinks to the seafloor (Midttun 1985, Schauer et al. 1995). Due to its higher density, this water runs along the seabed following the relief and feeds the Polar Basin to the north and the Norwegian-Greenland Sea in the west (e.g. Sternberg et al. 2001, Schauer et al. 1999).

Due to the NAC, the Barents Sea has a high biological production compared to other oceans of similar latitude. The spring bloom of phytoplankton can start quite early close to the marginal ice zone (MIZ), because the fresh water from the melting ice makes up a stable water layer on top of the sea water. Mean primary production in the Barents Sea is $110 \text{ gC/m}^2/\text{year}^1$. Slightly more than 50 % of this production is newly generated organic carbon. Different depositional settings in the Barents Sea are shown schematically in Figure 2.

4. Material and Methods

During the two cruises in 2003 and 2004, 73 sediment cores from the Barents Sea continental margin (Fig. 3) were taken with Multicorer equipment with an inner diameter of 100 mm. The sample locations for the two cruises are shown in table 1A and table 1B. on the following pages. A single core from each sampling station was sliced every centimetre and frozen onboard for organic and inorganic geochemical as well as sedimentological analyses. This report presents the first inorganic geochemical and sedimentological results from the surface sample (0-1 cm) data set. The entire datasets are presented in Appendices 1 and 2. Details of the methodological approach are described below. Detection limits and analytical uncertainties for the different analytical techniques are given together with the analytical results in Appendices 1 and 2.

Station no.	Coordinates	Coordinates	Water depth	Core length	Location
	Longitude	Latitude	[m]	[cm]	
623	71,053611	21,651389	166	No data	Barents Sea
627	72,324722	24,057500	264	No data	Barents Sea
629	73,010278	24,251389	404	No data	Barents Sea
631	73,671944	24,466389	451	No data	Barents Sea
633	74,339722	24,693056	373	No data	Barents Sea
635	75,001111	24,941667	182	No data	Barents Sea
639	75,572222	27,898611	263	No data	Barents Sea
643	76,486944	29,90778	291	No data	Barents Sea
645	75,855278	29,460278	296	No data	Barents Sea
647	75,201389	29,010278	343	No data	Barents Sea
649	74,535833	28,576389	394	No data	Barents Sea
651	74,638611	26,075556	317	No data	Barents Sea
653	73,974722	25,806944	441	No data	Barents Sea
655	73,305278	25,542500	412	No data	Barents Sea
657	72,635000	25,271111	268	No data	Barents Sea
659	71,975833	25,055833	256	No data	Barents Sea
661	71,374167	22,763611	408	No data	Barents Sea
663	71,608056	25,990833	291	No data	Barents Sea
665	72,167500	28,409444	289	No data	Barents Sea
667	72,842500	28,757222	305	No data	Barents Sea
669	73,501667	29,153611	414	No data	Barents Sea
671	74,154722	29,554444	366	No data	Barents Sea
673	74,666667	32,494722	165	No data	Barents Sea
675	75,325278	33,070833	209	No data	Barents Sea
677	75,966667	33,733333	276	No data	Barents Sea
679	76,616667	34,450000	193	No data	Barents Sea
681	76,433333	37,166667	249	No data	Barents Sea
690	71,021667	30,956389	283	No data	Barents Sea
692	70,624444	31,719444	252	No data	Barents Sea

Table 1A. The Institute of Marine Research multicore sample stations in 2003.

Station no.	Coordinates	Coordinates	Water depth	Core length	Location
	Longitude	Latitude	[m]	[cm]	
1	72,001	22,003	367	20	Ingøydjupet
2	72,023	20,920	371	21	Ingøydjupet
3	72,025	19,850	324	27	Tromsøflaket
4	72,017	18,767	315	35	Tromsøflaket
5	72,025	17,697	296	31	Tromsøflaket
6	72,022	16,619	362	20	Upper cont. slope
7	72,017	15,517	767	29	Upper cont. slope
8	72,008	14,731	1260	>60	Håkon Mosby mud volcano
9	72,008	14,617	1317	30	Bjørnøyvifta
11	73,167	12,942	1499	35	Bjørnøyvifta
12	73,167	14,086	1030	24	Bjørnøyvifta
13	73,167	15,233	485	14	Bjørnøyrenna
14	73,167	16,383	475	27	Bjørnøyrenna
15	73,167	17,539	460	27	Bjørnøyrenna
16	73,169	18,817	423	1	Bjørnøyrenna
17	73,167	19,858	441	23	Bjørnøyrenna
18	73,167	20,950	463	17	Bjørnøyrenna
19	73,167	22,008	444	21	Bjørnøyrenna
20	74,819	18,017	296	29	Vestbanken
21	74,819	17,000	280	23	Vestbanken
22	74,819	16,033	356	20	Vestbanken
23	74,817	14,789	1507	33	Vestbanken
24	75,639	12,922	1500	31	Storfjordrenna
25	75,750	13,839	807	7	Storfjordrenna
26	75,833	14,676	370	10	Storfjordrenna
27	75,953	15,719	369	27	Storfjordrenna
28	76,047	16,667	328	15	Storfjordrenna
29	76,156	17,617	309	27	Storfjordrenna
30	76,222	18,583	257	19	Storfjordrenna
31	76,306	19,569	258	19	Storfjordrenna
32	76,383	20,581	228	18	Storfjordrenna
33	76,469	21,603	262	21	Storfjordrenna
34	71,750	22,000	356	23	Ingøydjupet
35	71,619	21,072	319	23	Snøhvit
36	71,600	20,861	320	27	Snøhvit
37	71,603	21,194	335	25	Snøhvit
38	71,489	20,817	310	25	Tromsøflaket
39	71,339	20,189	234	14	Tromsøflaket
40	71,183	19,561	225	13	Tromsøflaket
41	71,033	18,950	199	1	Fugløybanken
42	70,869	18,339	173	5	Fugløybanken
43	70,719	17,753	273	18	Fugløydjupet
44	70,550	17,136	706	1	Continental slope
45	70,442	16,747	1500	30	Continental slope

Table 1B. The Institute of Marine Research multicore sample stations in 2004.

4.1 Bulk Parameters

4.1.1 Total Carbon (TC), Total Sulphur (TS) and Total Organic Carbon (TOC)

One set of sub-samples was analysed for weight percentages (wt. %) of total carbon (TC), total sulphur (TS) and total organic carbon (TOC) using a LECO CS 244 analyser. For the TOC analyses, aliquots (~200 mg) of the samples were treated with 10 % (volume) hydrochloric acid (HCl) at 60°C to remove carbonate, and then washed with distilled water to remove HCl. We caution the reader that the possible loss of organic material by acid leaching is not taken into account. The samples were dried overnight (50°C) and then analysed. The carbonate content (wt. %) was calculated as $CaCO_3 = (TC - TOC) \times 8.33$.

4.1.2 Grain Size Distribution

Grain size analyses of total sediment were obtained from laser diffraction techniques (Coulter LS 2000) (for details, see Xu (2000, and references therein)) and wet sieving. The Coulter LS 2000 measured the fractions from 0.4 μ m to 2 mm while particles larger than 2 mm were determined by wet sieving. Prior to each analysis, the samples were freeze-dried. The grain size distribution is determined with respect to volume percent and with the assumption of uniform density of the sample.

4.1.3 Clay Minerals

For clay mineralogy determination (<2 μ m size fraction), the >63 μ m fraction was first removed by wet sieving and the <2 μ m fraction obtained from the <63 μ m fraction by Stoke's law settling method. The clay mineralogy measurements were carried out on a Philips X'pert MPD diffractometer with an automatic divergence slit, using CuKa radiation (40 kV, 50 mA). Identification of clay minerals from XRD-pattern of ethylene glycol-treated samples was done at 10 Å for illite, 17 Å for smectite and 7 Å for kaolinite and chlorite. To differentiate kaolinite and chlorite we used intensity ratios of the 3.58 Å -kaolinite peak and the 3.54 Å chlorite peak. Relative clay-mineral contents were calculated by using empirical factors after Biscaye (1965) and normalized to 100 % (see Vogt et al. (2001) for more details).

4.2 Inorganic Geochemistry

4.2.1 X-ray fluorescence analysis

For major elements, 0.6 g pre-ignited (1000° C) finely-grinded sample material was mixed with 4.2 g Li₂B₄O₇ and fused to a bead in a CLAISSE FLUXER-BIS. The sample was then analysed with a Philips PW 1480 WD-XRF instrument equipped with an Rh x-ray tube.

The analysis of trace elements is based on pressed powder. The preparation includes 1.2 g (± 0.005 g) Hoechst wax and 5.4 g (± 0.005 g) sample, which is mixed in a Spex Mixer/Mill for at least 1 minute. The mixture was then pressed to a pellet in Herzog pelletizing pressure equipment (approx. 20kN, time = 20 seconds). The pellet was analysed with a Philips PW 1480 WD-XRF instrument equipped with an Rh x-ray tube. Determined elements as well as detection limits and analytical uncertainties are given in Appendices 2a – 2d.

4.2.2 ICP-AES

The applied analytical methods and the detection limits of individual elements are shown in Appendix 1 and 3 respectively. Most of the reported major and trace elements were analysed using Thermo Jarrell Ash ICP-AES 61. For these analyses acidified aqueous sample solutions were obtained by dissolving 1 g of freeze-dried sediment in 7N HNO₃ in an autoclave at 120° C for 1 hour (Norsk Standard NS 4770).

4.2.3 Atomic Absorption Spectrometry

The analysis of cadmium (Cd) and selenium (Se) was done on a Perkin-Elmer SIMA 6000 atomic absorption spectrometer submitted with a graphite furnace (GFAAS). The lower limits of quantification based on autoclave extraction (1 g sample in 100 ml volume) are 0.02 mg/kg (ppm) for Cd and 1.0 mg/kg for Se.

The mercury (Hg) analysis was done with a cold-vapour atomic absorption spectrometer (CVAAS) instrument CETAC M-6000A Hg Analyzer. The lower limits of quantification based on autoclave extraction (1 g sample in 100 ml volume) are 0.01 mg/kg (ppm) for Hg. Sample preparation for atomic absorption analyses included digestion of 100 mg sample in mixed acid including 1 ml aqua regia and 3 ml HF. Free HF in aqueous sample solution was complexed by adding 3 ml boric acid (H₃BO₃). Analysis volume of 100 ml was obtained by adding water to the sample solution.

5. Results

5.1 Grain size

Figure 4 shows the grain-size fractions gravel, sand, silt and clay for the top 1 cm sample in the 73 sample stations. The grain size distribution criteria (>70% of mud (particles $\leq 63\mu$ m),) for inter-comparison of contaminant levels between surface sediments in the Barents Sea are not fulfilled. Large variation in the mud content is particularly observed in the south-western part of the Barents Sea and along the upper continental slope (Fig. 5). Here, percentages for mud vary between 5 and 85 %. The grain size distribution in surface sediments is less variable in the central Barents Sea, and mud content ranges between 40 and 80 % (Fig. 5). This pattern holds true for the northernmost transect where low variability of grain size is observed. Sand and gravel ($\geq 63\mu$ m) is mainly enriched on shallow banks and ridges as well as in coastal settings.

5.2 Clay mineral assemblages

The clay mineral assemblages show the typical pattern for the high latitudes. The main clay mineral in Barents Sea sediments is illite ranging between 20 and 60 rel. % (Fig. 6). A local source for kaolinite is known from the central Barents Sea (Wahsner et al., 1999) and is related to erosional products of Mesozoic bedrock (Elverhøi et al., 1989). The spatial distribution of kaolinite content in our data set (Fig. 7) confirms this general observation with highest values (>25 rel. %) in the central part and lowest values (<15 rel. %) in the south-western part of the Barents Sea. Smectite shows an opposite trend (Fig. 8), with the highest values (>25 rel. %) in sediments underlying the pathway of Atlantic water inflow (south-western Barents Sea and upper continental slope) and lower values towards the central Barents Sea. Interestingly, the higher values (>20 rel. %) in the Bjørnøya trough potentially

track the pathway of dense bottom water currents laterally transporting sediments from the source in the south-central Barents Sea (Fig. 8) to the sinks in the Norwegian-Greenland Sea (Honjo et al. 1992, Fohrmann et al. 2001). Apart from the northernmost transects, the chlorite content is more or less constant (10 - 20 rel. %) in all surface samples (Fig. 9). The high values (>20 rel. %) in the north point to a local source in southern Spitsbergen and indicate lateral transport of erosional products across the Storfjord Trough towards the continental margin.

5.3 Geochemical Properties

5.3.1 Total Organic Carbon and Calcium Carbonate

The total organic carbon content (TOC from LECO combustion) varies from 0.2 to 2.74 wt. % for the whole investigated area (Fig. 10). There are regional variations with the highest concentrations in the samples taken south of Spitsbergen and the north-eastern Barents Sea with values larger than 1 wt. % in most cases. The TOC-values are generally lower in the southern Barents Sea. Here most of the samples have values less than 1 wt. %, with a few exceptions. The organic carbon source for the sample stations south of Spitsbergen is largely dominated by land-derived organic-rich sedimentary material from Spitsbergen (Winkelmann & Knies, 2005), whereas there might be other sources for the TOC-rich samples in the central Barents Sea. Here marine plankton production associated with ice edge effects might play a role for the high TOC-contents in the top 1 cm sediments. However, upcoming analysis on the carbon isotopic composition of the organic matter will help clarifying these assumptions.

The carbonate content in the Barents Sea sediments is considered to reflect mainly the calcareous shell fragments from either plankton or benthic organisms. This is inferred from general good correspondence between planktic and benthic foraminifera and calcium carbonate (CaCO₃) content in surface sediments (Steinsund & Hald, 1994). The CaCO₃ content of the 0 - 1 cm sediments in our data set varies significantly with low values (0.6-6.5 wt. %) in the eastern/central Barents Sea and significantly higher values (3.7-55.5 wt. %) towards the west (Fig. 11). The carbonate concentrations are generally less than 6 wt. % in the eastern part of the sampled part of the Barents Sea. The carbonate content is significantly higher with concentrations up to 55 wt. % in the western part of the investigated area. Low carbonate contents to the east is probably related to the arctic (cold) water masses in this part, leading to either lower carbonate production in the water masses or dissolution of the biogenic carbonate prior to sedimentation (Steinsund and Hald, 1994; Winkelmann and Knies, 2005). The higher carbonate content to the west is probably related to the warmer Atlantic water dominating this part of the investigated area (Hebbeln et al., 1998). Generally, the TOC and carbonate contents have different regional distributions (Figs. 10, 11). It appears that low TOC-contents in the south-western part coincide with high carbonate contents for the same sample locations. Opposite trends are observed in the north-eastern part, where high TOCcontents coincide with low carbonate contents. This trend is less obvious for sediments sampled between Spitsbergen and Bjørnøya.

5.3.2 Heavy metals and trace elements

The Norwegian Pollution Control Authority (abbreviated SFT in Norwegian) has established a system for environmental classification of environmental quality in fjords and coastal waters (SFT 1997). The sediments are subdivided into five classes based on predefined intervals of the concentrations of arsenic, lead, fluoride, cadmium, copper, chromium, mercury, nickel, zinc and silver (Tab. 2, for more details). In addition the classification system contains predefined concentration intervals for organic synthetic compounds (SFT 1997). However, organic contaminants are not included in the list of compounds in Table 2, since there is no organic contaminant data available for this report. According to this contamination classification scale, the concentrations in most of the studied samples correspond to the environmental quality class I (insignificant to little contamination).

Table 2. Norwegian pollution control authorities (SFT) marine pollution classification for metals and inorganic elements for fjords and coastal sediments (Molvær et al., 1997). Numbers in bold show the number of samples within each class for the analysed elements.

Parameters	Levels of contamination				
	I Insignificant – minor contamination	II Moderately contaminated	III Significantly contaminated	IV Strongly contaminated	V Very strongly contaminated
Arsenic (mg/kg)	< 20	20 – 80	80 – 400	400 – 1000	>1000
	62	9	2	0	0
Lead (mg/kg)	<30	30 – 120	120 – 600	600 – 1500	>1500
	73	0	0	0	0
Flouride (mg/kg)	<800	800 – 3000	3000 – 8000	8000 – 20000	>20000
	73	0	0	0	0
Cadmium (mg/kg)	<0,25	0,25 – 1	1 – 5	5 – 10	>10
	71	2	0	0	0
Copper (mg/kg)	<35	35 – 150	150 – 700	700 – 1500	>1500
	73	0	0	0	0
Chromium (mg/kg)	<70 73	70 – 300 0	300 – 1500 0	1500 – 5000 0	>5000
Mercury (mg/kg)	<0,15	0,15 – 0,6	0,6 – 3,0	3 – 5	>5
	73	0	0	0	0
Nickel (mg/kg)	<30	30 – 130	130 – 600	600 – 1500	>1500
	45	28	0	0	0
Zink (mg/kg)	<150 73	150 – 700 0	700 – 3000 0	3000 – 10000 0	>10000
Silver (mg Ag/kg)	<0.3	0.3 – 1,3	1.3 – 5	5 – 10	>10
	73	0	0	0	0
TBT (µg/kg)	<1	1 – 5	5 – 20	20 – 100	>100
	no analysis	no analysis	no analysis	no analysis	no analysis

6. Discussion

6.1 Sedimentary environment

The general pattern of surface sediments from the Barents Sea is known from Russian and Norwegian studies (cf. Wright 1974, Gurevich 1995, Vetrov & Romankevich 2004). A dominant part of the sediment is of non-biological (clastic) origin, and the distribution and transport is mainly controlled by bottom water-currents. The main sources for sediments today are concentrated along the southern coast of the Barents Sea. They include the erosion of Quaternary coastal and shallow bank deposits and discharge from rivers. In contrast, complex processes along the marginal ice zone (MIZ) dominate the sedimentation processes in the northern Barents Sea (Falk-Petersen et al. 1998, 2000). Large seasonal and inter-annual variations in ice cover in the MIZ directly affect the primary production and release of lithogenic particles in the MIZ. Ice melts during spring and summer give rise to a stratified and nutrient-rich euphotic zone, which supports a pronounced spring bloom (Matrai and Vernet, 1997; Sakshaug and Skjoldal, 1989). The sedimentation is mainly influenced by the water column stratification (strong salinity stratification in the Arctic water; no stratification in the Atlantic water) and also by the activity of plankton organisms. Zooplankton faecal pellets are important constituents of the vertical flux of organic matter (e.g. Olli et al. 2002, Riser et al. 2002). However, besides the photosynthetic organic matter flux, of the organic carbon content in the Barents Sea sedimentation is also influenced by terrigenous organic matter supply, granulometric composition of bottom sediments and the efficiency of organic matter burial and preservation (Stein & MacDonald 2004).

The variability of total organic carbon (TOC), calcium carbonate content (CaCO₃), grain-size data and clay mineral assemblages of our dataset (Figs. 4 - 11) give the typical pattern for the recent sedimentological environment in the Barents Sea. Fine-grained sediments rich in TOC and oxic precipitates (e.g. FeO, MnO) occur in shelf depressions/troughs along the polar front where Arctic water encounters Atlantic water. Here, high flux of biologic sediments and terrigenous material is related to the marginal ice zone (MIZ) (Wassmann et al. 1999; Reigstad et al., 2002). In addition, organic matter bound to faecal pellets and adsorbed to clay minerals and oxide surfaces is also preserved in surface sediments. Transport of these sediments from MIZ to the western Barents Sea margin may be caused by bottom currents following the bathymetric lows to the west. This is inferred from predominantly fine-grained sediments in the Storfjord Trough enriched in kaolinite, chlorite and TOC (Figs. 7, 9 and 10) pointing to a source in the central Barents Sea (Andersen et al., 1996; Vogt, 1997). In contrast, TOC-poor sediments occur in the southern Barents Sea, where most of the organic matter is mineralised in the less productive, ice-free open ocean. In addition, the sediments are generally much coarser (Fig. 4), confirming the observation that enhanced wave and current activity favour mechanical differentiation of sediments, which then defines the grain size of sediments and related distribution of TOC in the Barents Sea. Tidal currents in the southern Barents Sea lead to the deposition of mainly coarse-grained sediments in the coastal zones, whereas fine-grained sediments are transported and deposited in the adjacent troughs and depressions in deeper water. Smectite and organic carbon-rich mud in these troughs and depressions have the highest potential for accumulation of contaminants (Figs. 8 and 10). However, this assumption can only be clarified by going beyond the regional grid and focussing on a small-scale accumulation/erosion centres in the southern Barents Sea.

Highest CaCO₃-contents in the southern Barents Sea and along the western continental margin (Fig. 11) coincide with high ratios of calcareous/agglutinating and planktic/benthic foraminifera (Steinsund and Hald, 1994). Together with the highest smectite contents (30.3 %), this sediment pattern tracks the inflow of the NAC. Low CaCO₃ content goes along with more intense dissolution processes in the eastern and central Barents Sea (Steinsund and Hald, 1994; Knies et al., 1999). The latter is caused by the presence of dense, cold, saline and CO₂-rich bottom water, which is linked to sea ice production and the position of the Polar Front. The dense bottom water masses follow the topography of the cross shelf troughs and laterally transport fine-grained sediments towards the continental slope (Honjo et al., 1992). This is indicated by that sediments rich in kaolinite and chlorite in the northern troughs apparently are supplied from erosional products in the central northern Barents Sea (Andersen et al., 1996; Vogt, 1997). In the southern trough (Bjørnøya), the sediments are enriched in smectite.

6.2 Selected inorganic pollution indicators

Heavy metals like mercury (Hg) and cadmium (Cd) are of major concern in the arctic, since they do not have any biological functions, but bio-accumulate, and are toxic in small quantities. Both metals are reported to be present in the arctic in high concentrations for a region remote to most anthropogenic sources (AMAP, 2002). Lead (Pb) has also been a major concern in the AMAP-context due to detrimental effects on health. Other heavy metals like nickel (Ni) and copper (Cu) are known to be emitted from smelters at the Kola peninsula (Reimann et al., 1998), and might influence concentrations of these heavy metals in the adjacent Barents Sea. The sedimentary environment is a repository for contaminants, and gives information about the geographical variations (spatial variations) as well as changes as a function of time since onset of the industrialization the last 100 - 150 years (temporal variations). Inorganic contaminants like heavy metals and other trace elements have both natural and anthropogenic sources.

6.2.1 Mercury (Hg)

Among the heavy metal contaminants, mercury continues to be of concern with respect to the Arctic ecosystem and human health within the Arctic. Atmospheric mercury, mainly in the form of gas phase elemental Hg comes as natural emissions from the Earth's crust via the biosphere and oceans or from anthropogenic sources, such as: 1) coal combustion, 2) waste incineration, 3) mercury-cell chlor-alkali plants and 4) metal production. Mercury is especially prone to accumulation in the Arctic as it is transported in the atmosphere as elemental Hg vapour, which is then oxidized by photolysis and precipitated out during the Arctic Spring reported by the Arctic Monitoring and Assessment Program (AMAP (1998, 2002)). The biogeochemical behaviour of mercury is in many ways similar to that of synthetic organic compounds (MacDonald et al. 2000).

Usually, Hg is enriched in surface sediments in the major basins of the Arctic Ocean due to diagenetic redistribution following slow sedimentation rate, a shallow mixed layer and active redox chemistry fed by metabolizable organic carbon (MacDonald et al. 2000). The present data (Fig. 12) show higher concentrations of Hg in areas of the Barents Sea north and east of Bjørnøya. Stations closer to the coast of Northern Norway exhibit lower concentrations of mercury with some exceptions. Areas with elevated concentrations of Hg coincide with areas with higher concentrations of pyrogenic PAH, which also has a major anthropogenic origin as a by-product of the combustion of fossil fuels and recent organic material (i.e. biomass) (Dahle et al., 2006). The concentrations of mercury in the surface sediments reported here (0.016-0.063 mg/kg) are classified as "insignificantly or slightly contaminated" (SFT, 1997) and are thus in themselves of limited concern. However, the regional variations in mercury content reflect differences in mineralogical composition of the sediments, including content of particulate matter due to anthropogenic contributions, and further investigations are required to estimate the impact of the latter.

6.2.2 Lead (Pb)

Modern contaminant lead (Pb) has had a unique, predominant source as a product of combustion of leaded gasoline. The strong atmospheric connection during the winter between Eurasia and the high Arctic has long been recognized in phenomena like arctic haze (Hileman 1983) and brown snow deposition (Welch et al., 1991). Accordingly, much attention has been focused on the air as the means of transporting contaminant lead to the Arctic. Although lead is abandoned in gasoline both in the European Union and North America, the problem might currently be subordinate as the lead concentrations in surface sediment samples generally are very low (6.3-27.8 mg/kg dry weight). However, more recently, the focus on the atmosphere

as a contaminant pathway to the Arctic has changed towards the ocean current system (Gobeil et al., 2001). For example, some higher lead values in the south-western Barents Sea (Fig. 13) are related to a predominance of fine-grained material possibly transported by the inflowing NAC and deposited in lower erosive areas. Slightly higher values in the north, i.e. the Storfjord Trough, are potentially related to a northern/eastern source and may be the product of sediment release along the MIZ This anomaly could also reflect release of particulate lead where warm NAC waters are being cooled upon encounter with deeper Polar water from the east of Spitsbergen. Stable lead isotope composition may be able to establish the source of the various signals as previously documented by Gobeil et al. (2001). By using lead isotopes, they related the contaminant lead accumulating in sediments along the Barents Sea margin to a western European source (206 Pb/ 207 Pb ~1.14) with ocean currents acting as the major transporting mechanism. A northern/eastern source from the Laptev/Kara seas, transported by sea ice and released along the sea ice edge may have significantly higher ratios (206 Pb/ 207 Pb ~1.18). Upcoming analyses of lead isotopes may verify the contribution from both of these sources and other possible sources.

6.2.3 Cadmium (Cd)

Anthropogenic Cd-sources include primarily non-ferrous metal industry and waste incineration according to AMAP (1997). Natural sources contribute far less than the anthropogenic sources. The Cd-concentrations vary from 0.04 to 0.67mg/kg sediment. The highest Cd-concentrations are encountered in the north-eastern area east of Spitsbergen and the south-western locations close to the Norwegian coast. Two samples qualify as moderately contaminated (0.25 - 1.0 mg/kg), whereas the remaining 71 samples are classified as uncontaminated to insignificantly contaminated sediments, i.e. < 0.25 mg/kg sediment.

6.2.4 Arsenic (As)

Mining and smelting as well as underwater nuclear testing are major sources with regard to enrichment of arsenic (Loring et al., 1995; Martin and Pedersen, 2002) in marine sediments. However, natural remobilisation and erosion of arsenic-rich rocks may be additional regional sources of arsenic anomalies in sediments in the Barents Sea. The latter ones are actually quite important for the Barents Sea and potentially explain the concentration pattern in surface sediments shown in Figure 14. Arsenic rich rocks in Spitsbergen is reflected in samples of floodplain sediments sampled adjacent to Storfjord Trough. Median concentrations of these samples are 16, 28, and 18 mg/kg As for Tertiary, Jurassic and Triassic terrains, respectively (Ottesen et al., 1988), whereas the median for all Norwegian floodplain sediments is 2.5 mg/kg (Ottesen et al., 2000). Another factor influencing slightly higher arsenic values in the central Barents Sea might be the high carbon flux and generally high TOC contents in the surface sediments (0.20-2.74 %) compared to the southern Barents Sea. High carbon flux contributes to the reduction of oxygen through metabolism in sediments, thereby mediating the conversion of solid phase As (V) to dissolved-phase As (III), which then diffuses upward to re-precipitate through reactions with oxygen, nitrate, oxides and hydroxides of manganese at the surface.

6.2.5 Chromium (Cr), copper (Cu), nickel (Ni) and zinc (Zn)

The four heavy metals chromium, copper, nickel and zinc are present in the top 1 cm sediments and show similar distribution patterns. Chromium concentrations range from 9.2 to 46.8 ppm. Copper concentrations range from 3 to 24.4 ppm in the 73 samples. All samples belong to Class I pollution level (< 35 mg/kg sediment). Nickel concentrations range from 9.0 to 42.1 ppm, shown in Figure 15. Nickel concentrations are within class II (30 – 130 mg/kg

sediments), i.e. corresponding to moderately polluted sediments according to the SFTstandard for fjord and coastal sediments (SFT, 1997) for a total of 28 samples of the 73 samples. Hence Ni is the single heavy metal with the largest number of samples within class II. The largest concentrations are in the eastern part and in the Storfjord Trough south of Spitsbergen. A single sample furthest to the Southeast, relatively close to the nickel-rich ores and nickel-copper smelters sources on the Kola Peninsula stand out with an anomalously high concentration for this part of the Barents Sea. This location has nickel concentration comparable to concentrations in the Norwegian fjords close to the Russian border, reported by Jensen and Longva (1999). The fjord sediment samples were classified as moderately contaminated (class II). Zinc-concentrations range from 14.0 to 96.0 ppm. The highest concentrations for these heavy metals are observed in the north-eastern part of the investigated part of the Barents Sea, and with lower concentrations towards the south and west.

6.2.6 Barium (Ba)

Detrital alumino-silicates, particularly feldspars, are the principle carrier phases of Ba in marine sediments. Minute bio-barite crystals that precipitate in micro niches of decaying marine organic matter in the water column are also important carriers of sedimentary Ba, particularly in high productivity areas (Dehairs et al., 1980, Nuernberg et al., 1997). Both high- and low-temperature vents are known to be enriched in dissolved Ba and result in barite precipitates such as crusts and cements at the vicinity of vent sites when the seeping fluids mix with the seawater sulphate. Dissolved Ba in the high temperature hydrothermal systems are derived from dissolution of alumino-silicates whereas cold seep fluids carry Ba released from bio-barite in organic-rich sediments.

Since the onset of offshore hydrocarbon exploration on the Norwegian shelf significant quantities of barite (BaSO₄) have been dispersed onto the seafloor in connection with drilling activities because barite has been widely used as a principal component of drilling mud. Studies have demonstrated that Ba enrichments in surface sediments of the eastern part of the North Sea are due to this "drilling barite", and geographic trends of Ba concentrations in recent sediments track sediment transport and distribution pathways (Sæther et al., 1996; Thorsnes and Klungsøyr, 1997; Lepland et al., 2000). The predominant size of barite particles in the drilling mud is typically within the fine silt range hence the "drilling barite" becomes concentrated in the depositional areas where the hydrodynamic conditions are suitable for accumulation of fine-silt-size barite. "Drilling barite" is by-passed in the high current velocity areas where sandy and gravel sediments occur.

Ba-concentrations (30.8 – 1090 mg/kg for the whole dataset) in studied surface sediments vary typically in a relatively narrow range between 100 and 200 mg/kg (Fig. 16). This concentration range probably represents natural Ba in the Barents Sea sediments. Relatively coarse-grained sediments in the southern part of Barents Sea have lower Ba-contents (30-100 mg/kg) due to elevated contents of low-Ba phases such as quartz or/and carbonates. Two samples, one from the Håkon Mosby mud volcano and another from the Snøhvit oil and gas field have anomalously high Ba concentrations (1090 and 330 mg/kg respectively) (Fig. 16).

The Ba-anomaly at Håkon Mosby mud volcano likely reflects authigenic precipitation of seep having supplied abundant amounts of dissolved Ba. The anomaly in the Snøhvit oil and gas field may be explained by the exploration activity and discharge of drilling barite (BaSO₄) to the sea-bottom. Data reported by Statoil show that a total of 88 tonnes of barite was emitted to the sea during the drilling operation of well 7121/5-3 in 2001. This is the reported outlets from a single well. See Table 3 for the reported barite emissions during drilling of the well, as reported by Statoil.

Table 3.	Reported con	nsumption and	dispersion of	of barite from	well NOCS	7121/5-3 as
reporte	d by Statoil.					

		Barite	Barite	Ilmenite	Ilmenite
Year	Well	Consumption	Dispersion	Consumption	Dispersion
		Tonnes	Tonnes	Tonnes	Tonnes
2001	NOCS 7121/5-3	128	88	0	0
	Snøhvit, Delta.				
	Drillling-phase				

Concerning the Ba-concentrations in surface sediments it is interesting to note however that the studied sediment collection included five samples from the Snøhvit field with several drill sites within a 5 km radius, but only one sample out of 5 samples had anomalously high Ba-content. The current dataset is too limited to assess whether the drilling barite is (i) largely trapped in the immediate vicinity of the drilling site, (ii) effectively transported away from the gas-oil field due to the prevailing strong bottom currents, or (iii) distributed unevenly within the field area with accumulation in small depositional basins. New geochemical data from the 2006 Mareano cruise at Tromsø-flaket, an approximately 2.100 km² area including Snøhvit and Goliat might reveal more about Ba concentrations and distribution in the top 1 cm sediments in this area and possible sources for Ba within Tromsøflaket. These data are expected to be available late 2006/beginning of 2007.

6.3 Principal Component Analysis (PCA)

Based on the results of the chemical analysis, a principal component analysis (PCA) was run on a dataset containing measurements of 51 selected parameters on the surface sediment samples collected at each of the 73 stations in the Barents Sea. Results of the XRF-analysis were chosen for major elements and for trace elements when results of partial extractions with acid were not available, and variables with no or minimal variations were excluded. Prior to the PCA, all variables were standardized. The first five factors explain 80.9% of the variation in the 51 x 73 = Q × R matrix.

6.3.1 Q-mode analysis.

The major factor loadings, which groups parameters showing a large degree of covariance, are presented in App. 6 and Figures 17, 18 and 19. One prominent cluster is found for CaO, Sr and carbonate (F1, F2 = +0.6, +0.7) and another is LOI and C (F1, F2=0.0, +0.9) (Fig. 17). Strontium is associated with carbonate minerals such as calcite in which it is substituting for Ca. Although Sr is less abundant in calcites than in aragonites, the larger Sr-ion is more acceptable in the aragonite structure. LOI is reflecting breakdown of organic material and carbonate.

The trace elements Ce, La and Zr cluster well in Fig. 18 and especially in Fig. 19 where it is associated with smectite (F1, F2 = \div 0.4, \div 0.4). Si₂O representing quartz minerals is isolated in all three figures, with associations of K₂O and, to a certain extent, Al₂O (see Fig. 19) typical of aluminosilicates. P₂O₅ and As seem to be associated with chlorite and kaolinite (Fig. 18) (F1, F2 = \div 0.5, \pm 0.5), whereas Mo and MnO cluster in Fig. 18 (F1, F2 = \div 0.2, \pm 0.1) and to a certain extent Pb and S in Fig. 19 (F1, F2 = \pm 0.5, \pm 0.1). Most of the other parameters considered, e.g. Na₂O, Nb_x Th_x, TiO₂, F_x, Rb_x, Li_p, Zn_p. Ba_p, Ce_p etc. form a large cluster characteristic of feldspars and derived clay minerals.

6.3.2 R-mode analysis.

The scores along each of the first five factors for each station (location) are listed in App. 7 and when these are plotted in Fig. 20, 21, 22 the following four clusters, which represent four different sediment sources, are discernible:

1) Spitsbergen run-off: Stations 27, 29, 30, 31, 32 and 33 located in the Storfjord Trough form a cluster characterized by elevated values of both As, Mn, TOC and P associated with kaolinite and chlorite in the clay fraction (Fig. 21 (F1, F3= \div 0.5, +0.5)). The origin of these fine-grained clastic sediments might be the fine fraction of sedimentary rocks at Spitsbergen including coal, which are being eroded intensively every summer when glaciers melt.

2) Atlantic Water inflow: Stations 39, 40, 42, and 43 (Fig. 3) lie along a SW-NE transect close and parallel to the coast of Troms County, northern Norway. Carbonate is found here due to enhanced biogenic activity in the up-welling zone of Atlantic Water (AW) rich in nutrients being forced up into shallower shelf water. The carbonate signal in these sediments corresponds to high abundances of calcareous planktic/benthic foraminifera (Steinsund & Hald 1994). Stations 3, 4, 5, 9, 11, 23, 24, 36 and 38 are falling, to a certain degree, in the same cluster (Fig. 22 with F2, F3 ~6, \div 2). They are located along the upper continental slope (Fig. 22) following the main transport path of nutrient rich Atlantic Water (AW) towards the North.

3) Clay Mineral Assemblages: Stations 6, 7, 12,13, 22, and 45 together with stations 657,659, 663 and 692 cluster in the lower right area of Fig. 20 (F1, F2 = +6, \div 3). They are characterized by low content of mud fraction and by their location at the shelf slope and the nearby shelf in the South-western Barents Sea. Here smectite suspended in deeper AW is forced northwards along the slope where it settles from suspension and is deposited. A likely source for the smectite is the erosional products from basaltic bedrock in the North Atlantic (e.g. Iceland, Faeroese Islands).

4) Stations 1, 2, 653, 661, 690 on the shelf, in contrast, score low on F2 (<0) and F3 ($\langle \div 2 \rangle$) (Fig. 22). They seem to represent a source characterized by fine-grained, kaolinite-rich (KOH-rich) sediments indicating a westward transport of eroded sediments from the central Barents Sea where kaolinite-rich bedrocks are outcropping.

7 Conclusions

- The recent sedimentological environment including sources, pathways and sinks in the Barents Sea could be assessed by the combined view on total organic carbon, calcium carbonate, grain-size data and clay mineral assemblages in surface samples.
- Sediment accumulation and erosion in the Barents Sea is mainly controlled by the bottom topography (e.g. cross shelf trough, glacial depressions) and the strength/pathway of major surface water currents (NAC/ESC). Dense bottom water masses laterally transport fine-grained material from the central Barents Sea to the continental slope across the cross shelf troughs. Potential recent depocenters for sediment accumulation are identified in the central (involving MIZ deposition) and southern (glacial depressions) Barents Sea.
- Arsenic is the only element, which has concentrations in the surface sediments corresponding to Class III contamination level according to the SFT- classification from 1997 (at 2 sample stations). One location is in the eastern part and the other location is in the Storfjord Trough area. The other class III location is the north-eastern part of the investigated area.

- Nickel has a total of 28 samples out of 73 samples classified as Class II concentrations, i.e. marked concentrations. The eastern part and the Svalbard Trough have generally higher concentrations than stations to the south and across the continental margin.
- Other heavy metals including lead, mercury, copper, zinc and cadmium are within class I concentrations, i.e. no contamination insignificant contamination according to the SFT-classification from 1997.
- Barium is present in high concentrations at the Håkon Mosby mud volcano (1090 mg Ba/kg sediment) and at one sample station in the Snøhvit area (330 mg Ba/kg sediment). The latter is possibly related to dispersions of barite during drilling operations at Snøhvit, since a total of 88 tonnes were reported lost during drilling of 7121/5-3 in 2000.
- PCA-analyses show that different depositional settings can be identified within the Barents Sea. The Storfjord Trough sample stations group together and show that erosion of sediments from Spitsbergen contributes to the sediments. The high carbonate content found at stations close to the Troms county coast, Norway, is due to the up-welling of nutrient-rich Atlantic water in the North Atlantic Current (NAC), increasing the production of planctonic and benthic calcareous foraminifera.

8. References

- AMAP, 1998. AMAP Assessment Report: Arctic Pollution Issues. Wilson S. J., Murray L. J. and Huntington H. P. (eds.). 859 pages.
- AMAP, 2002. Arctic Pollution. Wilson S. J. (ed.). 111 pages.
- Andersen, E.S., Dokken, T.M., Elverhøi, A., Solheim, A., and Fossen, I., 1996, Late Quaternary sedimentation and glacial history of the western Svalbard margin: Marine Geology, v. 133, p. 123-156.
- Dahle S., Savinov V., Petrova V., Klungsøyr J., Savinova T., Batova G. & Kursheva A., 2006. Polycyclic aromatic hydrocarbons (PAHs) in Norwegian and Russian Arctic marine sediments: concentrations, geographical distribution and sources, Norwegian Journal of Geology, vol. 86 (1), p. 41-50.
- Dehairs F., Chesselet R. and Jedwab J., 1980. Discrete suspended particles of barite and the barium cycle in the ocean. Earth Planetary Science Letters, vol. 49, p. 528-550.
- Elverhoi A., Pfirman S.L., Solheim A., and Larssen B.B., 1989. Glaciomarine sedimentation in epicontinental seas exemplified by the Northern Barents Sea. Marine Geology, vol. 85, p. 225-250.
- Fohrmann H., Backhaus J.O., Blaume F., Erlenkeuser H., Haupt B.J., Kämpf J., Michels K., Mienert J., Posewang J., Ritzrau W., Rumohr J., Weber M. and Woodgate R., 2001.
 Modern ocean current-controlled sediment transport in the Greenland-Iceland-Norwegian (GIN) seas, in: The northern North Atlantic: A changing environment. Schaefer P., Ritzrau W. Schlueter M. and Thiede J. (eds.), pp. 135-154, Springer-Verlag, Berlin, 2001.
- Gobeil C., MacDonald R.W., Smith J.N. and Beaudin L. 2001. Lead contamination in Arctic basin sediments tracks Atlantic water flow pathways. Science, vol. 293, p. 1301-1304.
- Gurevich V.I. 1995. Recent sedimentogenesis and environment on the Arctic shelf of western Eurasia. Meddelelser NP 131, Oslo, pp. 1-92.
- Hebbeln D., Henrich R., and Baumann, K.-H., 1998. Paleoceanography of the last interglacial/glacial cycle in the Polar North Atlantic: Quaternary Science Reviews, vol. 17, p. 125-153.
- Hileman B., 1983. Arctic haze. Environmental Science and Technology, vol. 17, p. 232A-236A.
- Honjo S., Manganini S.J. and Wefer G., 1988. Annual particle flux and a winter outburst of sedimentation in the northern Norwegian Sea. Deep Sea Research, Vol. 35, No. 8, p. 1223-1234.
- Jensen H. K. B. and Longva O. 1999. Forprosjekt Kontaminantfluks fra land til fjorder i Øst Finnmark og Barentshavet. Geokjemiske analyser. NGU-report no. 99.141. 31 pages.
- Lepland A., Sæther O. M. and Thorsnes, T. 2000. Accumulation of barium in recent Skagerrak sediments: sources and distribution control. Marine Geology, vol. 163, p. 13-26.
- Loring D.H., Næs K., Dahle S., Matishov G.G. and Illin G., 1995. Arsenic, trace metals, and organic micro pollutants in sediment from the Pechora Sea, Russia. Marine Geology, vol. 128, p. 153-167.
- MacDonald R. W., Bidleman T. F. and 24 others, 2000. Contaminants in the Canadian Arctic: 5 years of progress in understanding sources, occurrence and pathways, Science of the total environment, vol. 254 (2-3), p. 93-234.

- MacDonald RW and Fyfe J. 2005. Recent climate change in the Arctic and its impact on contaminant pathways and interpretation of temporal trend data, Science of the total environment vol. 342 (1-3), p. 5-86.
- Martin, A.J. and Pedersen, T.F., 2002 Seasonal and interannual mobility of arsenic in a lake impacted by metal mining. Environmental Science and Technology 36 (7) 1516-1523.
- Matrai, P.A., Vernet, M. 1997. Dynamics of the vernal bloom in the marginal ice zone of the Barents Sea: Dimethyl sulfide and dimethylsulfoniopropionate budgets. Journal of Geophysical Research Oceans 102 (C10): 22965-22979
- Midtun, 1985. Midtun, L. 1985. Formation of dense bottom water in the Barents Sea. Deep Sea Research, Vol. 32, No. 10, pp. 1233-1241.
- Nuernberg C. C., Bohrmann G., Schlueter M. and Frank M., 1997. Barium accumulation in the Atlantic sector of the Southern Ocean: Results from 190,000-year records, Paleoceanography, vol. 12 (4), p. 594-603
- Olli K., Riser C.W., Wassmann P., Ratkova T., Arashkevich E., Pasternak, A., 2002 Seasonal variation in vertical flux of biogenic matter in the marginal ice zone and the central Barents Sea. Journal of Marine Systems 38 (1-2): 189-204
- Ottesen R.T., Kjeldsen, S., and Volden, T., 1988. Geokjemisk kartlegging på Svalbard -Totalinnhold av grunnstoffer i flomsedimenter. (In Norwegian). NGU-report 88.002, 11 p. + appendices
- Ottesen R.T., Bogen J., Bølviken B., Volden T. and Haugland, T., 2000. Geochemical atlas of Norway, part 1: Chemical composition of overbank sediments (In Norwegian, English summary). NGU, 140 pp.
- Reigstad M., Wexels Riser, C., Øygarden S., Wassmann P. and Rey, F., 2002. Variation in hydrography, nutrients and suspended biomass in the marginal ice zone and the central Barents Sea. Journal of Marine Systems, vol. 38, p. 9-29.
- Reimann C., Äyräs M., Chekushin V., Bogatyrev I., Boyd R., Caritat P. de, Dutter R., Finne T. E., Halleraker J. H., Jæger Ø., Kashulina G., Lehto O., Niskavaara H., Pavlov V., Räisänen M. L., Strand T. and Volden T., 1997. Environmental geochemical atlas of the Central Barents Region. NGU GTK CKE special publication. 745 pages.
- Riser C.W., Wassmann P., Olli K., Pasternak A. and Arashkevich, E., 2002. Seasonal variation in production, retention and export of zooplankton faecal pellets in the marginal ice zone and central Barents Sea. Journal of Marine Systems, vol. 38 (1-2), p. 175-188.
- Sakshaug, E. and Skjoldal, H.R. 1989. Life at the ice edge. Ambio, vol. 18 (1), p. 60-67.
- Savinov V., Savinova T. and Evenset A., 1999. Transport of contaminants from land to sea: a literature search. Akvaplan-niva report no. APN414.1808, 45 pages and appendix.
- Schauer U., 1995. The release of brine-enriched shelf water from Storfjord into the Norwegian Sea. Journal of Geophysical Research, vol. 100, p. 16015-16028.
- SFT, 1997. Classification of environmental quality in fjords and coastal waters. A guide. Norwegian Pollution Control Authority (SFT) report no. 97:03, 36 pages (in Norwegian).
- Stein & MacDonald, 2004 Stein, R., and Macdonald, R.W. (200a), The organic carbon cycle in the Arctic Ocean, 363 p., Springer Verlag, Berlin Heidelberg New York.
- Steinsund P.I. and Hald M., 1994. Calcium carbonate dissolution in the Barents Sea: Paleoceanographic applications. Marine Geology, vol. 117, p. 303-316.

- Sternberg R.W., Aagaard K., Caccione D., Wheatcroft R.A., Beach R.A., Roach A.T., Marsden M.A.H. 2001. Long-term near-bed observations of velocity and hydrographic properties in the northwest Barents Sea with implications for sediment transport. Continental Shelf Research vol. 21, p. 509-529.
- Sæther O. M., Faye G., Thorsnes T., Rise L., Longva O. and Bøe R., 1996. Regional distribution of manganese, phosphorus, heavy metals, barium, and carbon in sea bed sediments (0-2 cm) from the northern part of the Norwegian Skagerrak. Geological Survey of Norway Bull., no. 430, p. 103-112.
- Thorsnes T. and Klungsøyr J., 1997. Contamination of Skagerrak sediments due to man-made inputs during the last 200 years. In: O. Longva and T. Thorsnes (Editors), Skagerrak in the past and at the present an integrated study of geology, chemistry, hydrography and microfossil ecology. Geological Survey of Norway. Special Publication, vol. 8, p. 52-79.
- Vetrov, A., and Romankevich, E. (2003), The Barents Sea: Distribution, sources, variability and burial of organic carbon, in *The organic carbon cycle in the Arctic Ocean* edited by R. Stein and R.W. Macdonald, p. 266-278, Springer, Berlin Heidelberg.
- Vogt C., Knies J., Spielhagen R.F., and Stein R., 2001. Detailed mineralogical evidence for two nearly identical glacial/deglacial cycles and Atlantic water advection to the Arctic Ocean during the last 90,000 years: Global and Planetary Change, vol. 31, p. 23-44.
- Wahsner M., Mueller C., Stein R., Ivanov G., Levitan M., Shelekhova E., and Tarasov G., 1999. Clay-mineral distribution in surface sediments of the Eurasian Arctic Ocean and continental margin as indicator for source areas and transport pathways -- A synthesis: Boreas, vol. 28, p. 215-233.
- Wassmann P., Ratkova T.N., Andreassen I., Vernet M., Pedersen G. and Rey F., 1999. Spring bloom development in the marginal ice zone and the central Barents Sea. Marine Ecology, vol. 20, p. 321-346.
- Welch H.E., Bergmann, M.A., Siferd, T.D., Martin, K.A., Curtis, M.F. and Crawford R.E., 1992. Energy flow through the marine ecosystem of the Lancaster Sound region. Arctic Canada. Arctic vol. 45, p. 343-357.
- Winkelmann & Knies J., 2005. Recent distribution and accumulation of organic carbon on the continental margin west off Spitsbergen. *Geochemistry, Geophysics, Geosystems*, Vol. 6, No. 9, Q09012, doi: 10.1029/2005GC000916.
- Wright, P.L., 1974, Recent sediments of the southwestern Barents Sea: Marine Geology, vol. 16, p. 51-81.
- Xu, R., 2000. Characterization: Light Scattering Methods, 356 pp., Kluwer Academic Press, Norwell, Massachusetts.

Figure 1. The Barents Sea ocean currents and approximate location of the marginal ice zone (MIZ) during winter season. The ocean currents distributions are based on Sakshaug and Skjoldal (1989).

Figure 2. Schematic presentation of different depositional settings in different parts of the Barents Sea. (I) The southwestern part of the Barents Sea is strongly influenced by the North Atlantic Current (NAC) and the Norwegian Coastal Current (NCC). (II) The Storfjord Trough sedimentary environment is dominated by erosion of Spitsbergen sediments released by smelting of the glaciers eroding the substrate. (III) Northern Barents Sea is influenced by release of material from smelting sea ice in the marginal ice zone (MIZ), ocean currents delivering nutrients for planktonic organisms and the formation of a stable low-saline toplayer in the photic zone (halocline).

Figure 3. The Institute of Marine Research 2003 and 2004 sample stations covering large parts of the Barents Sea. A total of 73 sample stations are included in the study. HMMV shown in the map is the abbreviation for Håkon Mosby Mud Volcano.

Figure 4. Grain-size distribution of the 0-1 cm sediment samples from combined sieving and Coulter analysis.

Figure 5. The mud fraction, i.e. the combined clay and silt fractions (< 63 μ m percentages) for the 0 – 1 cm samples.

Figure 6. Clay mineralogy. Illite concentration in percent of the clay mineral assemblage (<2 μ m grain-size) of the 0 – 1 cm samples.

Figure 7. Clay mineralogy. Kaolinite percentage of the clay mineral assemblage (<2 μ m sediment fraction) in the 0 – 1 cm samples.

Figure 8. Clay mineralogy. Smectite percentage of the clay mineral assemblage (<2 μ m sediment fraction) in the 0 – 1 cm samples.

Figure 9. Clay mineralogy. Chlorite percentage of the clay mineral assemblage (<2 μ m sediment fraction) in the 0 – 1 cm samples.

Figure 10. Total organic carbon content (TOC) in the 0-1 cm samples, derived from LECO analysis.

Figure 11. Carbonate concentrations (weight percent) in 0-1 cm samples, derived from LECO combustion.

Figure 12. Mercury (Hg) concentrations in mg/kg dry-weight sediment in the 0-1 cm samples. All samples have concentrations within the Norwegian Pollution Control Authority (SFT) class I (0,150 mg/kg sediment) limits (no – insignificant contamination level).

Figure 13. Lead (Pb) concentrations in mg/kg dry-weight sediment in the 0-1 cm samples. All samples have concentrations within the Norwegian Pollution Control Authority (SFT) class I (30 mg/kg sediment) limits (no – insignificant contamination level).

Figure 14. Arsenic (As) concentrations in mg/kg dry-weight sediment in the 0-1 cm sediment samples. Two samples are within the Norwegian Pollution Control Authority (SFT) class III (80 - 400 mg/kg sediment) limits, i.e. marked pollution level. Nine samples are within class II (20 - 80 mg/kg sediment) limits, i.e. moderate levels. The remaining 62 samples are all within class I (< 20 mg/kg sediment), i.e. no or insignificant levels of arsenic.

Figure 15. Nickel (Ni) concentrations in the 0-1 cm samples range from 9.0 to 42.1mg/kg sediment. Twenty-eight samples are within the Norwegian Pollution Control Authority (SFT) class II (30 - 130 mg/kg sediment) limits, i.e. marked pollution level. The remaining 45 samples are within class I, i.e. no or insignificant pollution level.

Figure 16. Barium (Ba) concentrations in 0 – 1sediment samples range from 30,8 to 1090 mg/kg sediment. Highest concentration is sample location no. 8 in the Håkon Mosby mud volcano area. The second highest Ba-concentration is 330mg/kg sediment, which is a sample from the Snøhvit area (sample location 38). Statoil has reported that Ba has been used during drilling operation in the 7121/5-3 well in 2001. A total of 88 tonnes of barite was emitted during this drilling operation.

Figure 17. Q-mode analysis cluster diagram (factor 1 vs. factor 2).

Figure 18. Q-mode analysis cluster diagram (factor 1 vs. factor 3).

Figure 19. Q-mode analysis cluster diagram (factor 2 vs. factor 3).

Figure 20. R-mode analysis cluster diagram (factor 1 vs. factor 2).

Figure 21. R-mode analysis cluster diagram (factor 1 vs. factor 3).

Figure 22. R-mode analysis cluster diagram (factor 2 vs. factor 3).

Barents Sea marine sediment samples geochemistry

Appendix 1

Sample station data and analytical data (grain-size, LECO, ICP-AES, CV-AAS, XRF, XRD) for IMR 2003cruise 0 – 1 cm sediment samples

METODE (Fullstendig beskrivelse gitt i NGU-SD 5.11)

Kornfordelingsbestemmelse basert på laserdiffraksjon. Laserlys brytes i bestemte vinkler avhengig av størrelsen på partiklene, som igjen registreres av en rekke detektorer. De registrerte vinklene korresponderer med gitte partikkelstørrelser, antall partikler med en gitt størrelse er igjen relatert til intensitet for korresponderende detektorer. Kornfordelingen bestemmes således på volum-basis, med antagelse om samme tetthet på materialet vil kumulativ volum% være identisk med kumulativ masse%. Beregning på volum/masse-basis er basert på antagelse om sfæriske partikler.

INSTRUMENT TYPE : Coulter LS 200

- MÅLEOMRÅDE: 0.4µm-2000µm
- NB! Metoden normaliserer alle data i måleområdet til 100 % (kumulativ%). Måleområdet går kun til 0.4 μm og dette settes som nullpunkt mhp.kumulativ %. Således kan prøvene inneholde materiale finere enn 0.4μm.

ANALYSEUSIKKERHET: ± 3% [kumulativ masse(volum) %]

Bestemmelse av usikkerhet er basert på sammenligning av oppnådde resultater og sertifikatverdier for kvarts standard BCR 131, samt presisjonsdata.

MERK! Metoden tar utgangspunkt i antagelse om sfæriske partikler. For prøver som avviker fra dette kan usikkerheten være større.

PRESISJON : Det kjøres rutinemessig kontrollprøver, som føres i kontrolldiagram (X-diagram). Disse kan forevises om ønskelig.

ANTALL PRØVER: 29

FORBEHANDLING : Se Tabell 2

ANTALL SIDER (denne delrapport): 6 + 29 vedlegg (Plott av kumulativ kornfordeling med div. statistiske parametre)

ANMERKNINGER: Data for fraksjoner >2000 µm er fremkommet fra gravimetriske bestemmelser.

Rapporten må ikke gjengis i utdrag uten skriftlig godkjenning fra NGU-Lab.

Ferdig analysert	12.04.2005	Wieslawa Koziel
	Dato	OPERATØR

Norges geologiske undersøkelseKORNFORDELINGSANALYSE : COULTER LASER7491TRONDHEIM715.: 73 90 40 11GEOLOGISK MATERIALE716.: 73 92 16 20Analysekontraktsnr: 2005.0013

Tabell 1 Kumulativ (<) kornfordeling [(volum%(masse%)]

Prøve nr.→															
Diameter(µm)	625	627	329	631	633	635	639	643	645	647	649	651	653	655	657
0.375	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0.412	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0.452	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0.496	0.00014	0.00021	0.000086	0.00011	0	0	0	0	0	0	0	0	0.00013	0.000099	0.000020
0.545	0.0024	0.0029	0.0018	0.0023	0	0.000021	0	0	0	0.00025	0.00024	0.00010	0.0025	0.0020	0.00058
0.598	0.016	0.017	0.014	0.017	0.00021	0.0013	0.00086	0.00065	0.00029	0.0047	0.0041	0.0025	0.018	0.015	0.0048
0.657	0.060	0.056	0.055	0.068	0.0028	0.012	0.011	0.0090	0.0041	0.033	0.027	0.020	0.071	0.060	0.021
0.721	0.16	0.13	0.15	0.18	0.016	0.060	0.067	0.055	0.025	0.12	0.100	0.082	0.19	0.16	0.060
0.791	0.32	0.26	0.32	0.39	0.053	0.18	0.21	0.18	0.083	0.32	0.25	0.23	0.39	0.34	0.13
0.869	0.57	0.44	0.58	0.71	0.12	0.40	0.50	0.44	0.20	0.66	0.52	0.49	0.72	0.62	0.24
0.953	0.93	0.70	0.96	1.18	0.24	0.75	0.95	0.85	0.39	1.18	0.91	0.89	1.18	1.02	0.41
1.047	1.42	1.04	1.48	1.81	0.40	1.24	1.59	1.46	0.67	1.91	1.47	1.46	1.80	1.57	0.63
1.149	2.05	1.47	2.15	2.62	0.62	1.91	2.47	2.28	1.05	2.87	2.20	2.22	2.61	2.28	0.92
1.261	2.83	2.00	2.97	3.63	0.90	2.76	3.57	3.33	1.54	4.09	3.13	3.19	3.60	3.15	1.28
1.385	3.75	2.62	3.95	4.81	1.24	3.79	4.92	4.62	2.13	5.56	4.24	4.36	4.78	4.19	1.70
1.520	4.79	3.32	5.06	6.16	1.63	4.98	6.48	6.12	2.82	7.24	5.52	5.71	6.13	5.37	2.19
1.669	5.95	4.09	6.28	7.65	2.07	6.30	8.23	7.79	3.59	9.11	6.94	7.22	7.61	6.67	2.72
1.832	7.19	4.92	7.59	9.24	2.55	7.73	10.1	9.59	4.43	11.1	8.46	8.84	9.20	8.06	3.29
2.010	8.49	5.79	8.96	10.9	3.05	9.22	12.1	11.5	5.30	13.2	10.1	10.5	10.9	9.52	3.90
2.207	9.84	6.68	10.4	12.6	3.57	10.8	14.1	13.4	6.19	15.4	11.7	12.3	12.6	11.0	4.51
2.423	11.2	7.59	11.8	14.3	4.10	12.3	16.2	15.4	7.10	17.5	13.4	14.1	14.4	12.5	5.14
2.660	12.6	8.51	13.2	16.0	4.64	13.9	18.2	17.4	8.02	19.7	15.1	15.9	16.1	14.1	5.78
2.920	14.0	9.44	14.7	17.8	5.19	15.5	20.3	19.4	8.94	22.0	16.8	17.7	17.9	15.6	6.43
3.206	15.5	10.4	16.2	19.6	5.75	17.1	22.5	21.4	9.89	24.3	18.6	19.6	19.8	17.2	7.09
3.519	17.0	11.4	17.7	21.4	6.33	18.7	24.7	23.6	10.9	26.6	20.4	21.5	21.7	18.9	7.78
3.862	18.5	12.3	19.3	23.3	6.92	20.4	26.9	25.7	11.9	29.1	22.3	23.4	23.7	20.5	8.48
4.241	20.1	13.4	20.9	25.2	7.53	22.1	29.2	27.9	12.9	31.6	24.2	25.4	25.7	22.3	9.21
4.656	21.7	14.4	22.6	27.2	8.15	23.9	31.6	30.2	13.9	34.1	26.2	27.5	27.8	24.1	9.96
5.111	23.3	15.4	24.3	29.3	8.79	25.7	34.0	32.5	15.0	36.8	28.2	29.6	29.9	25.9	10.7
5.611	25.0	16.5	26.1	31.4	9.44	27.5	36.5	34.9	16.1	39.5	30.3	31.8	32.1	27.8	11.5

Basert på Forside-mal versjon 2.1 endret 10.4.2002

Tlf.: 73 90 40 11

Telefaks: 73 92 16 20

Norges geologiske undersøkelse KORNFORDELINGSANALYSE : COULTER LASER 7491 TRONDHEIM

GEOLOGISK MATERIALE Analysekontraktsnr: 2005.0013

NGU-Lab

6.158 26.7 27.9 33.6 29.4 39.0 37.3 17.2 42.2 32.4 33.9 29.7 17.6 10.1 34.4 12.3 28.5 6.761 18.8 29.7 35.8 10.7 31.2 41.4 39.7 18.3 45.0 34.6 36.0 36.7 31.7 13.1 7.421 30.2 19.9 31.6 38.1 11.4 33.0 43.9 42.0 19.4 47.7 36.7 38.1 39.0 33.7 14.0 32.0 8.147 21.1 33.5 40.4 12.0 34.8 46.3 44.3 20.5 50.4 38.8 40.2 41.4 35.8 14.8 33.8 8.944 22.3 35.4 42.7 12.7 36.6 48.7 46.6 21.5 53.1 41.0 42.2 43.8 37.8 15.6 9.819 35.6 23.5 45.0 13.3 22.5 44.2 40.0 37.4 38.4 51.0 48.8 55.7 43.1 46.2 16.4 10.78 37.5 47.5 13.9 53.3 50.9 23.5 58.3 46.1 42.1 17.3 24.8 39.4 40.1 45.2 48.7 11.83 39.5 26.1 41.4 50.0 14.5 41.9 55.6 53.0 24.4 60.8 47.3 47.9 51.3 44.4 18.1 12.99 41.5 27.6 43.6 52.6 15.1 43.6 57.9 55.1 25.3 63.4 49.5 49.8 54.0 46.7 19.0 43.7 14.26 29.2 45.8 55.4 15.7 45.5 60.2 57.3 26.3 66.0 51.7 51.7 56.9 49.1 19.9 15.65 46.1 30.9 48.3 58.3 16.4 47.4 62.6 59.5 27.2 68.7 54.0 53.7 60.1 51.8 20.9 17.18 48.7 61.5 17.0 65.1 28.2 54.6 22.0 32.8 50.8 49.4 61.8 71.5 56.5 55.8 63.4 18.86 51.5 64.9 67.7 64.2 29.2 74.3 59.0 57.8 66.9 57.5 23.2 34.9 53.5 17.7 51.5 59.8 20.70 54.4 37.2 56.3 68.3 18.4 53.5 70.2 66.5 30.1 77.0 61.5 70.3 60.5 24.4 22.73 57.5 39.6 59.1 71.7 19.0 55.5 72.6 68.7 31.0 79.5 63.8 61.7 73.6 63.5 25.6 60.6 24.95 42.1 62.0 74.8 19.5 57.4 74.8 70.7 31.7 81.7 65.9 63.3 76.6 66.4 26.9 27.38 63.7 44.7 64.7 77.7 20.0 59.2 76.8 72.5 32.3 83.6 67.8 64.7 79.5 69.3 28.3 30.07 66.9 47.5 67.5 80.4 20.4 60.9 78.6 74.1 32.8 85.3 69.4 66.0 82.3 72.0 29.6 33.00 70.2 82.9 33.3 74.6 50.5 70.1 20.8 62.6 80.2 75.6 86.7 70.9 67.2 85.2 31.0 36.24 73.4 85.2 33.7 72.1 76.9 53.6 72.7 21.2 64.3 81.8 77.1 87.9 68.2 88.0 32.4 39.77 76.6 56.9 75.1 87.4 21.5 66.0 83.3 78.5 34.1 88.9 73.4 69.3 90.5 79.1 34.0 43.66 79.8 60.4 77.5 89.5 21.9 67.8 84.7 80.1 34.6 89.8 74.5 70.3 92.5 81.0 35.7 47.93 82.9 64.1 79.8 91.4 22.2 69.5 86.2 81.7 35.0 90.7 75.6 71.4 93.8 82.8 37.7 52.63 85.9 67.9 82.1 92.8 22.6 71.3 87.6 83.5 35.5 91.4 76.5 72.5 94.4 84.5 39.9 57.77 88.7 71.7 93.8 23.0 73.1 89.0 85.3 35.8 92.2 77.1 73.6 86.0 42.3 84.3 94.6 63.00 91.2 75.2 86.4 94.3 23.4 74.7 90.3 87.0 36.0 92.8 77.6 74.6 94.6 87.3 44.8 125.0 96.6 94.5 96.8 98.5 36.0 87.3 95.2 95.8 45.7 96.5 90.0 91.3 98.3 94.3 74.8 97.5 250.0 99.2 98.7 99.6 47.5 92.0 98.1 98.1 57.3 98.6 96.7 97.6 99.1 97.2 88.7 500.0 98.0 99.7 99.3 99.8 52.7 92.8 98.9 98.8 62.2 99.2 98.2 98.8 99.3 97.9 92.2 1000 98.4 100 99.5 99.9 57.1 93.2 99.2 99.1 66.0 99.5 98.6 99.1 99.5 98.3 94.2 99.2 2000 99.6 100 64.5 94.2 99.5 99.4 74.5 99.7 98.8 99.3 99.7 99.0 96.0 4000 99.5 100 72.3 97.3 100 100 89.6 100 99.0 100 100 100 98.0 8000 100 83.6 100 100 100 100 16000 100

Norges geologiske undersøkelseKORNFORDELINGSANALYSE : COULTER LASER7491TRONDHEIMTlf.: 73 90 40 11GEOLOGISK MATERIALETelefaks: 73 92 16 20Analysekontraktsnr: 2005.0013

Prøve nr.→														
Diameter(μm) ↓	659	661	663	665	667	669	671	673	675	677	679	681	690	692
0.375	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0.412	0	0	0	0.0016	0	0	0	0	0	0	0	0	0	0
0.452	0	0	0	0.0039	0	0	0	0	0	0	0	0	0	0
0.496	0.00020	0.000088	0.000026	0.0087	0.000070	0.00013	0	0	0	0	0	0	0.00016	0.000022
0.545	0.0026	0.0018	0.00047	0.020	0.0012	0.0023	0.00045	0.000050	0.000036	0.000037	0.000095	0.000082	0.0026	0.00047
0.598	0.015	0.013	0.0033	0.048	0.0081	0.016	0.0063	0.0011	0.0010	0.0016	0.0024	0.0015	0.017	0.0036
0.657	0.046	0.053	0.012	0.10	0.030	0.059	0.037	0.0085	0.0085	0.014	0.018	0.011	0.062	0.014
0.721	0.10	0.14	0.033	0.19	0.078	0.15	0.12	0.034	0.036	0.067	0.076	0.040	0.16	0.039
0.791	0.19	0.31	0.068	0.32	0.16	0.32	0.29	0.092	0.10	0.19	0.21	0.10	0.32	0.084
0.869	0.33	0.56	0.12	0.50	0.29	0.57	0.56	0.20	0.22	0.43	0.45	0.21	0.56	0.15
0.953	0.51	0.92	0.20	0.75	0.47	0.93	0.95	0.35	0.41	0.80	0.81	0.38	0.91	0.25
1.047	0.75	1.42	0.31	1.08	0.71	1.42	1.48	0.58	0.67	1.32	1.33	0.62	1.38	0.39
1.149	1.05	2.05	0.44	1.48	1.02	2.04	2.18	0.88	1.02	2.03	2.03	0.94	1.98	0.56
1.261	1.41	2.85	0.61	1.97	1.41	2.82	3.06	1.26	1.47	2.92	2.91	1.34	2.72	0.78
1.385	1.84	3.79	0.81	2.53	1.86	3.73	4.09	1.72	2.01	4.01	3.98	1.82	3.58	1.04
1.520	2.33	4.86	1.04	3.16	2.38	4.77	5.28	2.25	2.64	5.27	5.21	2.37	4.56	1.33
1.669	2.86	6.05	1.29	3.86	2.95	5.92	6.59	2.84	3.33	6.67	6.57	2.98	5.63	1.65
1.832	3.44	7.34	1.56	4.59	3.55	7.15	7.99	3.47	4.08	8.19	8.04	3.64	6.76	1.99
2.010	4.04	8.69	1.85	5.37	4.19	8.44	9.46	4.14	4.87	9.79	9.57	4.32	7.93	2.35
2.207	4.67	10.1	2.14	6.16	4.84	9.76	11.0	4.83	5.68	11.4	11.1	5.02	9.13	2.72
2.423	5.31	11.5	2.45	6.96	5.51	11.1	12.5	5.52	6.51	13.1	12.7	5.73	10.3	3.09
2.660	5.97	13.0	2.76	7.78	6.18	12.5	14.1	6.23	7.34	14.8	14.3	6.44	11.5	3.47
2.920	6.64	14.4	3.08	8.61	6.86	13.9	15.6	6.95	8.19	16.5	15.9	7.17	12.7	3.86
3.206	7.33	16.0	3.40	9.46	7.56	15.3	17.3	7.69	9.06	18.3	17.6	7.90	14.0	4.26
3.519	8.04	17.5	3.75	10.3	8.28	16.8	18.9	8.45	9.96	20.2	19.3	8.66	15.2	4.66
3.862	8.76	19.2	4.10	11.2	9.02	18.3	20.6	9.24	10.9	22.0	21.0	9.44	16.6	5.08
4.241	9.51	20.8	4.48	12.1	9.79	19.8	22.4	10.1	11.8	24.0	22.8	10.2	17.9	5.52
4.656	10.3	22.5	4.86	13.1	10.6	21.4	24.2	10.9	12.8	26.0	24.6	11.1	19.3	5.97
5.111	11.1	24.3	5.26	14.0	11.4	23.1	26.1	11.8	13.8	28.0	26.4	11.9	20.7	6.43
5.611	11.9	26.2	5.68	15.0	12.2	24.8	28.0	12.6	14.8	30.1	28.3	12.8	22.2	6.90
6.158	12.7	28.0	6.10	16.0	13.1	26.6	30.0	13.5	15.9	32.2	30.2	13.6	23.6	7.39

Basert på Forside-mal versjon 2.1 endret 10.4.2002

7491 TRONDHEIM

Telefaks: 73 92 16 20

Tlf.: 73 90 40 11

Norges geologiske undersøkelse KORNFORDELINGSANALYSE : COULTER LASER

GEOLOGISK MATERIALE Analysekontraktsnr: 2005.0013

NGU-Lab

6.761 13.5 29.9 6.53 17.1 28.4 32.0 16.9 32.1 14.5 7.88 14.0 14.4 34.4 25.1 14.4 7.421 31.9 6.97 18.1 14.9 30.2 34.1 15.3 17.9 36.4 33.9 15.3 26.6 8.37 8.147 15.2 33.8 7.40 19.2 15.8 32.1 36.2 16.2 19.0 38.5 35.7 16.2 28.0 8.87 16.1 8.944 35.9 7.84 20.3 16.7 34.1 38.3 17.1 20.0 40.6 37.5 17.0 29.5 9.37 17.0 9.819 37.9 8.28 21.5 17.7 36.1 40.5 18.0 21.0 42.6 39.2 17.8 30.9 9.88 10.78 17.9 40.0 8.73 22.7 18.6 38.1 42.7 22.0 18.9 44.6 40.9 18.6 32.3 10.4 11.83 18.9 42.2 9.18 24.0 19.7 40.2 44.9 19.7 23.0 42.6 19.4 33.8 10.9 46.6 12.99 20.0 44.5 9.66 25.4 20.8 42.5 47.3 20.6 24.0 48.5 44.2 20.2 35.3 11.5 14.26 21.1 26.9 47.0 10.2 21.9 44.8 49.8 21.6 25.1 50.6 46.0 21.0 36.8 12.1 22.3 15.65 49.7 10.7 28.5 23.2 47.4 52.5 22.6 26.2 52.7 47.8 21.8 38.5 12.7 17.18 23.7 52.6 11.3 30.3 24.6 50.1 55.3 23.6 27.4 54.9 49.7 22.7 40.3 13.4 25.2 18.86 12.0 32.2 26.1 52.9 58.2 24.7 28.6 23.6 55.7 57.2 51.6 42.1 14.1 20.70 26.8 34.3 27.7 55.8 25.8 29.8 59.4 53.5 58.9 12.7 61.1 24.5 43.9 14.8 22.73 28.5 62.2 13.4 36.5 29.3 58.8 64.0 26.9 31.0 61.6 55.3 25.4 45.7 15.5 24.95 30.3 65.6 14.1 38.9 31.0 61.7 66.6 27.9 32.2 63.6 57.0 26.2 47.5 16.3 27.38 32.2 69.0 14.9 41.3 32.7 64.5 69.1 29.0 33.4 65.4 58.6 27.0 49.2 17.0 30.07 34.3 72.3 15.6 43.9 34.5 67.2 71.4 30.0 34.5 67.2 60.1 27.8 50.8 17.8 33.00 36.5 75.7 16.4 46.6 36.2 69.8 73.4 31.0 35.6 68.8 61.5 28.6 52.5 18.5 36.24 38.9 78.9 38.0 72.2 75.2 32.1 17.3 49.4 36.7 70.4 62.8 29.3 54.2 19.3 39.77 41.5 82.1 52.5 76.8 37.9 30.2 18.1 39.7 74.4 33.2 71.9 64.2 55.8 20.1 43.66 44.4 85.3 19.1 55.8 41.4 76.4 78.2 34.3 39.2 73.4 65.5 31.1 57.6 21.0 47.93 47.7 88.2 20.0 59.4 43.2 78.3 79.5 35.6 40.5 74.9 66.7 32.2 59.4 21.9 52.63 51.2 91.0 21.1 63.3 44.9 80.0 80.5 36.9 42.0 76.4 67.9 33.4 61.3 22.8 57.77 55.0 93.5 22.2 67.3 46.7 81.5 81.5 38.3 43.6 77.8 69.0 34.7 63.3 23.8 58.6 63.00 95.6 23.2 71.2 82.7 82.2 39.7 45.1 79.0 70.0 36.1 48.3 65.2 24.8 125.0 86.5 98.8 66.6 95.1 69.3 88.8 87.7 56.4 62.2 87.5 74.5 71.9 82.8 41.8 250.0 97.3 99.4 93.2 99.1 83.9 96.1 92.1 79.9 71.5 92.3 79.3 83.7 95.8 68.3 500.0 98.9 99.7 96.4 99.6 88.5 97.8 94.2 87.1 74.0 94.6 81.9 86.0 98.2 74.6 1000 99.4 99.9 98.0 99.9 92.0 98.6 96.3 91.2 76.6 96.5 83.4 87.8 98.9 78.6 2000 99.8 100 99.4 100 96.0 99.1 98.2 93.9 80.8 98.7 86.7 90.8 99.4 82.6 4000 100 100 98.6 99.6 100 98.1 88.2 100 89.7 94.7 100 86.5 8000 100 100 93.3 100 100 100 95.7 16000 100 100

Norges geologiske undersøkelseKORNFORDELINGSANALYSE : COULTER LASER7491TRONDHEIMTlf.: 73 90 40 11GEOLOGISK MATERIALETelefaks: 73 92 16 20Analysekontraktsnr: 2005.0013

Tabell 2 Forbehandling, kommentarer, resultatfil m.m

Sample ID:	File name:	Comments:	Group ID:	Operator:
625	625#a.\$02	Innvekt 0.19g, ultralyd.	2005.0013	Wieslawa Koziel
627	627a.\$02	Innvekt 0.23g, ultralyd.	2005.0013	Wieslawa Koziel
329	329a.\$02	Innvekt 0.20g, ultralyd.	2005.0013	Wieslawa Koziel
631	631a.\$02	Innvekt 0.22g, ultralyd.	2005.0013	Wieslawa Koziel
633	633#a.\$02	Innvekt 0.17g, ultralyd.	2005.0013	Wieslawa Koziel
635	635a.\$02	Innvekt 0.19g, ultralyd.	2005.0013	Wieslawa Koziel
639	639a.\$02	Innvekt 0.19g, ultralyd.	2005.0013	Wieslawa Koziel
643	643a.\$02	Innvekt 0.20g, ultralyd.	2005.0013	Wieslawa Koziel
645	645a.\$02	Innvekt 0.19g, ultralyd.	2005.0013	Wieslawa Koziel
647	647#a.\$02	Innvekt 0.18g, ultralyd.	2005.0013	Wieslawa Koziel
649	649a.\$02	Innvekt 0.18g, ultralyd.	2005.0013	Wieslawa Koziel
651	651a.\$02	Innvekt 0.19g, ultralyd.	2005.0013	Wieslawa Koziel
653	653a.\$02	Innvekt 0.18g, ultralyd.	2005.0013	Wieslawa Koziel
655	655#a.\$02	Innvekt 0.18g, ultralyd.	2005.0013	Wieslawa Koziel
657	657a.\$02	Innvekt 0.24g, ultralyd.	2005.0013	Wieslawa Koziel
659	659a.\$02	Innvekt 0.25g, ultralyd.	2005.0013	Wieslawa Koziel
661	661a.\$02	Innvekt 0.20g, ultralyd.	2005.0013	Wieslawa Koziel
663	663a.\$02	Innvekt 0.23g, ultralyd.	2005.0013	Wieslawa Koziel
665	665a.\$02	Innvekt 0.25g, ultralyd.	2005.0013	Wieslawa Koziel
667	667#a.\$02	Innvekt 0.22g, ultralyd.	2005.0013	Wieslawa Koziel
669	669a.\$02	Innvekt 0.20g, ultralyd.	2005.0013	Wieslawa Koziel
671	671a.\$02	Innvekt 0.19g, ultralyd.	2005.0013	Wieslawa Koziel
673	673a.\$02	Innvekt 0.18g, ultralyd.	2005.0013	Wieslawa Koziel
675	675a.\$02	Innvekt 0.19g, ultralyd.	2005.0013	Wieslawa Koziel
677	677a.\$02	Innvekt 0.18g, ultralyd.	2005.0013	Wieslawa Koziel
679	679a.\$02	Innvekt 0.18g, ultralyd.	2005.0013	Wieslawa Koziel
681	681#a.\$02	Innvekt 0.21g, ultralyd.	2005.0013	Wieslawa Koziel
690	690a.\$02	Innvekt 0.22g, ultralyd.	2005.0013	Wieslawa Koziel
692	692a.\$02	Innvekt 0.19g, ultralyd.	2005.0013	Wieslawa Koziel

BESTEMMELSE AV TOTAL KARBON(TC) / TOTAL SVOVEL(TS) / TOTAL ORGANISK KARBON (TOC) (LECO OVN)

INSTRUMENT TYPE :

Leco SC-444

I) TOTAL KARBON (TC)

Nedre bestemmelses grense [% C]: 0,07

7491 TRONDHEIM

Telefaks: 73 92 16 20

Tlf.: 73 90 40 00

Analyse usikkerhet

Måleområdet / %	Usikkerhet
0.07-3.0	± 0.07 %
>3.0	± 2.5 % rel.

II) TOTAL SVOVEL (TS)

Nedre bestemmelses grense [% S]: 0,01

Analyse usikkerhet

Måleområdet / %	Usikkerhet
0.01-1.0	± 20 % rel.
>1.0	± 10 % rel.

III) TOTAL ORGANISK KARBON (TOC)

Nedre bestemmelses grense [% TOC]: 0,1

Analyse usikkerhet

Måleområdet / %	Usikkerhet
0.1-3.0	± 15 % rel.
>3.0	± 10 % rel.

PRESISJON : Det kjøres rutinemessig kontrollprøver, som føres i kontrolldiagram (X-diagram). Disse kan forevises om ønskelig.

ANTALL PRØVER: 29

ANMERKNINGER: Ingen

Rapporten må ikke gjengis i utdrag uten skriftlig godkjenning fra NGU-Lab.

 Ferdig analysert
 10.03.05
 Anne Nordtømme

 Dato
 OPERATØR

TOTAL KARBON/TOTAL SVOVEL/TOTAL ORGANISK KARBON Geologisk materiale ANALYSEKONTRAKTNR. 2005.0013

Prøve id.	Svovel	Karbon	TOC		
	[%]	[%]	[%]		
St.625	0,09	1,60	0,82		
St.627	0,07	1,20	0,62		
St.329	0,08	1,71	1,39		
St.631	0,13	2,16	1,82		
St.633	0,06	1,44	1,26		
St.635	0,11	2,67	2,45		
St.639	0,12	2,86	2,74		
St.643	0,07	2,35	2,24		
St.645	0,08	2,34	2,20		
St.647	0,11	2,55	2,45		
St.649	0,12	2,46	2,12		
St.651	0,11	2,33	2,08		
St.653	0,07	2,03	1,73		
St.655	0,08	1,81	1,53		
St.657	0,04	0,81	0,43		
St.659	0,05	1,03	0,48		
St.661	0,09	1,43	0,71		
St.663	0,03	0,88	0,33		
St.665	0,04	1,14	0,78		
St.667	0,05	1,02	0,84		
St.669	0,06	1,67	1,37		
St.671	0,07	1,95	1,77		
St.673	0,06	1,44	1,28		
St.675	0,08	1,98	1,80		
St.677	0,19	2,05	1,91		
St.679	0,08	1,98	1,82		
St.681	0,05	1,10	1,04		
St.690	0,06	0,72	0,39		
St.692	0,02	0,45	0,20		

ICP-AES ANALYSER GEOLOGISK MATERIALE ANALYSEKONTRAKTNR. 2005.0013

Metoden anvendes på analyseløsninger fremstilt ved ekstraksjon med 7 N HNO₃ i autoklav i samsvar med Norsk Standard - NS 4770 Analysen er således basert på partiell syreekstraksjon i 7N HNO₃ og de rapporterte analyseverdier representerer derfor ikke totalverdier i prøven

INSTRUMENT TYPE : Perkin Elmer Optima 4300 Dual View

NEDRE BESTEMMELSESGRENSER FOR PLASMA ANALYSER BASERT PÅ AUTOKLAVEKSTRAKSJON (1 g prøve i 100 ml analysevolum)

(For analyser med tynningsfaktor som avviker fra 100, blir deteksjonsgrensene automatisk omregnet).

Si*	Al	Fe	Ti	Mg	Ca	Na	K	Mn	Р	Cu	Zn	Pb	Ni	Со	
ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
100	20	2	1	100	200	200	100	0,2	10	0,5	1	1	1	0,1	
V	Мо	0.1	C	D.	0	7		n	_			-			
v	INIO	Cđ	Cr	ва	Sr	Zr	Ag	В	Be	Li	Sc	Ce	La	Y	As*
v ppm	ppm	ppm	Cr ppm	ва ppm	Sr ppm	Zr ppm	Ag ppm	В ppm	Be ppm	Li ppm	Sc ppm	Ce ppm	La ppm	Y ppm	As* ppm

*)NGU-lab er ikke akkreditert for Si og As (geologisk materiale).

(1 mg/kg = 1 ppm)

ANALYSEUSIKKERHET For samtlige elementer regnes med en total usikkerhet i ekstraksjon og analyse på \pm 10% rel.

PRESISJON : Det kjøres rutinemessig kontrollprøver, som føres i kontrolldiagram (X-diagram). Disse kan forevises om ønskelig.

ANTALL PRØVER: 29

ANMERKNINGER: Ingen

Rapporten må ikke gjengis i utdrag uten skriftlig godkjenning fra NGU-Lab.

Ferdig analysert	18-mar-05	Baard Søberg
	Dato	OPERATØR

ICP-AES ANALYSER GEOLOGISK MATERIALE ANALYSEKONTRAKTNR. 2005.0013

Prøve id.	Si*	Al [ma/ka]	Fe [ma/ka]	Ti [ma/ka]	Mg [ma/ka]	Ca [mg/kg]	Na [mg/kg]	K [ma/ka]	Mn [ma/ka]	P [ma/ka]	Cu [mg/kg]	Zn [ma/ka]	Pb [mg/kg]	Ni [ma/ka]	Co [ma/ka]
605	[III9/K9]	20200	24200	[1119/K9]	[IIIg/kg]	[III9/K9]	[IIIg/kg]	[1119/K9]	[1119/K9]	[III9/K9] 760	[119/K9]	[IIIg/Kg]		[III9/K9] 24.0	[119/K9]
625	111	20200	31300	408	12000	7490	15200	6800	933	762	14,4	70,6	24,3	31,9	71,1
627	131	13100	17500	545	8780	16700	9700	4710	435	480	8,58	41,6	14,8	20,8	7,41
329	126	19700	25600	703	12300	25300	12800	6820	704	584	11,5	57,5	19,1	31,5	11,0
631	117	22400	32300	400	13400	8990	22200	7800	483	689	16,4	77,0	23,0	36,4	10,3
633	134	13700	29000	125	6880	5410	8360	4030	4/1	786	9,12	52,8	18,1	26,7	7,29
635	237	17200	25100	126	9110	4660	18400	6100	204	791	14,9	63,2	17,3	31,0	6,57
639	138	22700	33800	242	12300	6070	24200	8080	277	1030	18,3	79,3	24,4	37,3	8,91
643	104	22600	29400	292	11200	4560	16700	7330	190	658	17,7	78,4	21,9	36,3	8,80
645	148	18200	33900	183	9160	4720	12700	6900	163	805	14,1	66,8	19,6	32,3	7,42
647	119	19600	29000	321	10800	4980	19400	6820	277	742	14,9	67,2	21,6	32,4	8,44
649	119	20700	32700	365	11900	7870	21700	7210	543	1320	15,3	74,9	25,5	33,5	10,1
651	118	20100	32500	270	11400	7780	22000	6750	745	950	15,7	72,9	24,4	34,5	10,1
653	160	22700	32000	393	12800	7850	15300	7840	251	611	16,5	76,3	19,0	37,3	10,6
655	135	19800	30300	375	12200	7310	18400	7070	539	683	14,3	69,5	22,3	33,4	9,71
657	170	11000	16500	316	9880	16400	7520	3630	261	445	6,91	33,4	11,5	18,0	5,86
659	148	9730	13400	468	6880	17100	7160	3560	245	450	6,07	30,4	13,3	15,9	5,29
661	141	19400	25300	756	12500	25400	13300	6960	421	541	11,7	55,0	13,9	30,4	9,89
663	138	6560	9480	357	4530	18400	5120	2530	187	384	4,12	21,6	10,0	10,4	3,78
665	159	12600	16800	413	8270	9420	7520	4430	193	474	8,35	40,7	13,8	20,1	6,54
667	126	13300	23100	233	7440	5780	6960	3920	336	664	8,94	47,5	15,6	24,1	7,61
669	123	19600	28700	388	11200	6660	12500	6500	375	646	14,4	68,0	20,5	32,3	9,78
671	121	22600	35100	380	12600	6080	15600	7350	330	856	16,0	76,4	24,5	37,1	10,3
673	513	11300	23900	104	5640	4000	6400	3180	198	865	7,98	46,1	10,3	22,8	6,10
675	158	15700	31700	162	8300	5180	9760	4790	199	1000	12,2	59,7	15,2	33,7	8,09
677	156	22900	31400	188	10000	3870	9910	6010	193	666	24.4	96.0	14.9	42.1	12.3
679	208	20100	58400	214	10100	3850	15800	6610	523	1900	16.1	84.7	23.3	35.4	11.6
681	188	11000	18100	176	5380	2620	8070	3500	102	698	8.63	40.7	13.4	19.9	5.28
690	164	23200	27200	723	13800	10300	8880	7450	354	454	20.5	55.2	11.3	35.9	12.7
692	151	7280	10900	353	5540	6120	3120	2420	190	268	4,78	21,9	6,3	12,2	4,10

ICP-AES ANALYSER GEOLOGISK MATERIALE ANALYSEKONTRAKTNR. 2005.0013

Prøve id.	V	Мо	Cd	Cr	Ва	Sr	Zr	Ag	В	Be	Li	Sc	Ce	La	Y
	[mg/kg]														
625	81,5	<0.5	<0.1	37,7	172	59,8	8,8	<2	74,4	0,80	31,9	5,66	38,8	17,3	8,45
627	42,9	<0.5	<0.1	25,3	79,9	83,6	7,2	<2	39,4	0,39	17,9	3,74	33,5	15,1	7,21
329	59,0	<0.5	<0.1	34,1	111	133	9,7	<2	51,0	0,58	26,9	5,21	39,9	18,3	9,08
631	91,2	<0.5	<0.1	41,6	180	72,6	9,0	<2	90,2	0,88	36,1	6,21	38,6	17,1	8,36
633	76,5	<0.5	<0.1	28,5	98,3	51,2	5,0	<2	55,5	0,65	24,3	3,90	26,6	11,7	7,60
635	81,1	<0.5	<0.1	34,8	143	50,9	5,3	<2	79,5	0,83	31,7	4,60	26,6	11,7	7,49
639	109	<0.5	<0.1	44,0	181	70,6	7,3	<2	98,8	0,93	38,8	5,94	33,8	15,4	8,49
643	126	<0.5	<0.1	45,3	172	52,8	8,5	<2	88,9	0,93	37,9	6,21	39,7	17,5	9,23
645	134	<0.5	<0.1	41,0	129	51,4	7,9	<2	88,5	0,96	34,4	5,25	34,2	15,1	9,30
647	94,9	<0.5	<0.1	38,6	138	56,8	7,4	<2	84,7	0,79	31,7	5,49	32,5	14,9	7,31
649	93,9	<0.5	<0.1	40,0	152	73,2	8,5	<2	83,1	0,81	32,6	5,76	37,1	16,3	7,93
651	93,8	<0.5	<0.1	38,9	167	78,5	7,0	<2	82,7	0,82	33,5	5,41	32,3	14,9	7,99
653	91,1	<0.5	<0.1	43,6	175	60,6	9,2	<2	86,1	0,90	37,5	6,38	41,0	18,2	8,69
655	82,1	<0.5	<0.1	38,0	165	60,7	8,3	<2	79,0	0,80	32,1	5,57	36,7	16,5	8,03
657	37,2	<0.5	<0.1	21,3	63,2	59,9	6,6	<2	31,5	0,39	15,2	3,09	30,2	13,3	6,64
659	31,9	<0.5	<0.1	19,5	63,4	75,5	5,5	<2	31,1	0,28	13,1	2,81	29,8	13,5	6,52
661	59,1	<0.5	<0.1	35,4	97,8	127	9,9	<2	52,5	0,54	27,1	5,25	40,9	18,7	9,28
663	22,6	<0.5	<0.1	13,9	46,9	73,6	4,1	<2	18,6	0,20	8,4	1,92	23,5	10,7	5,10
665	41,6	<0.5	<0.1	24,9	76,5	46,7	7,1	<2	38,9	0,45	18,1	3,62	33,7	15,0	6,95
667	57,8	<0.5	<0.1	28,0	79,0	42,4	6,5	<2	40,8	0,56	22,3	3,96	32,7	14,3	7,71
669	76,0	<0.5	<0.1	38,6	139	51,8	8,8	<2	70,6	0,77	31,0	5,66	39,7	17,6	8,38
671	92,4	<0.5	<0.1	44,3	150	57,9	9,1	<2	83,4	0,87	36,8	6,48	41,2	18,4	9,26
673	62,7	<0.5	<0.1	26,7	87,0	45,8	4,6	<2	48,0	0,52	22,4	3,78	29,0	13,2	7,32
675	81,5	<0.5	<0.1	36,9	97,7	55,7	5,8	<2	61,8	0,68	29,2	4,92	32,0	14,6	8,26
677	108	<0.5	0,20	46,8	146	49,3	9,1	<2	73,8	0,94	42,9	7,01	44,9	20,1	10,5
679	215	2,21	<0.1	40,7	168	76,7	9,0	<2	97,2	0,94	35,6	5,86	40,5	19,4	10,3
681	74,8	<0.5	<0.1	24,6	104	36,4	5,5	<2	46,8	0,49	19,0	3,43	33,2	15,6	6,75
690	59,6	<0.5	<0.1	45,7	76,6	48,2	16,7	<2	41,8	0,59	29,5	6,20	45,4	20,9	9,59
692	24,1	<0.5	<0.1	17,8	30,8	20,3	5,7	<2	16,1	0,20	10,6	2,00	21,6	9,5	4,70

ICP-AES ANALYSER GEOLOGISK MATERIALE ANALYSEKONTRAKTNR. 2005.0013

Prøve id.	As*
	[mg/kg]
625	12,7
627	3,7
329	4,5
631	9,3
633	21,7
635	11,9
639	18,7
643	6,8
645	25,0
647	13,8
649	22,0
651	18,4
653	8,6
655	10,2
657	6,3
659	2,4
661	2,9
663	<2
665	2,8
667	10,9
669	8,2
671	12,9
673	19,8
675	17,9
677	13,9
679	105
681	13,2
690	8,1
692	2,4

XRF-ANALYSE (Hoved) GEOLOGISK MATERIALE ANALYSEKONTRAKTNR. 2005.0013

$4.2 \text{ g Li}_2B_4O_7 + 0.6 \text{ g prøve smeltet til glassplate}$

Analyseprogram : HOVED	INSTRUMENT TY	PE: Philips PW1480 x-ray spectrometer (Rh-røntgenrør)	
Analysene er utført på glødete prøve	er (v/1000 °C) A	nalyse-data er regnet tilbake fra glødet- til mottatt-prøve	
ANALYSEUSIKKERHET :	Analyseusikkerheten er bereg Usikkerheten er gitt ved:	net fra regresjonsanalyse av internasjonale standarder, hvor det en USIKKERHET = $\pm K_{Element} \cdot \sqrt{0.1 + C_i}$ [%]	r benyttet en veid regresjonsmodell. [1] men dog aldri < 1 % relativ

hvor C_i er den rapporterte konsentrasjon i %, K_{Element} er gitt for de enkelte element i tabellen nedenfor

Element	SiO ₂	Al_2O_3	Fe ₂ O ₃	TiO ₂	MgO	CaO	K ₂ O	Na ₂ O	MnO	P_2O_5
$K_{ELEMENT}$ / $\%^{\frac{1}{2}}$	0,053	0,038	0,045	0,020	0,077	0,045	0,036	0,050	0,010	0,025

De oppgitte usikkerhetene er for 1^o nivå (68% konfidensnivå), ved å multiplisere usikkerheten med 2 oppnås et 95% konfidensnivå.

EKSEMPEL

Det er rapportert et analyseresultat på 20.0% (dvs. C i = 20.0%) for Al 2 O 3. Denne konsentrasjonen samt K-verdien fra tabellen over innsatt i likn.[1] gir:

USIKKERHET $= \pm 0.038 \cdot \sqrt{0.1 + 20} = 0.2\%$

Et konfidensintervall på 68%-nivå vil da bli: 20.0 \pm 0.2 %, og konfidensintervallet på 95%-nivå: 20.0 \pm 0.4 %

PRESISJON: Det kjøres rutinemessig kontrollprøver, som føres i kontrolldiagram (X-diagram). Disse kan forevises om ønskelig.

- **ANTALL PRØVER:** 29
- ANMERKNINGER: Ingen

Rapporten må ikke gjengis i utdrag uten skriftlig godkjenning fra NGU-Lab.

Ferdig analysert	26. april 2005	Bjørn Nilsen
	Dato	Operatør

XRF-ANALYSE (Hoved) GEOLOGISK MATERIALE ANALYSEKONTRAKTNR. 2005.0013

Prøve navn	SiO2	AI2O3	Fe2O3	TiO2	MgO	CaO	Na2O	K2O	MnO	P2O5	Gl.tap	SUM
*	%	%	%	%	%	%	%	%	%	%	%	%
625	59,41	11,86	4,80	0,67	2,40	4,19	2,98	2,62	0,12	0,15	10,17	99,37
627	67,97	10,27	3,53	0,54	1,82	3,15	2,87	2,32	0,08	0,12	7,58	100,25
329	59,95	12,65	5,44	0,70	2,28	1,47	3,42	2,76	0,14	0,20	9,94	98,94
631	54,60	13,02	5,64	0,73	2,55	1,72	4,15	2,78	0,08	0,19	13,27	98,74
633	68,06	10,82	5,28	0,56	1,53	0,99	2,29	2,17	0,06	0,22	7,75	99,72
635	62,50	11,34	4,27	0,65	1,83	0,77	3,29	2,41	0,03	0,21	11,89	99,17
639	53,90	13,46	5,74	0,74	2,39	1,07	4,17	2,88	0,04	0,27	14,89	99,57
643	57,69	13,66	5,23	0,75	2,25	0,91	3,53	2,90	0,03	0,19	12,29	99,44
645	60,66	12,73	5,62	0,67	1,93	0,91	2,76	2,87	0,03	0,22	11,10	99,49
647	52,48	13,65	6,34	0,75	2,66	1,17	4,29	2,99	0,06	0,26	14,68	99,33
649	56,17	12,26	5,61	0,65	2,32	1,44	4,01	2,64	0,09	0,35	13,28	98,82
651	57,86	12,18	5,57	0,66	2,20	1,33	3,97	2,59	0,12	0,25	12,57	99,30
653	57,86	13,89	5,72	0,77	2,54	1,46	3,41	2,98	0,04	0,17	11,18	100,02
655	57,96	12,72	5,46	0,70	2,43	1,45	3,78	2,88	0,09	0,19	11,31	98,97
657	71,26	10,21	3,48	0,57	1,55	2,31	2,76	2,25	0,05	0,12	5,42	99,99
659	70,09	9,32	2,88	0,49	1,47	3,29	2,51	2,07	0,05	0,12	6,40	98,69
661	57,37	12,24	5,05	0,71	2,66	4,38	3,13	2,48	0,08	0,15	10,38	98,63
663	75,04	8,01	2,26	0,39	1,07	3,56	2,05	1,81	0,05	0,10	5,08	99,41
665	68,79	10,70	3,55	0,57	1,77	2,00	2,83	2,59	0,04	0,13	6,56	99,52
667	69,92	10,32	3,90	0,54	1,53	1,69	2,49	2,26	0,05	0,16	6,28	99,14
669	61,23	12,75	5,15	0,69	2,22	1,36	3,10	2,73	0,06	0,18	9,43	98,91
671	56,77	13,83	6,28	0,75	2,46	1,18	3,57	2,84	0,05	0,23	11,21	99,19
673	72,28	9,56	3,93	0,49	1,15	0,85	2,25	2,11	0,03	0,23	6,30	99,17
675	71,03	9,90	4,02	0,50	1,24	0,84	2,39	2,13	0,03	0,21	6,73	99,03
677	59,22	14,82	5,57	0,78	1,97	0,79	2,72	2,75	0,03	0,18	9,57	98,40
679	54,04	12,30	10,76	0,70	1,94	0,74	3,01	2,63	0,08	0,56	11,56	98,30
681	70,94	11,27	3,26	0,49	1,11	0,84	3,13	2,65	0,02	0,18	5,76	99,64
690	64,47	12,27	5,07	0,63	2,71	2,10	2,75	2,77	0,06	0,13	6,77	99,73
692	78,25	8,67	2,51	0,36	1,18	1,57	2,21	1,99	0,03	0,09	2,81	99,67

XRF-ANALYSE (Spor C) GEOLOGISK MATERIALE ANALYSEKONTRAKTNR. 2005.0013

PRESSEDE PRØVER : 5.4 g prøve + 1.2 g Hoechst C voks som bindemiddelAnalyseprogram : SPORHCINSTRUMENT TYPE : Philips PW1480 x-ray spectrometer (Rh-røntgenrør)

DETEKSJONSGRENSER FOR SPORELEMENTER

Element	Mo	Nb	Zr	Y	Sr	Rb	U	Th	Pb	Cr	V	As	Sc	Hf	S	Cl	F
Det.grense / ppm	5	5	5	5	5	5	10	5	10	10	10	5	10	10	1000	1000	1000

ANALYSEUSIKKERHET : Analyseusikkerheten er beregnet fra regresjonsanalyse av internasjonale standarder, hvor det er benyttet en veid regresjonsmodell.

i) Sporelement : Usikkerheten er gitt ved:

USIKKERHET = $\pm K_{Element} \cdot \sqrt{C_i + 10} \, [\text{ppm}]$

[1] men dog aldri < 2% relativ

hvor C_i er den rapporterte konsentrasjon i mg/kg (=ppm), K_{Element} er gitt for de enkelte element i tabellen nedenfor

Element	Mo	Nb	Zr	Y	Sr	Rb	U	Th	Pb	Cr	V	As	Sc	Hf*	S**	Cl**	F**
K _{ELEMENT}	0,64	0,35	0,48	0,28	0,42	0,37	0,48	0,49	0,86	3,5	1,3	0,47	0,51	0,55	0,33	0,08	0,15

De oppgitte usikkerhetene er for 1σ nivå (68% konfidensnivå), ved å multiplisere usikkerheten med 2 oppnås et 95% konfidensnivå.

*) Hf omfattes ikke av akkreditering !

EKSEMPEL

Det er rapportert et analyseresultat på 50 ppm (dvs. C i = 50 ppm) for Mo. Denne konsentrasjonen samt K-verdien fra tabellen over innsatt i likn.[1] gir:

USIKKERHET $= \pm 0.64 \cdot \sqrt{50 + 10} = 5$ ppm Et konfidensintervall på 68%-nivå vil da bli: 50 ± 5 ppm, og konfidensintervallet på 95%-nivå: 50 ± 10 ppm

**) For S, F og Cl benyttes likning [2] og verdier i %

USIKKERHET = $\pm K_{Element} \cdot \sqrt{0.1 + C_i}$ [%]

MERK! Hovedelementsanalyser basert på pressede prøver må anses som av semikvantitativ karakter

PRESISJON : Det kjøres rutinemessig kontrollprøver, som føres i kontrolldiagram (X-diagram). Disse kan forevises om ønskelig.

ANTALL PRØVER: 29

ANMERKNINGER: Ingen

Rapporten må ikke gjengis i utdrag uten skriftlig godkjenning fra NGU-Lab.

Ferdig analysert26.apr.05Bjørn NilsenDatoOperatør

XRF-ANALYSE (Spor C) GEOLOGISK MATERIALE ANALYSEKONTRAKTNR. 2005.0013

-ID-	Мо	Nb	Zr	Y	Sr	Rb	U	Th	Pb	Cr	v	As	Sc	Hf	S	CI	F
	mg/kg	%	%	%													
625	<5	12	193	22	245	93	<10	16	26	93	120	6	13	<10	0,14	1,92	0,17
627	<5	9	202	17	223	77	<10	13	19	77	90	6	10	<10	0,12	1,81	<0.1
329	<5	13	193	21	178	95	<10	12	32	104	172	14	13	<10	0,18	2,00	<0.1
631	<5	13	169	21	176	101	<10	12	28	105	181	10	<10	<10	0,32	3,49	<0.1
633	<5	10	168	20	133	75	<10	12	25	117	181	26	<10	<10	0,17	1,50	<0.1
635	<5	13	204	22	131	82	<10	15	17	108	179	16	11	<10	0,31	2,94	<0.1
639	<5	12	172	22	168	102	<10	16	29	112	222	23	13	<10	0,36	3,60	<0.1
643	<5	13	183	24	153	103	<10	16	27	117	236	9	16	<10	0,23	2,20	<0.1
645	<5	12	166	21	138	102	<10	18	26	122	278	23	17	<10	0,24	1,96	<0.1
647	<5	13	154	21	169	106	<10	15	25	115	219	28	17	<10	0,34	3,20	<0.1
649	5	11	159	17	178	93	<10	13	32	102	179	27	12	<10	0,35	3,50	<0.1
651	<5	11	174	21	172	88	<10	16	26	105	196	29	11	<10	0,32	3,56	<0.1
653	<5	13	180	20	164	107	<10	15	26	120	192	11	11	<10	0,22	2,03	<0.1
655	<5	13	179	21	172	97	<10	11	28	99	165	15	10	<10	0,24	2,80	<0.1
657	<5	8	201	15	198	71	<10	11	17	82	87	10	10	<10	<0.1	1,31	<0.1
659	<5	9	222	16	227	67	<10	12	18	74	77	5	12	<10	<0.1	1,47	<0.1
661	<5	12	197	22	242	96	<10	16	20	90	131	5	15	<10	0,14	2,05	<0.1
663	<5	8	210	14	221	57	<10	9	13	71	52	<5	15	<10	<0.1	1,11	<0.1
665	<5	9	217	18	193	81	<10	14	15	90	101	6	<10	<10	0,11	1,39	<0.1
667	<5	10	181	19	163	74	<10	12	20	87	127	13	12	<10	0,10	1,09	<0.1
669	<5	11	180	19	168	95	<10	14	27	103	163	11	<10	<10	0,17	1,70	<0.1
671	<5	11	171	21	164	102	<10	13	27	118	199	21	16	<10	0,22	2,18	<0.1
673	<5	9	177	17	151	66	<10	12	13	107	140	19	<10	<10	0,16	1,09	<0.1
675	<5	10	177	20	170	76	<10	13	15	132	184	58	10	<10	0,22	1,45	<0.1
677	<5	12	190	25	152	99	<10	15	21	131	242	21	16	<10	0,30	1,23	<0.1
679	7	12	164	22	169	93	<10	13	29	121	397	157	12	<10	0,25	2,15	<0.1
681	<5	9	211	17	227	77	<10	11	20	87	138	15	<10	<10	0,12	1,50	<0.1
690	<5	12	183	20	157	100	<10	16	16	102	120	8	17	<10	0,11	1,00	0,11
692	<5	8	172	14	176	61	<10	11	<10	61	60	5	<10	<10	<0.1	0,51	<0.1

XRF-ANALYSE (Spor D) GEOLOGISK MATERIALE ANALYSEKONTRAKTNR. 2005.0013

PRESSEDE PRØVER : 5.4 g prøve + 1.2 g Hoechst C voks som bindemiddel Analyseprogram : SPORHD INSTRUMENT TYPE : Philips PW1480 x-ray spectrometer (Rh-røntgenrør)

DETEKSJONSGRENSER FOR SPORELEMENTER

Element	Ba	Sb	Sn	Ga	Zn	Cu	Ni	Yb	Co	Ce	Nd	La	W	Cs	Ta	Pr
Det.grense / ppm	10	10	10	10	5	10	5	15	5	10	10	10	10	10	10	10

ANALYSEUSIKKERHET :Analyseusikkerheten er beregnet fra regresjonsanalyse av internasjonale standarder, hvor det er benyttet en veid regresjonsmodell.i) Sporelement :Usikkerheten er gitt ved:men dog aldri lavere enn 2% relativ

hvor C_i er den rapporterte konsentrasjon i ppm, K_{Element} er gitt for de enkelte element i tabellen nedenfor

Element	Ba	Sb	Sn	Ga	Zn	Cu	Ni	Yb	Co	Ce	Nd	La	W	Cs^*	Ta*	Pr*
$K_{ELEMENT} / ppm^{\frac{1}{2}}$	1,6	0,75	0,73	0,52	0,86	1,3	0,68	0,80	0,46	1,1	1,0	0,52	0,8	1,13	0,79	0,72

De oppgitte usikkerhetene er for 1 σ nivå (68% konfidensnivå), ved å multiplisere usikkerheten med 2 oppnås et 95% konfidensnivå.

*) Omfattes ikke av akkreditering

EKSEMPEL

Det er rapportert et analyseresultat på 100 ppm for Zn. Denne konsentrasjonen samt K-verdien fra tabellen over innsatt i likn.[1] gir:

Et konfidensintervall på 68%-nivå vil da bli: 100 ± 9 ppm, og konfidensintervallet på 95%-nivå: 100 ± 18 ppm

USIKKERHET = $\pm K_{Element} \cdot \sqrt{0.1 + C_i}$ [%]

MERK! Hovedelementsanalyser basert på pressede prøver må anses som av semikvantitativ karakter

PRESISJON: Det kjøres rutinemessig kontrollprøver, som føres i kontrolldiagram (X-diagram). Disse kan forevises om ønskelig.

ANTALL PRØVER: 29

ANMERKNINGER: Ingen

Rapporten må ikke gjengis i utdrag uten skriftlig godkjenning fra NGU-Lab.

Ferdig analysert	26. apr. 2005	Bjørn Nilsen
	Dato	Operatør

XRF-ANALYSE (Spor D) GEOLOGISK MATERIALE ANALYSEKONTRAKTNR. 2005.0013

-ID-	Ва	Sb	Sn	Ga	Zn	Cu	Ni	Yb	Co	Ce	La	Nd	w	Cs	Та	Pr
	mg/kg															
625	549	<10	<10	<10	74	21	33	<15	20	55	31	22	<10	10	<10	10
627	554	<10	<10	<10	54	21	20	<15	16	42	19	15	11	<10	<10	10
329	670	<10	<10	10	84	24	33	<15	19	61	33	19	17	<10	<10	12
631	642	<10	<10	11	90	25	37	<15	16	64	31	18	14	<10	11	17
633	466	<10	<10	10	70	24	26	<15	18	67	32	22	17	<10	<10	<10
635	570	<10	<10	<10	73	23	31	<15	15	67	34	20	16	<10	<10	15
639	683	<10	<10	12	95	28	42	<15	21	67	47	24	15	<10	<10	11
643	679	<10	<10	10	92	26	37	<15	20	58	40	22	14	<10	<10	11
645	575	<10	<10	10	84	24	34	<15	17	69	32	24	<10	12	<10	13
647	680	<10	<10	<10	97	30	43	<15	21	74	35	29	<10	<10	<10	17
649	665	<10	<10	<10	91	25	34	<15	20	66	34	18	11	<10	<10	12
651	646	<10	<10	<10	86	29	40	<15	20	61	34	22	15	<10	11	11
653	642	<10	<10	<10	94	28	41	<15	19	61	35	25	13	<10	<10	10
655	638	<10	<10	<10	87	25	34	<15	18	75	36	24	18	<10	<10	18
657	570	<10	<10	<10	48	19	17	<15	16	49	18	14	17	<10	<10	<10
659	556	<10	<10	<10	46	19	16	<15	13	28	25	13	15	<10	<10	<10
661	513	<10	<10	<10	79	24	34	<15	18	61	33	25	<10	<10	10	12
663	512	<10	<10	<10	37	12	9	<15	13	35	17	<10	22	<10	<10	<10
665	587	<10	<10	<10	58	18	19	<15	15	47	31	18	17	<10	<10	<10
667	568	<10	<10	<10	59	19	23	<15	17	44	27	17	19	<10	<10	12
669	632	<10	<10	<10	83	21	34	<15	20	53	32	22	15	<10	<10	15
671	642	<10	<10	13	95	26	36	<15	22	55	33	24	11	<10	<10	12
673	607	<10	<10	<10	54	16	20	<15	15	48	18	16	18	<10	<10	12
675	559	<10	<10	<10	74	22	35	<15	18	61	31	21	11	<10	10	10
677	611	<10	<10	11	110	36	43	<15	23	65	44	30	16	<10	11	<10
679	590	<10	<10	11	94	22	34	<15	28	62	29	31	<10	<10	15	20
681	855	<10	<10	<10	54	21	15	<15	15	59	25	19	19	<10	<10	<10
690	462	<10	<10	11	73	28	36	<15	25	63	36	20	12	<10	<10	10
692	502	<10	<10	<10	36	15	12	<15	11	30	20	<10	15	<10	<10	10

INSTRUMENT: Philips X'pert MPD med Cu røntgenrør		
PROSJEKTNR.: 294800		OPPDRAGSGIVER: Jochen Knies
PRØVEART:	Sediment	
ANTALL PRØVER	: 29	
BEHANDLINGSMETODE: 1 (Bulk)		XRD-opptak, scan 3-70°2 θ , scan speed 0.02 °2 θ /s. Følgende oppsett er benyttet: Receiving slit = 0.2. Step size= 0.04°2 θ . Time pr. step = 2 s. variable divergence slit (Illumination length = 12 mm).
	2 (Leirmin.)	Finfraksjon < 2 µm ble tatt ut ved synking (Stokes lov). Fraksjonen ble overført til keramisk filter, med påfølgende XRD-opptak, scan 2-69°20, scan speed 0.02 °20/s. Etter opptak av ubehandlet prøve, ble prøvene reanalysert først etter etylglykolbehandling og deretter varmebehandling ved ca. 550°C. Ved disse reanalysene ble det utført scan. 2-35°20, scan speed 0.02 °20/s. For alle XRD scan er følgende oppsett benyttet: Receiving slit= 0.2, Step size= 0.04°20, Time pr. step = 2 s, variabel divergense slit (Illum.lenght=12mm).
ARBEIDET UTFØR	RT AV: Andreas Grimstvedt	og Ann E. Karlsen
ANTALL SIDER:	12+29 vedlegg (XRD-opptak med toppsøk og treffliste)	

PRESISJON :Det kjøres rutinemessig kontrollprøver (2θ-verdi/d-verdi), som føres i kontrolldiagram (X-diagram). Disse kan
forevises om ønskelig.

ANMERKNINGER: De oppgitte topphøyder (DI-data) for scan 3-70°20 (Bulk) er omregnet til fast divergensspalte. For leirmineraler (<2 μ m) er disse oppgitt for automatisk divergensspalte. Identifisering av leirmineraler er utført manuelt da prøveprep. inkluderer orientering (00*l*-plansett) av leirmineraler (datakort/database er hovedsakelig basert på "random" pulve). Merk at alle di-data er oppgitt med automatisk slit. For noen prøver kan det forekommer topper forårsaket av prøveplaten (Corrundum). De fleste data gitt i vedlegg kan også leveres på regneark (Excel) dersom ønskelig. For videre anmerkninger se kommentarer etter tabell 1-3, samt eksempel gitt i figur 1.

Rapporten må ikke gjengis i utdrag uten skriftlig godkjenning fra NGU-Lab.

Ferdig analysert 26.04.2005

Norges geologiske undersøkelse 7491 TRONDHEIM Tlf.: 73 90 40 00 Telefaks: 73 92 16 20 XRD-ANALYSER (Kvalitativ mineralbestemmelse) Analysekontrakt nr: 2005.0013

Dato

OPERATØR/TOLKNING

KOMMENTARER TIL XRD-ANALYSE

For hver prøve følger det med utskrift av diffraktogrammet hvor beregnede topper er innsatt som vertikale linjer (peak search). I tillegg foreligger resultat fra programvarebasert identifisering ("score list"), denne inkluderer et diffraktogram hvor topper for utvalgte mineraler er innsatt. Da mange mineraler har overlappende linjer behøver ikke alle foreslåtte mineraler å være tilstede i prøvene.

TOPPSØK (PEAK SEARCH)

Tabell med posisjonen (20-verdi med tilhørende d-verdi) og høyden (intensitet) på beregnede topper. Videre kolonne med relative intensiteter (i forhold til høyeste topp)

IDENTIFISERING AV TILSTEDEVÆRENDE FASER

Forslag til tilstedeværende faser i prøven fremkommer ved å sammenligne topper i diffraktogrammet (påvist med "peak search") med kjente diffraksjonsmønstre i en database (JCPDS). Resultatet av et slikt søk er listet i en treffliste ("score list"), hvor foreslåtte mineraler er angitt med "A" i kolonnen for "Status" (se vedlegg).

Forklaring til treffliste

Match Score :Antall topper til det aktuelle mineralet som passer med topper i opptaketRel score :Andelen av topper til det aktuelle mineral som passer med opptaket, dvs. Match score/tot. antall topper (på datakortet) for mineraletRefer. code:Kortnr. for det aktuelle mineralet i JCPDS-databasen

Tabell 1 Analyse av bulk, påviste og mulige mineraler/faser . Se vedlagte trefflister for flere detaljer.

ID	Filnavn	Mulige hovedmineraler(faser)/sannsynlige mineraler (faser)	Andre mulige mineraler (faser)
625	0501301	<u>Kvarts</u> , Karbonat (eks. <u>kalsitt</u> , dolomitt), <u>Plagioklas (eks. albitt</u> , anortitt), Kloritt (eks, clinochlore), Glimmer (eks. illitt), Amfibol (eks. magnesioriebeckite)	Feltspat (eks. mikroklin)
627	0501302	Kvarts, Karbonat (eks. <u>kalsitt</u> , dolomitt), <u>Plagioklas (eks. albitt</u> , anortitt), Glimmer (eks. illitt), Amfibol (eks. magnesioriebeckite)	Kloritt (eks, clinochlore), Feltspat (eks. orthoclase), Serpentin (eks. antigorite)
329	0501303	<u>Kvarts, Plagioklas (eks. albitt,</u> anortitt), Karbonat (eks. <u>kalsitt</u> , dolomitt), Glimmer (eks. lepidolite), Amfibol (eks. ferropargasite)	Feltspat (eks. orthoclase), Kaolinitt
631	0501304	Kvarts, Plagioklas (eks. albitt, anortitt), Karbonat (eks. kalsitt, dolomitt), Glimmer (eks. illite)	Feltspat (eks. orthoclase), Serpentin (eks. clinochrysotile)
633	0501305	Kvarts, Plagioklas (eks. albitt, anortitt), Glimmer (eks. illite)	Kloritt (eks. clinochlore), Karbonat (eks. kalsitt, dolomitt), Serpentin (eks. lizardite)
635	0501306	Kvarts, Plagioklas (eks. albitt, anortitt), Glimmer (eks. muscovite)	Kloritt (eks. clinochlore), Karbonat (eks. dolomitt), Serpentin (eks. lizardite), Sulfid (eks. chalcopyrite)
639	0501307	Kvarts, Plagioklas (eks. albitt, anortitt), Glimmer (eks. muscovite)	Kloritt (eks. clinochlore), Karbonat (eks. dolomitt), Serpentin (eks. clinochrysotile)
643	0501308	Kvarts, Plagioklas (eks. albitt, anortitt), Glimmer (eks. muscovite)	Karbonat (eks. aragonite), Serpentin (eks. clinochrysotile)
645	0501309	Kvarts, Plagioklas (eks. albitt, anortitt), Glimmer (eks. muscovite), Serpentin (eks. lizardite)	
647	0501310	Kvarts, Plagioklas (eks. albitt, anortitt), Glimmer (eks. muscovite), Serpentin (eks. clinochrysotile)	Amfibol (eks. ferropargasite), Karbonat (eks. dolomite), Halite
649	0501311	Kvarts, Plagioklas (eks. albitt, anortitt), Glimmer (eks. lepiodilte), Serpentin (eks. clinochrysotile)	Kloritt (eks, clinochlore), Karbonat (eks. dolomite), Halite, Sulfid (eks. chalcopyrite)
651	0501312	Kvarts, Plagioklas (eks. albitt, anortitt), Glimmer (eks. muscovite), Serpentin (eks. clinochrysotile)	Kloritt (eks, clinochlore), Amfibol (eks. ferropargasite), Karbonat (eks. dolomite), Halite
653	0501313	Kvarts, Plagioklas (eks. albitt, anortitt), Glimmer (eks. muscovite), Serpentin (eks. clinochrysotile)	Kloritt (eks, clinochlore), Amfibol (eks. magnesioriebeckite), Karbonat (eks. dolomite), Halite
655	0501314	Kvarts, Plagioklas (eks. albitt, anortitt), Glimmer (eks. muscovite), Kloritt (eks, clinochlore),	Amfibol (eks. ferropargasite), Serpentin (eks. clinochrysotile), Karbonat (eks. dolomite), Halite
657	0501315	Kvarts, Plagioklas (eks. albitt, anortitt), Glimmer (eks. muscovite), Serpentin (eks. lizardite)	Amfibol (eks. richterite), Karbonat (eks. dolomite)
659	0501316	<u>Kvarts, Karbonat (eks. kalsitt)</u> , <u>Plagioklas (eks. albitt,</u> anortitt), Glimmer (eks. illitt), Kloritt (eks, clinochlore),	Amfibol (eks. ferropargasite)
661	0501317	Kvarts, Plagioklas (eks. albitt, anortitt), Karbonat (eks. kalsitt), Glimmer (eks. muscovite), Amfibol (eks. magnesioriebeckite), Kloritt (eks, clinochlore),	Serpentin (eks. clinochrysotile)
663	0501318	Kvarts, Plagioklas (eks. albitt, anortitt), Karbonat (eks. kalsitt), Glimmer (eks. muscovite),	Amfibol (eks. magnesioarfvedsonite), Serpentin (eks. lizardite)
665	0501319	Kvarts, Plagioklas (eks. albitt, anortitt), Karbonat (eks. kalsitt, dolomitt), Glimmer (eks. muscovite),	Amfibol (eks. magnesioriebeckite), Serpentin (eks.

XRD-ANALYSER (Kvalitativ mineralbestemmelse) Analysekontrakt nr: 2005.0013

ID	Filnavn	<u>Mulige hovedmineraler(faser)</u> /sannsynlige mineraler (faser)	Andre mulige mineraler (faser)
		Kloritt (eks, clinochlore)	clinochrysotile)
667	0501320	Kvarts, Plagioklas (eks. albitt, anortitt), Glimmer (eks. muscovite), Kloritt (eks, clinochlore)	Karbonat (eks. kalsitt, dolomitt), Halite
669	0501321	Kvarts, Plagioklas (eks. albitt, anortitt), Glimmer (eks. muscovite), Serpentin (eks. clinochrysotile)	Karbonat (eks. kalsitt, dolomitt), Amfibol (eks. magnesioriebeckite)
671	0501322	Kvarts, Plagioklas (eks. albitt, anortitt), Glimmer (eks. muscovite), Kloritt (eks, clinochlore)	Karbonat (eks. dolomitt), Amfibol (eks. ferropargasite), Halite
673	0501323	Kvarts, Plagioklas (eks. albitt, anortitt), Glimmer (eks. illite), Kloritt (eks, clinochlore)	Karbonat (eks. calcite)
675	0501324	Kvarts, Plagioklas (eks. albitt, anortitt), Glimmer (eks. illite), Serpentin (eks. antigorite)	Karbonat (eks. calcite), Halite, Sulfid (eks. chalcopyrite), Feltspat (orthoclase)
677	0501325	Kvarts, Plagioklas (eks. albitt, anortitt), Glimmer (eks. lepidolite), Kloritt (eks, clinochlore)	Sulfid (eks. pyrite), Augitt (eks. augite)
679	0501326	Kvarts, Plagioklas (eks. albitt, anortitt), Glimmer (eks. lepidolite), Serpentin (eks. antigorite)	Halite
681	0501327	Kvarts, Plagioklas (eks. albitt, anortitt), Glimmer (eks. lepidolite), Serpentin (eks. clinochrysotile)	Karbonat (eks. calcite), Halite, Feltspat (eks. orthoclase)
690	0501328	<u>Kvarts, Plagioklas (eks. albitt,</u> anortitt), Karbonat (eks. dolomite), Glimmer (eks. lepidolite), Amfibol (eks. magnesioriebeckite)	Kloritt (eks, clinochlore), Halite
692	0501329	Kvarts, Plagioklas (eks. albitt, anortitt), Glimmer (eks. lepidolite), Amfibol (eks. magnesioriebeckite)	Karbonat (eks. calcite, dolomite), Serpentin (eks, clinochrysotile), Halite

Klassifisert i hht. A. Hölzel: Systematics of Minerals

Kommentarer

- Serpentin og kaolinitt har topp ved 7 Å, denne overlapper med kloritt (som bla. også har topp ved ca. 14 Å). Dette medfører at det er vanskelig å påvise serpentin og/eller kaolinitt der hvor også kloritt er tilstede. Således kan serpentin forekomme i prøvene selv om det ikke er antydet i tabell 1.
- Prøvene kan inneholde karbonater (eks. kalsitt, dolomitt) i relativt sett mindre mengder, men disse er vanskelig å gjøre en sikker identifikasjon av pga. mange muligheter for linjeoverlapp.
- Prøvene kan inneholde sulfider i relativt sett mindre mengder, men disse er vanskelig å gjøre en sikker identifikasjon av pga. mange muligheter for linjeoverlapp.
- Hovedmineralene i prøvene synes å være noenlunde like mhp. mineral gruppe.

Generelle kommentarer

- Opptak/prøver som inneholder mange mineraler/topper, kan gi mange muligheter for linjeoverlapp
- I tilfeller med relativt mange linjer er mineraler med relativt få topper vanskelig å påvise.
- Mineraler som foreligger i relativt sett små mengder kan være vanskelig å påvise
- Mineraler antydet under "Andre mulige mineraler" er usikre pga linjeoverlapp
- Andre kombinasjoner av mineraler enn de antydet er også mulig

• De angitte mineralnavn i parentes er kun veiledende (kan vel forekomme annet mineral innen samme gruppe)

Merk! Påvisning er her relatert til denne analyseteknikk med de benyttede analysebetingelser og algoritme for "peak search". Fravær av utslag for topper betyr ikke nødvendigvis at komponenten ikke er tilstede, men at den med de gitte analysebetingelser ikke er detekterbar. Deteksjonsgrensene er anslagsvis på %-nivå.

Tabell 2 Veiledende oppsummering identifisering ubehandlet prøve (før EG- og varme-behandling) finfraksjon <2µm.

Prøve id	Filnavn	Sannsynlige mineraler	Andre mulige mineraler
625	0501301a	Kloritt**, Glimmer, Karbonat (eks. calcite), Kvarts	Smektitt*, Kaolinitt**, Plagioklas (eks. albite), amfibol
627	0501302a	Kloritt**, Glimmer, Karbonat (eks. calcite), Kvarts	Smektitt*, Kaolinitt**, Plagioklas (eks. albite), amfibol
329	0501303a	Kloritt**, Glimmer, Kvarts	Smektitt*, Kaolinitt**, Plagioklas (eks. albite), karbonat
631	0501304a	Kloritt**, Glimmer, Kvarts	Karbonat (eks. calcite), Smektitt*, Kaolinitt**, Plagioklas (eks. albite), amfibol
633	0501305a	Kloritt**, Glimmer, Kvarts	Karbonat (eks. calcite), Smektitt*, Kaolinitt**, Plagioklas (eks. albite), amfibol
635	0501306a	Kloritt**, Glimmer, Kvarts	Karbonat (eks. dolomite), Smektitt*, Kaolinitt**, Pyritt/Hematitt
639	0501307a	Kloritt**, Glimmer, Kvarts	Smektitt*, Kaolinitt**, Amfibol, Pyritt/Hematitt
643	0501308a	Kloritt**, Glimmer, Kvarts	Smektitt*, Kaolinitt**, plagioklas
645	0501309a	Kloritt**, Glimmer, Kvarts	Smektitt*, Kaolinitt**, plagioklas
647	0501310a	Kloritt**, Glimmer, Kvarts	Smektitt*, Kaolinitt**, plagioklas
649	0501311a	Kloritt**, Glimmer, Kvarts	Smektitt*, Kaolinitt**, plagioklas, karbonat
651	0501312a	Kloritt**, Glimmer, Kvarts	Smektitt*, Kaolinitt**, plagioklas, karbonat
653	0501313a	Kloritt**, Glimmer, Kvarts	Smektitt*, Kaolinitt**, plagioklas, karbonat
655	0501314a	Kloritt**, Glimmer, Kvarts	Smektitt*, Kaolinitt**, plagioklas, karbonat, amfibol
657	0501315a	Kloritt**, Glimmer, Kvarts, Karbonat (eks. calcite)	Smektitt*, Kaolinitt**, plagioklas, amfibol
659	0501316a	Kloritt**, Glimmer, Kvarts, Karbonat (eks. calcite)	Smektitt*, Kaolinitt**, plagioklas, amfibol
661	0501317a	Kloritt**, Glimmer, Kvarts, Karbonat (eks. calcite)	Smektitt*, Kaolinitt**, plagioklas, amfibol
663	0501318a	Kloritt**, Glimmer, Kvarts, Karbonat (eks. calcite)	Smektitt*, Kaolinitt**, plagioklas, amfibol
665	0501319a	Kloritt**, Glimmer, Kvarts, Karbonat (eks. calcite)	Smektitt*, Kaolinitt**, plagioklas, amfibol
667	0501320a	Kloritt**, Glimmer, Kvarts, Karbonat (eks. calcite)	Smektitt*, Kaolinitt**, plagioklas, amfibol
669	0501321a	Kloritt**, Glimmer, Kvarts	Smektitt*, Kaolinitt**, plagioklas, Karbonat, amfibol
671	0501322a	Kloritt**, Glimmer, Kvarts, Karbonat (eks. calcite)	Smektitt*, Kaolinitt**, plagioklasl
673	0501323a	Kloritt**, Glimmer, Kvarts	Smektitt*, Kaolinitt**, plagioklas, Karbonat
675	0501324a	Kloritt**, Glimmer, Kvarts	Smektitt*, Kaolinitt**, plagioklas, Karbonat
677	0501325a	Kloritt**, Glimmer, Kvarts	Smektitt*, Kaolinitt**, plagioklas, Karbonat
679	0501326a	Kloritt**, Glimmer, Kvarts	Smektitt*, Kaolinitt**, plagioklas
681	0501327a	Kloritt**, Glimmer, Kvarts	Smektitt*, Kaolinitt**, plagioklas, Karbonat
690	0501328a	Kloritt**, Glimmer, Kvarts, Amfibol	Smektitt*, Kaolinitt**, plagioklas
692	0501329a	Kloritt**, Glimmer, Kvarts	Smektitt*, Kaolinitt**, plagioklas, amfibol, Karbonat

Kommentarer

• *)Indikasjon på smektitt/blandsjikt er her kun basert på bred topp i område 12-15Å, se tabell 3 for en mer spesifikk bestemmelse (glykolbehandlig og varmebehandling)

- **)Serpentin overlapper også med kloritt og kaolintt (7.1 og 3.56 Å), denne er ikke spesifikt vurdert. Vedrørende kaolinitt se kommentarer til tabell 3. For spesifikk identifikasjon av kloritt, se tabell 2.
- Påvisning av feltspat/plagioklas er relativt usikker da dette er kun basert på få linjer, og det er vanskelig å event. skille mellom disse.
- Mineraler indikerert under "Andre mulige mineraler" er usikre da de ofte er basert på kun en linje..
- Opptak/prøver som inneholder mange mineraler/topper, kan gi mange muligheter for linjeoverlapp
- I tilfeller med relativt mange linjer er mineraler med relativt få topper vanskelig å påvise.
- Mineraler som foreligger i relativt sett små mengder kan være vanskelig å påvise.
- Andre kombinasjoner av mineraler enn de antydet er også mulig
- En forklaring til ulike topper er gitt i figur 1 (eksempel for prøve 663)

Filnavn	Pr. id	EG-behand.	Varme behandling	Kommentar
0501301b og c	625	Ny topp ved ca. 17 Å	Bortfall topp ved 17 Å. Stabil eller økning topp ved ca. 10 Å. Reduserte men stabile topper ved 7 og 14 Å.	Ny topp ved ca 17 Å etter glykolbeh. og forsvinner etter varmebehandling indikerer smektitt. Stabile topper ved 7 og 14 Å etter glykol- og varmebeh. indikerer kloritt ^{iⅈ} .
0501302b og c	627	Ny topp ved ca. 17 Å	Bortfall topp ved 17 Å. Stabil eller økning topp ved ca. 10 Å. Reduserte men stabile topper ved 7 og 14 Å.	Ny topp ved ca 17 Å etter glykolbeh. og forsvinner etter varmebehandling indikerer smektitt. Stabile topper ved 7 og 14 Å etter glykol- og varmebeh. indikerer kloritt ^{iⅈ} .
0501303b og c	329	Ny topp ved ca. 17 Å	Bortfall topp ved 17 Å. Stabil eller økning topp ved ca. 10 Å. Reduserte men stabile topper ved 7 og 14 Å.	Ny topp ved ca 17 Å etter glykolbeh. og forsvinner etter varmebehandling indikerer smektitt. Stabile topper ved 7 og 14 Å etter glykol- og varmebeh. indikerer kloritt ^{iⅈ} .
0501304b og c	631	Ny topp ved ca. 17 Å	Bortfall topp ved 17 Å. Stabil eller økning topp ved ca. 10 Å. Reduserte men stabile topper ved 7 og 14 Å.	Ny topp ved ca 17 Å etter glykolbeh. og forsvinner etter varmebehandling indikerer smektitt. Stabile topper ved 7 og 14 Å etter glykol- og varmebeh. indikerer kloritt ^{iⅈ} .
0501305b og c	633	Ny topp ved ca. 17 Å	Bortfall topp ved 17 Å. Stabil eller økning topp ved ca. 10 Å. Reduserte men stabile topper ved 7 og 14 Å.	Ny topp ved ca 17 Å etter glykolbeh. og forsvinner etter varmebehandling indikerer smektitt. Stabile topper ved 7 og 14 Å etter glykol- og varmebeh. indikerer kloritt ^{iⅈ} .
0501306b og c	635	Ny topp ved ca. 17 Å	Bortfall topp ved 17 Å. Stabil eller økning topp ved ca. 10 Å. Reduserte men stabile topper ved 7 og 14 Å.	Ny topp ved ca 17 Å etter glykolbeh. og forsvinner etter varmebehandling indikerer smektitt. Stabile topper ved 7 og 14 Å etter glykol- og varmebeh. indikerer kloritt ^{iⅈ} .
0501307b og c	639	Ny topp ved ca. 17 Å	Bortfall topp ved 17 Å. Stabil eller økning topp ved ca. 10 Å. Reduserte men stabile topper ved 7 og 14 Å.	Ny topp ved ca 17 Å etter glykolbeh. og forsvinner etter varmebehandling indikerer smektitt. Stabile topper ved 7 og 14 Å etter glykol- og varmebeh. indikerer kloritt ^{iⅈ} .
0501308b og c	643	Ny topp ved ca. 17 Å	Bortfall topp ved 17 Å. Stabil eller økning topp ved ca. 10 Å. Reduserte men stabile topper ved 7 og 14 Å.	Ny topp ved ca 17 Å etter glykolbeh. og forsvinner etter varmebehandling indikerer smektitt . Stabile topper ved 7 og 14 Å etter glykol- og varmebeh. indikerer kloritt ^{iⅈ} .
0501309b og c	645	Ny topp ved ca. 17 Å	Bortfall topp ved 17 Å. Stabil eller økning topp ved ca. 10 Å. Reduserte men stabile topper ved 7 og 14 Å.	Ny topp ved ca 17 Å etter glykolbeh. og forsvinner etter varmebehandling indikerer smektitt . Stabile topper ved 7 og 14 Å etter glykol- og varmebeh. indikerer kloritt^{iⅈ}.
0501310b og c	647	Ny topp ved ca. 17 Å	Bortfall topp ved 17 Å. Stabil eller økning topp ved ca. 10 Å. Reduserte men stabile topper ved 7 og 14 Å.	Ny topp ved ca 17 Å etter glykolbeh. og forsvinner etter varmebehandling indikerer smektitt. Stabile topper ved 7 og 14 Å etter glykol- og varmebeh. indikerer kloritt ^{iⅈ} .
0501311b og c	649	Ny topp ved ca. 17 Å	Bortfall topp ved 17 Å. Stabil eller økning topp ved ca. 10 Å. Reduserte men stabile topper ved 7 og 14 Å.	Ny topp ved ca 17 Å etter glykolbeh. og forsvinner etter varmebehandling indikerer smektitt. Stabile topper ved 7 og 14 Å etter glykol- og varmebeh. indikerer kloritt ^{iⅈ} .
0501312b og c	651	Ny topp ved ca. 17 Å	Bortfall topp ved 17 Å. Stabil eller økning topp ved ca. 10 Å. Reduserte men stabile topper ved 7 og 14 Å.	Ny topp ved ca 17 Å etter glykolbeh. og forsvinner etter varmebehandling indikerer smektitt. Stabile topper ved 7 og 14 Å etter glykol- og varmebeh. indikerer kloritt ^{iⅈ} .
0501313b	653	Ny topp ved ca. 17 Å	Bortfall topp ved 17 Å. Stabil eller økning topp ved ca.	Ny topp ved ca 17 Å etter glykolbeh. og forsvinner etter varmebehandling indikerer

Tabell 3 Effekt av etylglykol (EG) og varmebehandling (ca. 550 °C)

Norges geologiske undersøkelse 7491 TRONDHEIM Tlf.: 73 90 40 00 Telefaks: 73 92 16 20

XRD-ANALYSER (Kvalitativ mineralbestemmelse) Analysekontrakt nr: 2005.0013

Filnavn	Pr. id	EG-behand.	Varme behandling	Kommentar
og c			10 Å. Reduserte men stabile topper ved 7 og 14 Å.	smektitt. Stabile topper ved 7 og 14 Å etter glykol- og varmebeh. indikerer kloritt ^{iⅈ} .
0501314b		Ny topp yed ca. 17 Å	Bortfall topp ved 17 Å. Stabil eller økning topp ved ca.	Ny topp ved ca 17 Å etter glykolbeh. og forsvinner etter varmebehandling indikerer
og c	655	Ny lopp veu ca. 17 A	10 Å. Reduserte men stabile topper ved 7 og 14 Å.	smektitt. Stabile topper ved 7 og 14 Å etter glykol- og varmebeh. indikerer kloritt ^{ikil} .
0501315b		Ny tonn ved ca. 17 Å	Bortfall topp ved 17 Å. Stabil eller økning topp ved ca.	Ny topp ved ca 17 Å etter glykolbeh. og forsvinner etter varmebehandling indikerer
og c	657		10 A. Reduserte men stabile topper ved 7 og 14 A.	smektitt. Stabile topper ved 7 og 14 A etter glykol- og varmebeh. indikerer kloritt ^{ion} .
0501316b		Ny topp ved ca. 17 Å	Bortfall topp ved 17 A. Stabil eller økning topp ved ca.	Ny topp ved ca 17 A etter glykolbeh. og forsvinner etter varmebehandling indikerer
og c	659		10 A. Reduserte men stabile topper ved 7 og 14 A.	smektitt . Stabile topper ved 7 og 14 A etter glykol- og varmebeh. indikerer kloritt ^{will} .
0501317b		Ny topp ved ca. 17 Å	Bortfall topp ved 17 A. Stabil eller økning topp ved ca.	Ny topp ved ca 17 A etter glykolbeh. og forsvinner etter varmebehandling indikerer
og c	661		10 A. Reduserte men stabile topper ved 7 og 14 A.	smektitt . Stabile topper ved 7 og 14 A etter glykol- og varmebeh. indikerer kloritt ^{will} .
0501318b		Ny topp ved ca. 17 Å	Bortfall topp ved 17 A. Stabil eller økning topp ved ca.	Ny topp ved ca 17 A etter glykolbeh. og forsvinner etter varmebehandling indikerer
og c	663		10 A. Reduserte men stabile topper ved 7 og 14 A.	smektitt . Stabile topper ved 7 og 14 A etter glykol- og varmebeh. indikerer kloritt ^{will} .
0501319b		Ny topp ved ca. 17 Å	Bortfall topp ved 17 A. Stabil eller økning topp ved ca.	Ny topp ved ca 17 A etter glykolbeh. og forsvinner etter varmebehandling indikerer
og c	665		10 A. Reduserte men stabile topper ved 7 og 14 A.	smektitt . Stabile topper ved 7 og 14 A etter glykol- og varmebeh. indikerer kloritt ^{will} .
0501320b		Ny topp ved ca. 17 Å	Bortfall topp ved 17 A. Stabil eller økning topp ved ca.	Ny topp ved ca 17 A etter glykolbeh. og forsvinner etter varmebehandling indikerer
og c	667		10 A. Reduserte men stabile topper ved 7 og 14 A.	smektitt . Stabile topper ved 7 og 14 A etter glykol- og varmebeh. indikerer kloritt ^{var} .
0501321b		Ny topp ved ca. 17 Å	Bortfall topp ved 17 A. Stabil eller økning topp ved ca.	Ny topp ved ca 17 A etter glykolbeh. og forsvinner etter varmebehandling indikerer
og c	669		10 A. Reduserte men stabile topper ved 7 og 14 A.	smektitt . Stabile topper ved 7 og 14 A etter glykol- og varmebeh. indikerer kloritt ^{var} .
0501322b		Ny topp ved ca. 17 Å	Bortfall topp ved 17 A. Stabil eller økning topp ved ca.	Ny topp ved ca 17 A etter glykolbeh. og forsvinner etter varmebehandling indikerer
og c	671		10 A. Reduserte men stabile topper ved 7 og 14 A.	smektitt . Stabile topper ved 7 og 14 A etter glykol- og varmebeh. indikerer kloritt ^{var} .
0501323b		Ny topp ved ca. 17 Å	Bortfall topp ved 17 A. Stabil eller økning topp ved ca.	Ny topp ved ca 17 A etter glykolbeh. og forsvinner etter varmebehandling indikerer
og c	673		10 A. Reduserte men stabile topper ved 7 og 14 A.	smektitt . Stabile topper ved 7 og 14 A etter glykol- og varmebeh. indikerer kloritt ^{will} .
0501324b		Ny topp ved ca 17 Å	Bortfall topp ved 17 A. Stabil eller økning topp ved ca.	Ny topp ved ca 17 A etter glykolbeh. og forsvinner etter varmebehandling indikerer
og c	675		10 A. Reduserte men stabile topper ved 7 og 14 A.	smektitt . Stabile topper ved 7 og 14 A etter glykol- og varmebeh. indikerer kloritt ^{kall} .
0501325b		Ny topp ved ca 17 Å	Bortfall topp ved 17 A. Stabil eller økning topp ved ca.	Ny topp ved ca 17 A etter glykolbeh. og forsvinner etter varmebehandling indikerer
og c	677		10 A. Reduserte men stabile topper ved 7 og 14 A.	smektitt . Stabile topper ved 7 og 14 A etter glykol- og varmebeh. indikerer kloritt ^{kall} .
0501326b		Ny topp ved ca 17 Å	Bortfall topp ved 17 A. Stabil eller økning topp ved ca.	Ny topp ved ca 17 A etter glykolbeh. og forsvinner etter varmebehandling indikerer
og c	679		10 A. Reduserte men stabile topper ved 7 og 14 A.	smektitt. Stabile topper ved 7 og 14 A etter glykol- og varmebeh. indikerer kloritt ^{ran} .
0501327b		Ny tonn ved ca. 17 Å	Bortfall topp ved 17 A. Stabil eller økning topp ved ca.	Ny topp ved ca 17 A etter glykolbeh. og forsvinner etter varmebehandling indikerer
og c	681		10 A. Reduserte men stabile topper ved 7 og 14 A.	smektitt . Stabile topper ved 7 og 14 A etter glykol- og varmebeh. indikerer kloritt ^{kall} .
0501328b		Ny tonn ved ca. 17 Å	Bortfall topp ved 17 A. Stabil eller økning topp ved ca.	Ny topp ved ca 17 A etter glykolbeh. og forsvinner etter varmebehandling indikerer
og c	690		10 A. Reduserte men stabile topper ved 7 og 14 A.	smektitt. Stabile topper ved 7 og 14 A etter glykol- og varmebeh. indikerer kloritt ^{kall} .
0501329b		Ny topp ved ca 17 Å	Bortfall topp ved 17 A. Stabil eller økning topp ved ca.	Ny topp ved ca 17 A etter glykolbeh. og forsvinner etter varmebehandling indikerer
og c	692		10 A. Reduserte men stabile topper ved 7 og 14 A.	<u>smektitt</u> . Stabile topper ved 7 og 14 A etter glykol- og varmebeh. indikerer kloritt ^{røn} .

Kommentarer

- i Da serpentin overlapper med flere topper for kloritt og kaolinitt kan også dette mineral være tilstede, men vanligvis skal serpentin være mer varmebestandig enn kaolinitt (stabil topp ved ca. 7Å etter varmebehandling), kaolinitt topp 7 Å vil vanligvis forsvinne.
- ii Da kloritt er sannsynligvis tilstede i prøvene er det vanskelig å kunne påvise eventuell kaolinitt pga. overlapp. Event kaolinitt kan videre vurderes ut fra event dobbelt topp ved ca 7 Å og en oppslitting i to topper ved hhv. 3.56 og 3.58 Å (for de fleste prøver synes dette å opptre, for de prøvene med høyest utslag ved 7 Å etter varmebeh.

gir de også utslag ved ca. 3.56 Å, dette gir grunnlag for å tro at 3.56 Å er relatert til kloritt mens 3.58 Å er relatert til kaolinitt og at kaolinitt også er tilstede). En nærmere illustrasjon er prøvd angitt i figur 1.

Bakgrunn : Veiledende identifisering

Den veiledende identifiseringen er hovedsakelig vurdert ut fra mineraler angitt nedenfor, samt div. litteratur som bla inkluderer D.M. Moore and R. C. Reynolds Jr., X-ray Diffraction and the Identification and Analysis of Clay Minerals, Sec. Ed., Oxford, 1997, G. W. Brindley and G. Brown, Crystal Structures of Clay Minerals and their X-Ray Identification, Mineralogical Soc. Monograph no. 56, Spottiswoode, London (1980)

Leirmineraler

Leirmineralene skal foreligge mest mulig orientert, slik at plansett i z-retning gir opphav til reflekser (dvs. fra plansett 00l). Avstand mellom topper for et gitt mineral skal da være tilnærmet konstant, ut fra følgende sammenheng :

$$d_{00l} = \frac{d_{001}}{l}$$

Denne sammenhengen kan omformes via Braggs lov til vinkler (gjelder for små vinkelintervaller) :

 $\theta \approx l \cdot \text{Konstant}$

I de påfølgende tabeller er det oppgitt d-verdier med tilhørende rel.intensitet for en del aktuelle mineraler. Merk at de oppgitte relative intensiteter er ved bruk av fast divergens spalte.

d-verdi (Å)	hkl	Irel
14.24	001	67
7.12	002	100
4.75	003	43
3.56	004	53
2.85	005	9

Tabell 4 Verdi for Clinochlore JCPDS Kort nr. 24-0506

Tabell 5 Verdi for illitt

d-verdi (Å)	hkl	Irel
10.0	001	100
5.00	002	20
3.33	003	90
2.50	004	10

Tabell 6 Verdi for Kaolinitt JCPDS Kort nr. 14-0164

d-verdi (Å)	hkl	Irel
7.17	001	100
3.579	002	80
2.385	003	25

<u>Smektitt</u>

Gir ofte bred topp rundt 10-12 Å i ubehandlet prøve, ved EG-behandling flytter toppen seg til ca. 17Å. Ved varmebehandling kollapser strukturen og går over til illitt, som kan observeres med at topp ved 17 Å forsvinner mens ny topp eller økning ved 10 Å.

Effekt av etylglykol og varmebehandling

I tabellen nedenfor er gitt en oversikt over endringer som oppstår for første refleksjoner

Mineral	Ubehandlet (luft tørket)	Etylglykol behandling	Varmebehandling (550 °C)	Topp forsvinner ved
Kaolinitt	7 Å	7 Å	Forsvinner	500-550°C
Serpentin	7 Å	7 Å	Reduseres/forsvinner	575-700°C
Smektitt	10-14 Å (B)	17 Å	10 Å	> 700°C
Kloritt	14 Å	14 Å	14 Å	> 600°C

Ikke leirmineraler

Tabell 8 Verdi for Kvarts JCPDS Kort nr. 05-0490

d-verdi (Å)	hkl	Irel
4.26	100	35
3.343	101	100
2.458	110	12
2.282	102	12

Videre er plagioklas (3.19-3.21 Å), kalsitt (3.04 Å), og feltspat vurdert, disse er imidlertid relativt usikre da de stort sett er basert på kun en linje/refleks.

Korreksjoner

i) Korreksjon for avvik i prøvehøyde relativt til referanseplan

Event. avvik fra referanseplan kan korrigeres i hht. følgende likning:

$$\Delta 2\theta = GRADER\left(\frac{x \cdot \cos(\theta)}{R}\right)$$

R er goniometer radius i mm (R_{NGU} =237 mm) *x* er avstand fra referanseplan i mm (positiv ved for høyt i forhold til referanse planet.

x kan f.eks. bestemmes ut fra en referanse topp (eks. kvarts)

ii) Omregning intetsitet: automatisk slit versus fast slit

De oppgitte intensiteter (DI_data) er oppgitt på basis av automatisk divergense spalte. Det er imidlertid mulig å omregne disse til som om de er analysert med fast spalte, og da i hht. følgende sammenheng :

$$\frac{I_{Fixed}}{I_{Autom.slit}} = \frac{2R \tan\left(\frac{\delta_f}{2}\right)}{L_a \sin \theta} \cdot = \frac{C}{\sin \theta}$$

 I_{Fixed} er intensitet målt med fast divergens slit

I_{automatic.slit} er intensitet målt med automatisk divergens slit

R er diffraktometer radius (NGU=237 mm)

 $\delta_{\rm f}$ er vidden på den daste divergens slit

 $L_{\rm a}$ er bestrålet lengde med automatisk slit

C er en konstant (kan bestemmes enten fra størrelsen på divergens slit eller fra den vinkel hvor intensiteten er de samme)

For omregnede verdier er det i prinsippet kun de relative intensiteter som bør benyttes.

Norges geologiske undersøkelse 7491 TRONDHEIM X Tlf.: 73 90 40 00 Telefaks: 73 92 16 20

NGU

Norges geologiske undersøkelse

XRD-ANALYSER (Kvalitativ mineralbestemmelse) Analysekontrakt nr: 2005.0013

Figur 1 Diffraktogrammer for finfraskjon prøve 663 (ubehandlet, glykolbehandlet og varmebehandlet) hvor topper (d-verdier i Å) for ulike mineraler er indikert.

Norges geologiske undersøkelse 7491 TRONDHEIM Tlf.: 73 90 40 00 Telefaks: 73 92 16 20

XRD-ANALYSER (Kvalitativ mineralbestemmelse) Analysekontrakt nr: 2005.0013

VEDLEGG

Diffraktogram,	resultat fra toppsøk, treffliste mr	n Prøve id.:	625	Resultatfil : 0501301(bulk), 0501301a (finfrak. ubeh.),0501301b (glykolbeh.), 0501301c (varmebeh)
Diffraktogram,	resultat fra toppsøk, treffliste mr	n Prøve id.:	627	Resultatfil : 0501302(bulk), 0501302a (finfrak. ubeh.),0501302b (glykolbeh.), 0501302c (varmebeh)
Diffraktogram,	resultat fra toppsøk, treffliste mr	n Prøve id.:	329	Resultatfil : 0501303(bulk), 0501303a (finfrak. ubeh.),0501303b (glykolbeh.), 0501303c (varmebeh)
Diffraktogram,	resultat fra toppsøk, treffliste mr	n Prøve id.:	631	Resultatfil : 0501304(bulk), 0501304a (finfrak. ubeh.),0501304b (glykolbeh.), 0501304c (varmebeh)
Diffraktogram,	resultat fra toppsøk, treffliste mr	n Prøve id.:	633	Resultatfil : 0501305(bulk), 0501305a (finfrak. ubeh.),0501305b (glykolbeh.), 0501305c (varmebeh)
Diffraktogram,	resultat fra toppsøk, treffliste mr	n Prøve id.:	635	Resultatfil : 0501306(bulk), 0501306a (finfrak. ubeh.),0501306b (glykolbeh.), 0501306c (varmebeh)
Diffraktogram,	resultat fra toppsøk, treffliste mr	n Prøve id.:	639	Resultatfil : 0501307(bulk), 0501307a (finfrak. ubeh.),0501307b (glykolbeh.), 0501307c (varmebeh)
Diffraktogram,	resultat fra toppsøk, treffliste mr	n Prøve id.:	643	Resultatfil : 0501308(bulk), 0501308a (finfrak. ubeh.),0501308b (glykolbeh.), 0501308c (varmebeh)
Diffraktogram,	resultat fra toppsøk, treffliste mr	n Prøve id.:	645	Resultatfil : 0501309(bulk), 0501309a (finfrak. ubeh.),0501309b (glykolbeh.), 0501309c (varmebeh)
Diffraktogram,	resultat fra toppsøk, treffliste mr	n Prøve id.:	647	Resultatfil : 0501310(bulk), 0501310a (finfrak. ubeh.),0501310b (glykolbeh.), 0501310c (varmebeh)
Diffraktogram,	resultat fra toppsøk, treffliste mr	n Prøve id.:	649	Resultatfil : 0501311(bulk), 0501311a (finfrak. ubeh.),0501311b (glykolbeh.), 0501311c (varmebeh)
Diffraktogram,	resultat fra toppsøk, treffliste mr	n Prøve id.:	651	Resultatfil : 0501312(bulk), 0501312a (finfrak. ubeh.),0501312b (glykolbeh.), 0501312c (varmebeh)
Diffraktogram,	resultat fra toppsøk, treffliste mr	n Prøve id.:	653	Resultatfil : 0501313(bulk), 0501313a (finfrak. ubeh.),0501313b (glykolbeh.), 0501313c (varmebeh)
Diffraktogram,	resultat fra toppsøk, treffliste mr	n Prøve id.:	655	Resultatfil : 0501314(bulk), 0501314a (finfrak. ubeh.),0501314b (glykolbeh.), 0501314c (varmebeh)
Diffraktogram,	resultat fra toppsøk, treffliste mr	n Prøve id.:	657	Resultatfil : 0501315(bulk), 0501315a (finfrak. ubeh.),0501315b (glykolbeh.), 0501315c (varmebeh)
Diffraktogram,	resultat fra toppsøk, treffliste mr	n Prøve id.:	659	Resultatfil : 0501316(bulk), 0501316a (finfrak. ubeh.),0501316b (glykolbeh.), 0501316c (varmebeh)
Diffraktogram,	resultat fra toppsøk, treffliste mr	n Prøve id.:	661	Resultatfil : 0501317(bulk), 0501317a (finfrak. ubeh.),0501317b (glykolbeh.), 0501317c (varmebeh)
Diffraktogram,	resultat fra toppsøk, treffliste mr	n Prøve id.:	663	Resultatfil : 0501318(bulk), 0501318a (finfrak. ubeh.),0501318b (glykolbeh.), 0501318c (varmebeh)
Diffraktogram,	resultat fra toppsøk, treffliste mr	n Prøve id.:	665	Resultatfil : 0501319(bulk), 0501319a (finfrak. ubeh.),0501319b (glykolbeh.), 0501319c (varmebeh)
Diffraktogram,	resultat fra toppsøk, treffliste mr	n Prøve id.:	667	Resultatfil : 0501320(bulk), 0501320a (finfrak. ubeh.),0501320b (glykolbeh.), 0501320c (varmebeh)
Diffraktogram,	resultat fra toppsøk, treffliste mr	n Prøve id.:	669	Resultatfil : 0501321(bulk), 0501321a (finfrak. ubeh.),0501321b (glykolbeh.), 0501321c (varmebeh)
Diffraktogram,	resultat fra toppsøk, treffliste mr	n Prøve id.:	671	Resultatfil : 0501322(bulk), 0501322a (finfrak. ubeh.),0501322b (glykolbeh.), 0501322c (varmebeh)
Diffraktogram,	resultat fra toppsøk, treffliste mr	n Prøve id.:	673	Resultatfil : 0501323(bulk), 0501323a (finfrak. ubeh.),0501323b (glykolbeh.), 0501323c (varmebeh)
Diffraktogram,	resultat fra toppsøk, treffliste mr	n Prøve id.:	675	Resultatfil : 0501324(bulk), 0501324a (finfrak. ubeh.),0501324b (glykolbeh.), 0501324c (varmebeh)
Diffraktogram,	resultat fra toppsøk, treffliste mr	n Prøve id.:	677	Resultatfil : 0501325(bulk), 0501325a (finfrak. ubeh.),0501325b (glykolbeh.), 0501325c (varmebeh)
Diffraktogram,	resultat fra toppsøk, treffliste mr	n Prøve id.:	679	Resultatfil : 0501326(bulk), 0501326a (finfrak. ubeh.),0501326b (glykolbeh.), 0501326c (varmebeh)
Diffraktogram,	resultat fra toppsøk, treffliste mr	n Prøve id.:	681	Resultatfil : 0501327(bulk), 0501327a (finfrak. ubeh.),0501327b (glykolbeh.), 0501327c (varmebeh)
Diffraktogram,	resultat fra toppsøk, treffliste mr	n Prøve id.:	690	Resultatfil : 0501328(bulk), 0501328a (finfrak. ubeh.),0501328b (glykolbeh.), 0501328c (varmebeh)
Diffraktogram,	resultat fra toppsøk, treffliste mr	n Prøve id.:	692	Resultatfil : 0501329(bulk), 0501329a (finfrak. ubeh.),0501329b (glykolbeh.), 0501329c (varmebeh)
	Diffraktogram, Diffraktogram,	Diffraktogram, resultat fra toppsøk, treffliste mr Diffraktogram, resultat fra toppsøk, treffliste mr	Diffraktogram, resultat fra toppsøk, treffliste mmPrøve id.:Diffraktogram, resultat fra t	Diffraktogram, resultat fra toppsøk, treffliste mmPrøve id.:625Diffraktogram, resultat fra toppsøk, treffliste mmPrøve id.:627Diffraktogram, resultat fra toppsøk, treffliste mmPrøve id.:329Diffraktogram, resultat fra toppsøk, treffliste mmPrøve id.:631Diffraktogram, resultat fra toppsøk, treffliste mmPrøve id.:633Diffraktogram, resultat fra toppsøk, treffliste mmPrøve id.:633Diffraktogram, resultat fra toppsøk, treffliste mmPrøve id.:635Diffraktogram, resultat fra toppsøk, treffliste mmPrøve id.:643Diffraktogram, resultat fra toppsøk, treffliste mmPrøve id.:645Diffraktogram, resultat fra toppsøk, treffliste mmPrøve id.:647Diffraktogram, resultat fra toppsøk, treffliste mmPrøve id.:651Diffraktogram, resultat fra toppsøk, treffliste mmPrøve id.:651Diffraktogram, resultat fra toppsøk, treffliste mmPrøve id.:655Diffraktogram, resultat fra toppsøk, treffliste mmPrøve id.:655Diffraktogram, resultat fra toppsøk, treffliste mmPrøve id.:655Diffraktogram, resultat fra toppsøk, treffliste mmPrøve id.:666Diffraktogram, resultat fra toppsøk, treffliste mmPrøve id.:667Diffraktogram, resultat fra toppsøk, treffliste mmPrøve id.:667Diffraktogram, resultat fra toppsøk, treffliste mmPrøve id.:667Diffraktogram, resultat fra toppsøk, treffliste mmPrøve id.:673Diffraktogram, resultat fra toppsøk, treffliste mm

Barents Sea marine sediment samples geochemistry

Appendix 2

Sample station data and analytical data (grain-size, LECO, ICP-AES, CV-AAS, XRF, XRD) for IMR 2004cruise 0 – 1 cm sediment samples

METODE (Fullstendig beskrivelse gitt i NGU-SD 5.11)

Kornfordelingsbestemmelse basert på laserdiffraksjon. Laserlys brytes i bestemte vinkler avhengig av størrelsen på partiklene, som igjen registreres av en rekke detektorer. De registrerte vinklene korresponderer med gitte partikkelstørrelser, antall partikler med en gitt størrelse er igjen relatert til intensitet for korresponderende detektorer. Kornfordelingen bestemmes således på volum-basis, med antagelse om samme tetthet på materialet vil kumulativ volum% være identisk med kumulativ masse%. Beregning på volum/masse-basis er basert på antagelse om sfæriske partikler.

INSTRUMENT TYPE : Coulter LS 200

- MÅLEOMRÅDE: 0.4µm-2000µm
- NB! Metoden normaliserer alle data i måleområdet til 100 % (kumulativ%). Måleområdet går kun til 0.4 μm og dette settes som nullpunkt mhp.kumulativ %. Således kan prøvene inneholde materiale finere enn 0.4μm.

ANALYSEUSIKKERHET: ± 3% [kumulativ masse(volum) %]

Bestemmelse av usikkerhet er basert på sammenligning av oppnådde resultater og sertifikatverdier for kvarts standard BCR 131, samt presisjonsdata.

MERK! Metoden tar utgangspunkt i antagelse om sfæriske partikler. For prøver som avviker fra dette kan usikkerheten være større.

PRESISJON : Det kjøres rutinemessig kontrollprøver, som føres i kontrolldiagram (X-diagram). Disse kan forevises om ønskelig.

ANTALL PRØVER: 44

FORBEHANDLING : Se Tabell 2

ANTALL SIDER (denne delrapport): 9 + 44 vedlegg (Plott av kumulativ kornfordeling med div. statistiske parametre)

ANMERKNINGER: Data for fraksjoner >2000 µm er fremkommet fra gravimetriske bestemmelser.

Rapporten må ikke gjengis i utdrag uten skriftlig godkjenning fra NGU-Lab.

Ferdig analysert	8.03.2005	Wieslawa Koziel
	Dato	OPERATØR

Norges geologiske undersøkelseKORNFORDELINGSANALYSE : COULTER LASER7491TRONDHEIM715.: 73 90 40 11GEOLOGISK MATERIALE716.: 73 92 16 20Analysekontraktsnr: 2004.0391

Tabell 1 Kumulativ (<) kornfordeling [(volum%(masse%)]

Prøve nr.→														
Diameter(μm) ↓	St.1.	St.2.	St.3.	St.4.	St.5.	St.6.	St.7.	St.8.	St.9.	St.11.	St.12.	St.13.	St.14.	St.15.
0.375	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0.412	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0.452	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0.496	0.00015	0.00016	0	0	0	0.000026	0	0	0	0	0	0.000024	0	0
0.545	0.0024	0.0026	0.00018	0.00037	0.00012	0.00049	0.000003	0.00017	0.000049	0	0.000046	0.00058	0.00014	0.000063
0.598	0.016	0.018	0.0034	0.0055	0.0017	0.0036	0.00011	0.0030	0.0015	0.00056	0.0011	0.0045	0.0024	0.0016
0.657	0.058	0.065	0.023	0.034	0.0099	0.014	0.00091	0.020	0.012	0.0075	0.0085	0.019	0.016	0.012
0.721	0.15	0.17	0.086	0.12	0.033	0.037	0.0040	0.075	0.053	0.044	0.035	0.052	0.057	0.050
0.791	0.30	0.34	0.22	0.28	0.077	0.077	0.012	0.19	0.15	0.14	0.095	0.11	0.15	0.14
0.869	0.54	0.61	0.46	0.55	0.15	0.14	0.025	0.40	0.33	0.34	0.20	0.21	0.30	0.29
0.953	0.88	0.99	0.82	0.95	0.25	0.23	0.047	0.71	0.60	0.64	0.37	0.34	0.52	0.53
1.047	1.34	1.51	1.32	1.51	0.39	0.35	0.077	1.14	0.99	1.07	0.60	0.53	0.84	0.87
1.149	1.93	2.17	1.99	2.23	0.58	0.51	0.12	1.72	1.51	1.65	0.91	0.77	1.27	1.33
1.261	2.66	2.99	2.83	3.13	0.81	0.70	0.17	2.44	2.17	2.38	1.30	1.06	1.80	1.91
1.385	3.52	3.95	3.84	4.20	1.08	0.93	0.23	3.32	2.96	3.27	1.78	1.41	2.44	2.61
1.520	4.50	5.04	4.99	5.42	1.38	1.18	0.30	4.33	3.88	4.29	2.33	1.82	3.18	3.43
1.669	5.59	6.25	6.28	6.77	1.72	1.46	0.39	5.45	4.88	5.42	2.95	2.26	4.01	4.33
1.832	6.75	7.54	7.66	8.20	2.08	1.76	0.47	6.66	5.96	6.64	3.63	2.74	4.90	5.31
2.010	7.97	8.90	9.11	9.70	2.45	2.08	0.56	7.93	7.09	7.93	4.34	3.25	5.84	6.35
2.207	9.23	10.3	10.6	11.2	2.84	2.40	0.66	9.24	8.25	9.26	5.09	3.77	6.81	7.41
2.423	10.5	11.7	12.2	12.8	3.23	2.72	0.75	10.6	9.45	10.6	5.88	4.31	7.80	8.49
2.660	11.8	13.1	13.7	14.4	3.63	3.06	0.85	11.9	10.7	12.1	6.70	4.87	8.81	9.59
2.920	13.1	14.5	15.4	16.1	4.05	3.40	0.95	13.3	12.0	13.7	7.56	5.44	9.85	10.7
3.206	14.5	16.0	17.1	17.9	4.49	3.76	1.06	14.7	13.4	15.3	8.48	6.04	10.9	11.9
3.519	15.8	17.5	19.0	19.8	4.95	4.13	1.17	16.2	14.9	17.2	9.45	6.66	12.0	13.0
3.862	17.2	19.0	20.9	21.9	5.44	4.53	1.28	17.7	16.5	19.1	10.5	7.31	13.1	14.2
4.241	18.7	20.6	23.0	24.1	5.97	4.94	1.40	19.3	18.2	21.3	11.6	7.98	14.3	15.5
4.656	20.1	22.2	25.2	26.4	6.52	5.37	1.52	20.9	20.1	23.6	12.7	8.68	15.5	16.8
5.111	21.7	23.9	27.5	28.8	7.11	5.82	1.64	22.5	22.0	26.1	14.0	9.41	16.7	18.1
5.611	23.2	25.6	29.8	31.4	7.71	6.28	1.77	24.2	24.1	28.7	15.2	10.2	17.9	19.4

7491 TRONDHEIM

Telefaks: 73 92 16 20

Tlf.: 73 90 40 11

Norges geologiske undersøkelse KORNFORDELINGSANALYSE : COULTER LASER

GEOLOGISK MATERIALE

Analysekontraktsnr: 2004.0391

NGU-Lab

6.158 24.8 27.3 32.3 34.0 8.33 6.75 1.90 25.9 26.1 31.3 16.5 10.9 19.1 20.7 6.761 26.4 28.2 22.1 29.1 34.7 36.6 8.95 7.22 2.02 27.6 33.9 17.7 11.7 20.4 7.421 28.0 30.8 37.1 39.2 9.55 7.68 2.15 29.3 30.2 36.5 18.9 12.4 21.6 23.4 8.147 29.6 32.0 24.7 32.6 39.5 41.7 10.1 8.13 2.26 31.0 38.9 20.1 13.1 22.8 8.944 31.3 23.9 34.4 41.8 44.1 10.7 8.56 2.37 32.6 33.8 41.1 21.2 13.9 25.9 9.819 33.0 36.3 43.9 46.4 11.2 8.97 2.47 34.3 35.4 43.1 22.2 14.6 25.1 27.2 10.78 34.8 38.2 11.7 9.36 2.57 35.9 36.7 44.8 23.1 15.2 26.2 28.4 46.0 48.4 11.83 36.6 40.2 47.9 50.3 12.2 9.73 2.66 37.5 37.9 46.2 23.9 15.9 27.2 29.6 12.99 38.6 42.3 12.6 10.1 2.74 39.1 39.0 47.4 24.7 16.5 28.3 30.9 49.7 52.1 14.26 40.8 17.2 44.5 51.6 53.9 13.1 10.5 2.83 40.7 40.1 48.6 25.5 29.5 32.1 15.65 43.1 42.5 47.0 53.5 55.8 13.5 10.9 2.92 41.2 49.8 26.3 17.9 30.7 33.4 17.18 45.6 27.1 49.7 55.5 57.8 14.0 11.3 3.01 44.2 42.4 51.1 18.7 32.0 34.8 18.86 48.4 52.6 57.7 60.0 3.12 46.1 43.7 52.5 28.0 19.6 33.4 36.3 14.6 11.8 20.70 51.3 55.6 60.0 62.2 15.1 12.3 3.22 48.0 45.1 53.9 29.0 20.5 34.9 37.8 22.73 54.4 58.7 62.2 64.3 15.6 12.8 3.32 49.8 46.4 55.3 30.0 21.4 36.4 39.3 24.95 57.7 22.3 37.9 40.8 62.0 64.4 66.4 16.2 13.3 3.42 51.7 47.8 56.6 31.0 27.38 61.1 65.3 66.3 68.5 16.7 13.8 3.51 53.5 49.1 57.8 32.0 23.3 39.4 42.3 30.07 64.6 68.7 68.1 70.5 17.2 14.3 3.61 55.2 50.3 58.9 33.0 24.3 40.9 43.7 33.00 68.3 72.0 72.4 17.7 3.70 56.9 51.6 60.0 33.9 25.4 42.5 45.0 69.8 14.8 36.24 72.0 18.2 3.80 58.6 52.8 61.0 34.9 26.6 44.4 75.3 71.4 74.2 15.3 46.4 39.77 75.7 78.4 73.1 75.9 18.7 15.9 3.91 60.3 54.2 61.9 35.9 27.9 46.5 48.0 43.66 79.2 81.2 74.8 77.5 19.2 16.5 4.02 62.1 55.7 63.0 37.0 29.6 49.0 49.9 47.93 82.5 83.7 76.5 79.0 19.7 17.2 4.16 64.1 57.4 64.0 38.1 31.6 51.9 52.3 52.63 85.6 55.2 86.0 77.9 80.4 20.2 17.9 4.31 66.3 59.3 65.2 39.4 33.9 55.0 57.77 88.3 68.5 57.9 88.0 79.1 81.7 20.7 18.7 4.47 61.4 66.4 40.7 36.4 58.8 63.00 90.6 89.7 79.7 83.0 21.2 19.5 4.64 70.4 63.6 67.5 41.9 39.1 62.4 60.5 125.0 94.9 93.6 87.2 90.1 27.7 47.6 13.5 88.6 93.3 79.1 65.0 74.1 84.4 81.1 250.0 96.1 97.2 96.1 90.9 93.5 34.1 70.4 43.1 96.9 89.7 91.4 87.6 91.3 89.3 500.0 96.5 97.2 93.7 96.6 37.0 76.7 54.9 98.9 98.3 93.1 96.7 92.6 95.5 94.2 1000 97.2 98.1 96.2 99.1 39.8 80.7 65.1 99.7 99.6 99.0 99.0 94.8 97.6 97.6 2000 99.2 42.1 72.5 100 100 99.8 99.5 96.4 98.3 99.5 99.7 98.3 100 84.4 4000 99.5 98.7 44.3 90.9 79.9 100 100 100 100 100 100 8000 100 100 93.2 55.8 91.6 16000 83.0 100 100

Norges geologiske undersøkelseKORNFORDELINGSANALYSE : COULTER LASER7491TRONDHEIMTlf.: 73 90 40 11GEOLOGISK MATERIALETelefaks: 73 92 16 20Analysekontraktsnr: 2004.0391

19000					100										
Prøve nr.→ Diameter(μm)	St 16	St 17	St 18	St 10	St 20	St 21	St 22	St 23	St 24	St 25	St 26	St 27	St 28	St 20	St 30
▼ 0.375	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0.373	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0.452	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0.496	0	0	0	0	0 000043	0 00013	0 4 74F-7	0	0	0	0	0	0	0	0
0.545	0 000092	0 00023	0 00038	0 00042	0.000040	0.00013	0.00019	0	0 000031	0 000045	0	0 000033	0 00016	0 00012	0
0.598	0.0017	0.0034	0.0054	0.0059	0.0091	0.0098	0.0024	0 00066	0.0015	0.00085	0 00053	0.000000	0.0030	0.0030	0 00061
0.657	0.012	0.021	0.033	0.035	0.039	0.031	0.013	0.0087	0.014	0.0059	0.0074	0.019	0.021	0.023	0.0087
0.721	0.043	0.072	0.11	0.12	0.11	0.071	0.042	0.051	0.065	0.022	0.045	0.090	0.079	0.095	0.054
0.791	0.11	0.17	0.26	0.27	0.23	0.13	0.096	0.16	0.19	0.058	0.15	0.27	0.21	0.26	0.18
0.869	0.23	0.34	0.50	0.53	0.43	0.23	0.18	0.38	0.42	0.12	0.36	0.60	0.43	0.56	0.44
0.953	0.41	0.59	0.85	0.90	0.72	0.35	0.31	0.73	0.78	0.21	0.71	1.13	0.77	1.01	0.86
1.047	0.67	0.93	1.34	1.41	1.11	0.52	0.48	1.22	1.30	0.35	1.21	1.88	1.24	1.66	1.47
1.149	1.01	1.38	1.97	2.07	1.61	0.74	0.71	1.87	1.99	0.52	1.90	2.89	1.87	2.53	2.31
1.261	1.44	1.94	2.76	2.90	2.24	0.99	0.99	2.71	2.87	0.74	2.79	4.17	2.67	3.63	3.40
1.385	1.95	2.61	3.70	3.89	2.98	1.30	1.33	3.72	3.92	1.01	3.87	5.73	3.63	4.97	4.72
1.520	2.55	3.37	4.78	5.01	3.83	1.64	1.71	4.89	5.15	1.32	5.12	7.54	4.74	6.51	6.26
1.669	3.20	4.21	5.97	6.26	4.77	2.02	2.13	6.19	6.51	1.66	6.52	9.54	5.98	8.23	7.98
1.832	3.91	5.12	7.24	7.59	5.79	2.42	2.58	7.59	7.99	2.03	8.04	11.7	7.30	10.1	9.85
2.010	4.64	6.06	8.57	8.99	6.85	2.85	3.06	9.08	9.55	2.42	9.63	14.0	8.70	12.0	11.8
2.207	5.39	7.03	9.94	10.4	7.95	3.29	3.55	10.6	11.2	2.82	11.3	16.3	10.1	14.0	13.8
2.423	6.15	8.00	11.3	11.9	9.07	3.74	4.05	12.3	12.9	3.24	12.9	18.6	11.6	16.0	15.9
2.660	6.91	8.98	12.7	13.3	10.2	4.20	4.55	14.0	14.7	3.67	14.6	20.9	13.0	18.1	17.9
2.920	7.68	9.97	14.1	14.8	11.4	4.67	5.07	15.8	16.6	4.12	16.3	23.3	14.5	20.1	20.0
3.206	8.47	11.0	15.6	16.4	12.6	5.15	5.60	17.7	18.6	4.59	18.0	25.7	16.0	22.2	22.1
3.519	9.27	12.0	17.0	17.9	13.8	5.63	6.14	19.8	20.8	5.08	19.7	28.1	17.5	24.4	24.3
3.862	10.1	13.1	18.5	19.5	15.1	6.13	6.70	22.1	23.2	5.59	21.5	30.6	19.1	26.6	26.5
4.241	10.9	14.1	20.1	21.1	16.4	6.64	7.28	24.6	25.8	6.13	23.3	33.1	20.7	28.8	28.8
4.656	11.8	15.2	21.7	22.8	17.7	7.16	7.87	27.2	28.5	6.69	25.2	35.7	22.3	31.1	31.1
5.111	12.7	16.4	23.3	24.5	19.0	7.69	8.48	30.0	31.4	7.27	27.1	38.4	24.0	33.4	33.5
5.611	13.6	17.5	24.9	26.2	20.4	8.22	9.10	32.9	34.4	7.86	29.0	41.0	25.7	35.7	35.9

7491 TRONDHEIM

Telefaks: 73 92 16 20

Tlf.: 73 90 40 11

Norges geologiske undersøkelse KORNFORDELINGSANALYSE : COULTER LASER

GEOLOGISK MATERIALE

Analysekontraktsnr: 2004.0391

NGU-Lab

6.158 14.5 18.7 26.6 28.0 21.8 8.76 9.73 35.8 37.4 8.46 31.0 43.7 27.4 38.1 38.3 6.761 15.4 32.9 40.4 19.8 28.3 29.8 23.2 9.31 10.4 38.7 40.4 9.06 46.4 29.2 40.7 7.421 16.3 21.0 30.0 31.6 24.6 9.85 11.0 41.5 43.4 9.65 34.8 49.0 30.9 42.7 43.1 8.147 17.2 22.1 31.7 33.4 26.0 10.4 11.6 44.2 46.2 10.2 36.7 51.6 32.7 45.1 45.5 8.944 18.1 12.2 23.3 33.4 35.2 27.5 10.9 46.8 48.9 10.8 38.6 54.1 34.4 47.4 47.8 9.819 18.9 24.4 35.2 37.0 28.9 11.5 12.8 49.1 51.3 11.3 40.5 56.5 36.2 49.7 50.1 10.78 19.8 25.6 36.9 38.8 30.3 12.1 13.4 51.1 53.5 11.8 42.3 58.9 38.0 51.9 52.3 11.83 20.6 26.7 38.7 40.7 31.8 12.6 14.1 53.0 55.5 12.3 44.1 61.3 39.8 54.2 54.6 12.99 21.5 27.9 33.3 13.3 54.7 57.4 12.8 45.9 63.7 41.7 56.6 40.5 42.7 14.7 56.8 14.26 22.4 29.1 42.5 44.7 34.9 13.9 15.4 56.4 59.2 13.3 47.8 66.1 43.6 59.0 59.2 15.65 23.3 58.2 30.4 44.5 46.9 36.6 14.6 16.1 61.1 13.8 49.8 68.7 45.7 61.6 61.6 17.18 24.4 49.3 38.6 15.4 16.8 60.2 63.3 14.4 51.9 71.4 48.0 64.4 64.1 31.8 46.7 18.86 25.4 33.3 40.7 16.3 17.6 62.4 65.6 15.1 54.1 74.2 50.3 67.2 66.7 49.1 51.8 20.70 26.5 34.8 51.5 54.4 43.1 17.3 18.5 64.6 67.9 15.8 56.2 76.8 52.7 70.1 69.3 22.73 27.6 36.4 53.9 57.0 45.5 18.3 19.4 66.9 70.3 16.5 58.3 79.3 55.0 72.8 71.7 24.95 28.7 72.5 57.3 75.4 73.9 37.9 56.3 59.6 48.0 19.4 20.4 69.0 17.2 60.3 81.5 27.38 29.7 39.5 58.7 62.3 50.5 20.6 21.4 71.0 74.6 17.9 62.2 83.4 59.5 77.9 75.9 30.07 30.7 41.1 61.2 65.0 52.8 21.8 22.4 73.0 76.6 18.6 63.9 85.1 61.6 80.1 77.8 33.00 31.7 55.3 23.2 23.4 74.9 65.7 86.7 63.7 82.2 79.6 42.7 63.7 67.8 78.5 19.4 36.24 32.8 57.9 24.7 24.5 76.8 80.4 20.2 67.4 88.1 65.8 84.2 44.3 66.4 70.8 81.3 39.77 33.9 46.1 69.3 73.9 61.0 26.4 25.7 78.8 82.3 21.1 69.1 89.4 67.8 86.1 82.9 43.66 35.3 48.3 72.5 77.1 64.7 28.4 27.1 80.8 84.2 22.1 70.9 90.7 69.7 87.8 84.4 47.93 36.8 23.2 50.8 75.9 80.3 68.7 30.7 28.9 82.9 86.1 72.7 91.8 71.6 89.4 85.9 52.63 38.4 53.8 79.5 83.5 72.6 33.2 31.0 84.9 88.0 24.5 74.6 92.8 73.5 90.8 87.3 57.77 40.1 33.2 25.8 76.5 56.9 83.2 86.5 75.8 35.8 86.9 89.7 93.7 75.3 91.9 88.7 63.00 41.8 60.0 86.7 89.2 78.1 38.4 35.2 88.8 91.2 27.0 78.4 94.4 76.9 92.7 89.9 125.0 62.4 91.0 97.6 95.1 98.6 85.9 80.3 96.7 96.9 47.0 92.7 96.7 90.1 95.4 95.4 250.0 77.3 92.5 98.2 97.6 99.0 96.5 99.5 94.8 98.0 60.6 96.0 97.7 94.0 96.5 96.8 500.0 84.3 98.7 99.3 97.1 99.8 96.1 94.3 98.5 98.7 65.2 97.0 98.3 95.5 97.1 97.5 1000 89.5 99.1 99.5 97.5 100 96.8 95.1 99.5 99.5 68.3 97.4 98.7 96.3 97.4 98.0 2000 92.1 98.2 98.7 96.4 100 100 71.9 98.0 99.4 97.2 97.7 99.3 99.6 99.8 4000 94.4 100 99.6 100 100 82.7 100 100 100 100 100 100 8000 100 93.5 100 16000 100

Norges geologiske undersøkelseKORNFORDELINGSANALYSE : COULTER LASER7491TRONDHEIMTlf.: 73 90 40 11GEOLOGISK MATERIALETelefaks: 73 92 16 20Analysekontraktsnr: 2004.0391

Prøve nr.→															
	St.31.	St.32.	St.33.	St.34.	St.35.	St.36.	St.37.	St.38.	St.39.	St.40.	St.41.	St.42.	St.43.	St.44.	St.45.
0.375	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0.412	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0.452	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0.496	0	0	0	0.00015	0	0	0	0	0	0.000004	0.000036	0	0	0	0
0.545	0	0	0	0.0024	0.00016	0.000074	0.00025	0.00012	0.00016	0.00051	0.00058	0.000062	0.00029	0	0
0.598	0.00040	0.00080	0.00076	0.016	0.0027	0.0019	0.0038	0.0025	0.0029	0.0057	0.0039	0.00089	0.0041	0.000044	0.00019
0.657	0.0067	0.011	0.010	0.058	0.017	0.014	0.023	0.018	0.020	0.030	0.014	0.0054	0.024	0.00058	0.0026
0.721	0.045	0.062	0.063	0.15	0.062	0.059	0.078	0.069	0.075	0.094	0.036	0.018	0.079	0.0034	0.015
0.791	0.17	0.20	0.20	0.30	0.16	0.16	0.19	0.18	0.20	0.22	0.073	0.042	0.19	0.011	0.049
0.869	0.43	0.46	0.49	0.54	0.32	0.35	0.37	0.39	0.40	0.41	0.13	0.082	0.36	0.026	0.11
0.953	0.88	0.87	0.93	0.88	0.55	0.64	0.63	0.69	0.72	0.70	0.21	0.14	0.61	0.049	0.22
1.047	1.55	1.46	1.58	1.34	0.89	1.05	0.99	1.13	1.16	1.09	0.32	0.22	0.95	0.083	0.37
1.149	2.49	2.26	2.47	1.92	1.32	1.60	1.47	1.70	1.74	1.60	0.46	0.33	1.40	0.13	0.57
1.261	3.71	3.28	3.60	2.64	1.87	2.29	2.07	2.43	2.48	2.22	0.63	0.46	1.95	0.18	0.83
1.385	5.21	4.52	4.98	3.50	2.53	3.12	2.78	3.30	3.36	2.97	0.83	0.62	2.61	0.25	1.14
1.520	6.98	5.96	6.59	4.47	3.29	4.08	3.60	4.30	4.37	3.82	1.06	0.80	3.37	0.34	1.50
1.669	8.96	7.58	8.38	5.54	4.13	5.15	4.51	5.41	5.48	4.76	1.31	1.00	4.20	0.43	1.91
1.832	11.1	9.32	10.3	6.69	5.04	6.30	5.49	6.61	6.68	5.76	1.59	1.21	5.10	0.52	2.35
2.010	13.4	11.2	12.4	7.90	6.00	7.51	6.52	7.87	7.94	6.82	1.87	1.44	6.05	0.63	2.82
2.207	15.7	13.1	14.5	9.14	6.99	8.77	7.59	9.17	9.23	7.91	2.16	1.67	7.02	0.73	3.31
2.423	18.1	15.0	16.6	10.4	8.01	10.1	8.67	10.5	10.6	9.02	2.46	1.91	8.02	0.84	3.81
2.660	20.5	17.0	18.8	11.7	9.07	11.4	9.78	11.9	11.9	10.2	2.77	2.15	9.03	0.96	4.34
2.920	22.9	19.0	21.0	13.0	10.2	12.8	10.9	13.3	13.3	11.4	3.08	2.40	10.1	1.07	4.90
3.206	25.4	21.1	23.3	14.3	11.3	14.2	12.1	14.8	14.8	12.6	3.40	2.66	11.2	1.20	5.48
3.519	27.9	23.2	25.6	15.6	12.5	15.8	13.3	16.5	16.4	13.9	3.74	2.93	12.3	1.33	6.11
3.862	30.5	25.4	28.0	17.0	13.8	17.4	14.5	18.2	18.1	15.3	4.10	3.21	13.5	1.47	6.77
1.241	33.1	27.6	30.4	18.4	15.1	19.2	15.8	20.0	19.8	16.8	4.47	3.50	14.7	1.62	7.47
4.656	35.8	29.9	32.9	19.9	16.6	21.0	17.2	22.0	21.7	18.4	4.85	3.81	15.9	1.78	8.20
5.111	38.6	32.2	35.5	21.4	18.0	22.9	18.6	24.0	23.7	20.0	5.25	4.12	17.3	1.94	8.96
5.611	41.4	34.6	38.1	22.9	19.6	24.9	20.0	26.1	25.8	21.7	5.67	4.45	18.6	2.11	9.74
6.158	44.2	37.0	40.8	24.5	21.1	26.9	21.4	28.3	27.8	23.4	6.09	4.77	20.0	2.28	10.5

7491 TRONDHEIM

Telefaks: 73 92 16 20

Tlf.: 73 90 40 11

Norges geologiske undersøkelse KORNFORDELINGSANALYSE : COULTER LASER

GEOLOGISK MATERIALE

Analysekontraktsnr: 2004.0391

NGU-Lab

6.761 46.9 39.5 43.5 26.1 22.6 28.9 22.8 30.4 29.9 25.1 6.51 5.10 21.4 2.44 11.3 7.421 49.7 32.5 41.9 46.1 27.7 24.2 30.9 24.3 31.9 26.8 6.93 5.42 22.8 2.61 12.0 8.147 52.3 44.3 48.8 29.4 25.7 32.8 25.7 34.6 33.9 28.5 7.35 5.74 24.1 2.76 12.7 8.944 55.0 27.1 46.8 51.5 31.1 27.1 34.7 36.5 35.8 30.1 7.77 6.05 25.5 2.90 13.4 9.819 57.5 49.2 54.1 32.9 28.5 36.4 28.4 38.4 37.5 31.6 8.17 6.34 26.8 3.04 13.9 10.78 60.0 51.7 34.7 29.9 38.1 29.8 40.1 39.1 33.1 8.57 6.63 28.1 3.15 14.5 56.7 11.83 62.4 36.6 31.2 39.6 31.2 41.7 40.6 34.5 8.96 6.92 29.3 3.26 14.9 54.1 59.3 12.99 64.8 56.6 62.0 38.6 32.5 41.1 32.6 43.2 42.0 35.8 9.36 7.20 30.7 3.36 15.3 14.26 67.2 59.1 33.8 42.6 34.0 44.8 43.4 37.2 9.78 7.50 32.0 3.45 64.6 40.8 15.7 15.65 69.7 61.7 67.4 43.2 35.2 44.2 35.6 46.4 44.9 38.7 10.2 7.82 33.5 3.55 16.1 17.18 72.2 64.3 70.2 45.8 36.7 46.0 37.4 48.1 46.6 40.3 10.7 8.17 35.1 3.66 16.5 18.86 74.8 67.0 73.1 38.4 47.8 39.2 49.9 48.3 42.0 11.2 8.54 36.8 3.78 17.0 48.6 20.70 77.2 69.6 75.8 40.0 49.7 41.2 51.7 50.0 43.7 11.8 8.92 38.5 3.90 17.5 51.6 22.73 79.4 72.0 78.4 54.7 41.7 51.5 43.1 53.5 51.8 45.5 12.3 9.30 40.3 4.01 18.0 24.95 81.3 74.2 80.7 57.9 43.4 53.3 45.1 55.2 53.4 47.2 12.9 9.67 42.1 4.12 18.4 27.38 83.0 47.2 4.22 76.2 82.7 61.1 45.0 54.9 56.8 54.9 48.8 13.5 10.0 43.8 18.8 30.07 84.4 78.0 84.5 64.5 46.5 56.5 49.2 58.2 56.3 50.4 14.1 10.4 45.6 4.32 19.0 33.00 85.6 79.5 86.1 67.9 48.0 58.0 51.3 59.5 57.7 51.9 14.6 10.7 47.3 4.41 19.3 36.24 86.7 53.6 60.8 58.9 53.3 4.49 19.6 80.9 87.5 71.2 49.6 59.5 15.2 11.1 49.1 39.77 87.6 82.2 56.0 62.1 60.1 54.7 15.9 50.9 4.58 20.0 88.8 74.5 51.2 61.2 11.4 43.66 88.4 83.3 89.9 77.7 52.9 62.9 58.6 63.3 61.2 56.1 16.6 11.8 52.7 4.67 20.5 47.93 89.2 84.3 90.9 80.6 54.8 64.8 61.5 64.5 62.4 57.4 17.4 12.2 54.6 4.75 20.9 52.63 89.8 85.2 91.8 83.4 56.8 66.8 64.6 65.8 63.5 58.7 18.4 12.6 56.6 4.85 21.3 57.77 90.4 86.1 92.6 85.9 58.8 68.8 67.8 67.1 64.6 59.9 19.5 13.0 58.6 4.94 21.5 63.00 90.9 86.7 93.2 88.0 60.8 70.8 70.9 68.4 65.7 61.0 20.6 13.5 60.5 5.04 21.6 125.0 93.6 91.1 95.6 95.2 82.7 83.4 89.3 80.6 76.7 76.2 52.0 23.5 79.8 10.6 33.0 250.0 94.9 93.4 97.0 97.2 91.3 88.2 93.5 88.1 86.3 88.7 71.6 34.4 87.1 28.4 48.8 500.0 95.9 92.4 92.6 94.8 98.6 97.8 93.9 90.8 94.8 93.7 78.7 45.2 90.1 43.4 68.6 1000 96.3 95.4 99.4 98.2 96.0 93.2 95.8 95.6 96.8 96.1 82.5 61.5 93.7 60.2 80.6 2000 97.4 97.1 99.7 99.5 98.3 96.0 98.5 98.7 98.6 97.2 85.2 74.1 96.1 70.4 84.3 4000 100 99.6 97.1 100 100 99.6 99.2 88.6 83.6 99.4 82.2 88.1 99.8 100 100 8000 100 100 97.8 100 95.4 94.1 100 93.8 89.0 100 16000 100 100 100 100 100

Norges geologiske undersøkelseKORNFORDELINGSANALYSE : COULTER LASER7491TRONDHEIMTlf.: 73 90 40 11GEOLOGISK MATERIALETelefaks: 73 92 16 20Analysekontraktsnr: 2004.0391

Tabell 2 Forbehandling, kommentarer, resultatfil m.m

Sample ID:	File name:	Comments:	Group ID:	Operator:
St.1.	st1#a.\$02	Innvekt 0.20g, ultralyd.	2004.0391	Wieslawa Koziel
St.2.	st2a.\$02	Innvekt 0.21g, ultralyd.	2004.0391	Wieslawa Koziel
St.3.	st3a.\$02	Innvekt 0.16g, ultralyd.	2004.0391	Wieslawa Koziel
St.4.	st4a.\$02	Innvekt 0.17g, ultralyd.	2004.0391	Wieslawa Koziel
St.5.	st5a.\$02	Innvekt 0.17g, ultralyd.	2004.0391	Wieslawa Koziel
St.6.	st6#a.\$02	Innvekt 0.19g, ultralyd.	2004.0391	Wieslawa Koziel
St.7.	st7a.\$02	Innvekt 0.15g, ultralyd.	2004.0391	Wieslawa Koziel
St.8.	st8a.\$02	Innvekt 0.19g, ultralyd.	2004.0391	Wieslawa Koziel
St.9.	st9a.\$02	Innvekt 0.19g, ultralyd.	2004.0391	Wieslawa Koziel
St.11.	st11a.\$02	Innvekt 0.16g, ultralyd.	2004.0391	Wieslawa Koziel
St.12.	st12a.\$02	Innvekt 0.16g, ultralyd.	2004.0391	Wieslawa Koziel
St.13.	st13#a.\$02	Innvekt 0.24g, ultralyd.	2004.0391	Wieslawa Koziel
St.14.	st14a.\$02	Innvekt 0.21g, ultralyd.	2004.0391	Wieslawa Koziel
St.15.	st15a.\$02	Innvekt 0.18g, ultralyd.	2004.0391	Wieslawa Koziel
St.16.	st16a.\$02	Innvekt 0.25g, ultralyd.	2004.0391	Wieslawa Koziel
St.17.	st17a.\$02	Innvekt 0.24g, ultralyd.	2004.0391	Wieslawa Koziel
St.18.	st18a.\$02	Innvekt 0.22g, ultralyd.	2004.0391	Wieslawa Koziel
St.19.	st19a.\$02	Innvekt 0.20g, ultralyd.	2004.0391	Wieslawa Koziel
St.20.	st20#a.\$02	Innvekt 0.21g, ultralyd.	2004.0391	Wieslawa Koziel
St.21.	st21a.\$02	Innvekt 0.26g, ultralyd.	2004.0391	Wieslawa Koziel
St.22.	st22a.\$02	Innvekt 0.28g, ultralyd.	2004.0391	Wieslawa Koziel
St.23.	st23a.\$02	Innvekt 0.18g, ultralyd.	2004.0391	Wieslawa Koziel
St.24.	st24#a.\$02	Innvekt 0.16g, ultralyd.	2004.0391	Wieslawa Koziel
St.25.	st25a.\$02	Innvekt 0.23g, ultralyd.	2004.0391	Wieslawa Koziel
St.26.	st26a.\$02	Innvekt 0.18g, ultralyd.	2004.0391	Wieslawa Koziel
St.27.	st27a.\$02	Innvekt 0.16g, ultralyd.	2004.0391	Wieslawa Koziel
St.28.	st28a.\$02	Innvekt 0.18g, ultralyd.	2004.0391	Wieslawa Koziel
St.29.	st29a.\$02	Innvekt 0.16g, ultralyd.	2004.0391	Wieslawa Koziel
St.30.	st30a.\$02	Innvekt 0.18g, ultralyd.	2004.0391	Wieslawa Koziel
St.31.	st31#a.\$02	Innvekt 0.15g, ultralyd.	2004.0391	Wieslawa Koziel

Norges geologiske undersøkelseKORNFORDELINGSANALYSE : COULTER LASER7491TRONDHEIMTlf.: 73 90 40 11GEOLOGISK MATERIALETelefaks: 73 92 16 20Analysekontraktsnr: 2004.0391

NGU-Lab

St.32.	st32a.\$02	Innvekt 0.14g, ultralyd.	2004.0391	Wieslawa Koziel
St.33.	st33#a.\$02	Innvekt 0.15g, ultralyd.	2004.0391	Wieslawa Koziel
St.34.	st34a.\$02	Innvekt 0.21g, ultralyd.	2004.0391	Wieslawa Koziel
St.35.	st35a.\$02	Innvekt 0.21g, ultralyd.	2004.0391	Wieslawa Koziel
St.36.	st36a.\$02	Innvekt 0.21g, ultralyd.	2004.0391	Wieslawa Koziel
St.37.	st37a.\$02	Innvekt 0.22g, ultralyd.	2004.0391	Wieslawa Koziel
St.38.	st38#a.\$02	Innvekt 0.18g, ultralyd.	2004.0391	Wieslawa Koziel
St.39.	st39a.\$02	Innvekt 0.18g, ultralyd.	2004.0391	Wieslawa Koziel
St.40.	st40a.\$02	Innvekt 0.17g, ultralyd.	2004.0391	Wieslawa Koziel
St.41.	st41#a.\$02	Innvekt 0.22g, ultralyd.	2004.0391	Wieslawa Koziel
St.42.	st42a.\$02	Innvekt 0.18g, ultralyd.	2004.0391	Wieslawa Koziel
St.43.	st43a.\$02	Innvekt 0.20g, ultralyd.	2004.0391	Wieslawa Koziel
St.44.	st44a.\$02	Innvekt 0.15g, ultralyd.	2004.0391	Wieslawa Koziel
St.45.	st45a.\$02	Innvekt 0.14g, ultralyd.	2004.0391	Wieslawa Koziel

BESTEMMELSE AV TOTAL KARBON(TC) / TOTAL SVOVEL(TS) / TOTAL ORGANISK KARBON (TOC) (LECO OVN)

INSTRUMENT TYPE :

Leco SC-444

I) TOTAL KARBON (TC)

Nedre bestemmelses grense [% C]: 0,07

7491 TRONDHEIM

Telefaks: 73 92 16 20

Tlf.: 73 90 40 00

Analyse usikkerhet

Måleområdet / %	Usikkerhet
0.07-3.0	± 0.07 %
>3.0	± 2.5 % rel.

II) TOTAL SVOVEL (TS)

Nedre bestemmelses grense [% S]: 0,01

Analyse usikkerhet

Måleområdet / %	Usikkerhet
0.01-1.0	± 20 % rel.
>1.0	± 10 % rel.

III) TOTAL ORGANISK KARBON (TOC)

Nedre bestemmelses grense [% TOC]: 0,1

Analyse usikkerhet

Måleområdet / %	Usikkerhet
0.1-3.0	± 15 % rel.
>3.0	± 10 % rel.

PRESISJON : Det kjøres rutinemessig kontrollprøver, som føres i kontrolldiagram (X-diagram). Disse kan forevises om ønskelig.

ANTALL PRØVER: 44

ANMERKNINGER: Ingen

Rapporten må ikke gjengis i utdrag uten skriftlig godkjenning fra NGU-Lab.

 Ferdig analysert
 11.02.05
 Anne Nordtømme

 Dato
 OPERATØR

TOTAL KARBON/TOTAL SVOVEL/TOTAL ORGANISK KARBON Geologisk materiale ANALYSEKONTRAKTNR. 2004.0391

Prøve id.	Svovel	Karbon	TOC		
Ct 1	0.15	1.61	[<i>/</i>]		
51.1	0,15	1,01	0,62		
St.2	0,10	1,09	0,92		
51.5	0,22	3,30	1,01		
51.4 St F	0,21	4,10	0,97		
51.5	0,10	3,07	0,00		
SL0 St 7	0,07	1,70	0,37		
SL.7 St 9	0,02	0,00	0,29		
SL.0	0,23	1,29	0,78		
SI.9	0,14	2,93	0,67		
51.11	0,19	3,42	0,74		
St.12	0,09	1,76	0,42		
St.13	0,06	1,06	0,33		
St.14	0,12	1,63	0,79		
St.15	0,13	1,66	0,88		
St.16	0,10	1,36	0,87		
St.17	0,13	1,66	1,15		
St.18	0,16	1,94	1,41		
St.19	0,19	1,88	1,40		
St.20	0,22	5,45	1,97		
St.21	0,10	3,83	0,90		
St.22	0,08	2,37	0,73		
St.23	0,21	3,77	0,95		
St.24	0,24	3,76	1,11		
St.25	0,08	1,77	0,82		
St.26	0,15	2,10	1,66		
St.27	0,22	2,70	2,17		
St.28	0,17	2,24	1,69		
St.29	0,24	3,21	2,31		
St.30	0,22	3,05	2,24		
St.31	0,28	3,26	2,66		
St.32	0,22	2,90	2,40		
St.33	0,24	3,16	2,62		
St.34	0,14	1,54	0,76		
St.35	0,11	1,64	0,60		
St.36	0,15	2,74	0,80		

TOTAL KARBON/TOTAL SVOVEL/TOTAL ORGANISK KARBON Geologisk materiale ANALYSEKONTRAKTNR. 2004.0391

Prøve id.	Svovel [%]	Karbon [%]	тос [%]
St.37	0,10	1,54	0,58
St.38	0,17	3,25	0,91
St.39	0,15	4,82	0,75
St.40	0,13	4,52	0,83
St.41	0,05	2,83	0,37
St.42	0,09	7,09	0,43
St.43	0,18	4,58	1,06
St.44	0,03	2,90	0,20
St.45	0,07	1,37	0,44

ICP-AES ANALYSER GEOLOGISK MATERIALE ANALYSEKONTRAKTNR. 2004.0391

Metoden anvendes på analyseløsninger fremstilt ved ekstraksjon med 7 N HNO₃ i autoklav i samsvar med Norsk Standard - NS 4770 Analysen er således basert på partiell syreekstraksjon i 7N HNO₃ og de rapporterte analyseverdier representerer derfor ikke totalverdier i prøven

INSTRUMENT TYPE : Perkin Elmer Optima 4300 Dual View

NEDRE BESTEMMELSESGRENSER FOR PLASMA ANALYSER BASERT PÅ AUTOKLAVEKSTRAKSJON (1 g prøve i 100 ml analysevolum)

(For analyser med tynningsfaktor som avviker fra 100, blir deteksjonsgrensene automatisk omregnet).

Si*	Al	Fe	Ti	Mg	Ca	Na	K	Mn	Р	Cu	Zn	Pb	Ni	Co	
ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
100	20	2	1	100	200	200	100	0,2	10	0,5	1	1	1	0,1	
															-
V	Мо	Cd	Cr	Ba	Sr	Zr	Ag	В	Be	Li	Sc	Ce	La	Y	As*
V ppm	Mo ppm	Cd ppm	Cr ppm	Ba ppm	Sr ppm	Zr ppm	Ag ppm	B ppm	Be ppm	Li ppm	Sc ppm	Ce ppm	La ppm	Y ppm	As* ppm

*)NGU-lab er ikke akkreditert for Si og As (geologisk materiale).

(1 mg/kg = 1 ppm)

ANALYSEUSIKKERHET For samtlige elementer regnes med en total usikkerhet i ekstraksjon og analyse på \pm 10% rel.

PRESISJON : Det kjøres rutinemessig kontrollprøver, som føres i kontrolldiagram (X-diagram). Disse kan forevises om ønskelig.

ANTALL PRØVER: 44

ANMERKNINGER: Ingen

Rapporten må ikke gjengis i utdrag uten skriftlig godkjenning fra NGU-Lab.

Ferdig analysert	21-mar-05	Baard Søberg/Ivana Todorovic
	Dato	OPERATØR

ICP-AES ANALYSER GEOLOGISK MATERIALE ANALYSEKONTRAKTNR. 2004.0391

Prøve id.	Si	AI	Fe	Ti	Mg	Ca	Na	к	Mn	Р	Cu	Zn	Pb	Ni	Co
	[mg/kg]														
St. 1	119	19300	24700	745	12300	21900	15500	6690	604	554	10,4	53,5	17,8	30,4	10,0
St. 2	105	21900	28300	700	13300	21400	17600	7050	1040	589	11,9	56,7	18,7	32,0	10,9
St. 3	116	18800	23000	564	11200	66200	22500	6410	725	572	12,6	53,0	23,8	27,9	9,12
St. 4	132	17200	20700	648	10800	91600	23500	6490	770	574	12,6	50,7	24,5	28,8	8,95
St. 5	117	13200	17500	586	7860	73000	11300	4550	668	546	9,40	36,4	19,5	23,8	7,31
St. 6	117	9300	14500	326	5120	42700	7310	2840	366	519	6,49	24,9	14,7	15,2	4,78
St. 7	124	8390	15900	286	4310	18000	3690	2260	369	506	4,85	24,5	10,7	16,3	5,32
St. 8	137	18000	25700	343	8750	10500	8140	5170	336	518	17,0	59,5	11,1	28,5	9,04
St. 9	116	13500	17000	737	7700	66800	13800	4400	873	578	12,7	34,2	16,6	20,5	6,76
St. 11	153	14600	18300	784	8630	79800	18900	4960	854	510	15,5	37,6	16,8	20,6	7,75
St. 12	222	10300	13600	576	6150	40300	9840	3370	555	502	9,44	26,8	10,9	15,0	5,56
St. 13	125	8800	12900	309	5060	20200	6960	2820	386	490	6,10	26,9	11,7	12,9	4,80
St. 14	117	12500	18000	299	7840	23400	11200	4140	434	552	9,30	41,8	16,3	20,6	6,48
St. 15	119	14300	21300	265	8660	19200	12500	4340	459	561	9,55	43,0	17,3	20,9	6,57
St. 16	123	12700	21900	185	7170	11600	10600	3910	421	660	8,87	44,5	18,4	22,3	6,44
St. 17	158	14400	20500	246	9170	12800	13700	4830	350	538	10,4	49,1	14,7	23,1	6,63
St. 18	130	17900	27000	322	11500	9370	18000	6270	642	714	12,4	60,5	21,2	28,0	8,66
St. 19	126	18300	27900	337	12100	8350	21300	6430	938	745	13,0	62,9	21,9	30,2	9,78
St. 20	184	11100	20900	72,7	13700	87000	18100	4290	326	1070	9,92	42,6	16,6	19,8	4,43
St. 21	147	8120	14700	68,9	10900	76800	9400	3100	212	501	5,60	30,0	11,3	11,9	3,24
St. 22	275	10100	16900	97,7	7750	43500	7520	3310	275	463	6,60	31,6	11,3	14,1	4,40
St. 23	133	19200	23600	867	11200	84200	22700	6150	1120	622	18,6	46,7	20,6	27,1	9,26
St. 24	277	18900	24000	785	11900	77800	26400	6330	1260	605	18,7	48,5	19,8	28,0	9,36
St. 25	175	13100	24300	165	6920	27300	7000	3890	518	820	12,5	39,2	17,4	21,6	7,54
St. 26	201	19200	31600	100	10800	9520	16900	5640	800	805	12,7	57,7	20,9	29,7	8,25
St. 27	139	21500	42300	87,4	12800	8000	24800	6660	3650	1450	16,0	69,4	27,8	36,3	11,3
St. 28	145	17200	31300	83,0	10800	11100	17300	5330	942	915	11,7	55,2	22,2	28,2	8,13
St. 29	168	20500	40200	68,3	13000	18000	23800	6230	1340	1520	14,4	60,5	23,4	32,2	9,19
St. 30	168	20200	36800	58,7	12100	14900	21900	5910	577	1110	14,2	59,7	23,8	31,3	7,72
St.31	157	19400	42100	50,8	12000	7980	27800	6570	2160	1620	14,7	66,1	23,9	33,8	10,7
St. 32	148	19600	44000	45,9	11200	7660	22500	5800	787	1660	12,8	57,6	22,0	31,5	7,94
St. 33	163	20200	46900	46,2	11500	9690	23000	6250	1050	2490	13,7	61,8	23,5	31,0	8,18
St. 34	131	18800	24200	679	12200	21900	16100	6610	504	509	10,4	50,5	14,7	29,2	9,70
St. 35	147	13900	17800	516	8530	33000	12000	4630	490	436	7,95	36,4	15,5	20,7	7,14
St. 36	134	14400	18800	493	9270	57600	17100	5230	646	474	9,78	41,7	18,4	24,2	8,06
St. 37	129	14300	18600	499	9430	25800	12400	4940	464	445	8,51	39,8	14,8	23,3	7,53
St. 38	103	15800	19700	551	10200	70900	19500	5610	651	482	11,0	42,2	22,6	25,1	7,79
St. 39	120	13800	16900	590	9160	116000	18400	5430	695	454	9,93	38,3	15,8	25,8	7,67
St. 40	124	12700	15700	617	8480	106000	16600	5170	718	497	9,52	40,6	23,8	24,9	7,62
St. 41	153	6390	9060	388	4310	75100	6810	2500	266	330	4,12	17,9	10,0	9,0	3,63
St. 42	166	5860	8090	341	6460	189000	9690	2710	219	322	3,78	18,0	9,4	10,5	3,77
St. 43	119	11300	14700	564	8480	104000	19000	4710	606	573	11,1	39,1	22,9	19,8	6,62

ICP-AES ANALYSER GEOLOGISK MATERIALE ANALYSEKONTRAKTNR. 2004.0391

														IESI	020	
Prøve id.	V [mg/kg]	Mo [mg/kg]	Cd [mg/kg]	Cr [mg/kg]	Ba [mg/kg]	Sr [mg/kg]	Zr [mg/kg]	Ag [mg/kg]	B [mg/kg]	Be [mg/kg]	Li [mg/kg]	Sc [mg/kg]	Ce [mg/kg]	La [mg/kg]	Y [mg/kg]	*As [mg/kg]
St. 1	57,7	<0.5	<0.1	32,7	104	118	8,9	<2	51,4	0,51	25,7	4,96	38,1	17,6	8,55	5,5
St. 2	61,7	0,53	<0.1	34,5	127	125	9,4	<2	57,2	0,62	28,8	5,31	38,8	18,0	8,90	6,9
St. 3	59,8	<0.5	<0.1	28,0	117	338	6,8	<2	56,5	0,52	25,1	4,46	30,7	14,5	7,98	8,5
St. 4	54,3	0,51	0,11	26,7	112	466	6,1	<2	53,1	0,45	23,9	4,25	30,2	14,8	8,52	8,5
St. 5	43,9	0,53	<0.1	20,8	118	330	5,8	<2	33,8	0,34	17,0	3,19	26,7	13,0	7,59	7,5
St. 6	37,1	<0.5	<0.1	16,7	164	187	5,1	<2	24,9	0,36	11,8	2,40	22,8	11,0	6,07	7,8
St. 7	42,3	<0.5	<0.1	15,4	53,8	81,3	6,9	<2	20,1	0,37	11,5	2,45	22,1	9,9	6,47	9,5
St. 8	54,5	1,37	<0.1	32,3	1090	82,9	10,8	<2	62,0	0,63	30,4	5,13	38,1	17,2	9,46	7,4
St. 9	44,3	0,68	<0.1	18,3	177	327	6,9	<2	36,0	0,31	17,1	3,41	26,1	12,4	7,83	6,6
St. 11	52,8	0,65	<0.1	19,4	185	406	8,1	<2	42,4	0,32	18,3	3,76	26,3	12,6	7,85	7,9
St. 12	37,0	<0.5	<0.1	16,1	137	197	6,5	<2	27,8	0,29	13,2	2,91	29,6	13,7	7,47	4,8
St. 13	35,0	<0.5	<0.1	15,9	88,2	97,3	5,6	<2	23,0	0,33	12,4	2,49	27,5	12,4	6,51	7,5
St. 14	50,8	<0.5	<0.1	22,2	138	120	5,7	<2	39,6	0,48	19,3	3,46	29,4	13,4	7,02	8,0
St. 15	56,7	<0.5	<0.1	23,5	147	103	5,8	<2	42,0	0,55	21,5	3,64	28,7	13,0	7,06	9,1
St. 16	68,8	<0.5	<0.1	25,0	123	74,2	5,7	<2	41,9	0,56	20,7	3,56	27,8	12,6	7,13	15,8
St. 17	60,4	<0.5	<0.1	26,7	146	72,7	6,1	<2	52,6	0,62	23,3	3,97	29,7	13,2	6,90	6,6
St. 18	73,4	<0.5	<0.1	32,8	172	66,4	7,0	<2	68,8	0,72	29,3	4,87	33,4	15,0	7,52	11,5
St. 19	76,5	<0.5	<0.1	33,9	171	66,7	7,4	<2	72,3	0,76	30,0	5,07	34,5	15,5	7,76	15,1
St. 20	46,7	0,83	<0.1	18,5	183	446	2,4	<2	51,4	0,48	21,2	2,85	15,2	7,4	5,95	17,8
St. 21	32,2	<0.5	<0.1	13,8	199	307	2,6	<2	33,7	0,37	14,8	2,21	14,8	6,7	5,10	6,8
St. 22	37,7	<0.5	<0.1	16,4	131	166	3,7	<2	29,4	0,44	17,5	2,70	18,9	8,6	5,77	7,5
St. 23	59,8	0,89	<0.1	24,6	233	434	8,7	<2	49,7	0,43	24,2	4,53	30,8	15,0	9,20	8,9
St. 24	63,2	1,33	<0.1	25,0	238	414	8,2	<2	53,7	0,44	25,6	4,54	29,9	14,7	8,88	10,3
St. 25	62,8	<0.5	<0.1	20,0	184	132	5,2	<2	35,5	0,59	22,9	3,56	25,5	10,9	7,93	18,4
St. 26	81,7	<0.5	<0.1	29,5	176	65,9	4,6	<2	55,2	0,82	32,2	4,56	24,8	11,6	7,97	17,7
St. 27	112	4,04	<0.1	33,8	195	88,3	4,8	<2	69,5	0,92	38,6	5,24	24,3	12,2	8,86	44,8
St. 28	77,2	<0.5	<0.1	28,0	162	66,2	4,2	<2	55,3	0,77	30,4	4,34	22,5	10,6	7,77	20,8
St. 29	94,3	<0.5	<0.1	30,5	179	121	4,0	<2	63,3	0,87	35,9	4,72	22,5	10,7	8,28	44,8
St. 30	96,9	<0.5	<0.1	30,7	169	92,9	4,0	<2	60,5	0,88	35,8	4,66	22,4	10,5	8,38	30,5
St.31	117	2,11	<0.1	32,4	171	88,9	4,0	<2	68,7	0,88	37,0	4,83	22,1	10,6	8,51	53,3
St. 32	106	0,79	<0.1	29,9	164	88,6	3,5	<2	60,7	0,86	34,7	4,55	21,1	10,4	8,24	54,4
St. 33	115	<0.5	<0.1	31,8	167	115	3,7	<2	64,9	0,91	37,3	4,72	21,3	10,5	8,45	90,8
St. 34	54,4	<0.5	<0.1	32,6	98,9	119	9,0	<2	47,9	0,55	25,4	4,94	37,9	17,3	8,47	4,4
St. 35	42,7	<0.5	<0.1	22,7	98,6	169	6,2	<2	34,6	0,44	17,9	3,50	29,0	13,2	6,83	5,4
St. 36	46,6	<0.5	<0.1	23,3	110	276	6,1	<2	39,9	0,45	19,9	3,72	40,8	20,2	7,79	7,0
St. 37	43,2	<0.5	<0.1	24,3	152	136	7,1	<2	34,4	0,45	19,4	3,73	30,6	14,0	7,07	5,1
St. 38	46,6	<0.5	<0.1	23,1	330	363	5,5	<2	47,4	0,45	20,8	3,74	27,3	13,0	7,25	6,2
St. 39	41,0	0,90	<0.1	20,6	91,6	560	4,7	<2	40,0	0,36	19,0	3,38	25,5	12,9	7,61	5,0
St. 40	38,6	1,06	<0.1	20,2	74,4	477	3,9	<2	38,4	0,32	17,6	3,24	26,2	13,2	7,85	5,8
St. 41	18,7	<0.5	<0.1	10,5	42,1	291	2,9	<2	21,7	0,20	7,8	1,61	17,3	8,6	4,94	<2
St. 42	18,4	1,42	0,23	9,18	36,6	912	2,5	<2	39,0	<0.2	8,3	1,47	16,0	8,9	5,60	3,1
St. 43	36,8	1,35	0,16	19,3	87,0	515	3,7	<2	37,6	0,23	16,2	2,99	25,6	12,9	7,34	6,9

ICP-AES ANALYSER GEOLOGISK MATERIALE ANALYSEKONTRAKTNR. 2004.0391

-																Contraction of the second seco
	Prøve id.	Si	AI	Fe	Ti	Mg	Ca	Na	к	Mn	Р	Cu	Zn	Pb	Ni	Co
L		[mg/kg]														
ſ	St. 44	169	7290	9690	448	4920	76400	4730	2430	274	407	3,00	14,0	6,9	10,0	4,21
l	St. 45	197	9350	14000	552	5480	30200	7480	3000	517	488	8,58	23,3	13,1	14,4	4,91

NGU Norges geologiske undersøkelse	7491 TRONI Tlf.: 73 90 40 Telefaks: 73	DHEIM) 00 92 16 20					i(Geo Analysi	CP-AES A DLOGISK EKONTRA	NALYSEI MATERI/ AKTNR. 2	R ALE 004.0391				AKKREDIT TEST	E KIING	
Prøve id.	V [mg/kg]	Mo [mg/kg]	Cd [mg/kg]	Cr [mg/kg]	Ba [mg/kg]	Sr [mg/kg]	Zr [mg/kg]	Ag [mg/kg]	B [mg/kg]	Be [mg/kg]	Li [mg/kg]	Sc [mg/kg]	Ce [mg/kg]	La [mg/kg]	Y [mg/kg]	*As [mg/kg]
St. 44 St. 45	26,7	<0.5	<0.1	16,0 15.6	42,9 102	365 151	2,9 5.8	<2	15,0 21.5	<0.2	7,4 11.6	2,11	16,6 22 9	8,0 10.4	4,52 6 73	3,2 6.4

XRF-ANALYSE (Hoved) GEOLOGISK MATERIALE ANALYSEKONTRAKTNR. 2004.0391

$4.2 \text{ g Li}_2B_4O_7 + 0.6 \text{ g prøve smeltet til glassplate}$

Analyseprogram : HOVED	INSTRUMENT TY	(PE : Philips PW1480 x-ray spectrometer (Rh-røntgenrør)	
Analysene er utført på glødete prøve	er (v/1000 °C) A	nalyse-data er regnet tilbake fra glødet- til mottatt-prøve	
ANALYSEUSIKKERHET :	Analyseusikkerheten er bereg Usikkerheten er gitt ved:	net fra regresjonsanalyse av internasjonale standarder, hvor det en USIKKERHET = $\pm K_{Element} \cdot \sqrt{0.1 + C_i}$ [%]	r benyttet en veid regresjonsmodell. [1] men dog aldri < 1 % relativ

hvor C_i er den rapporterte konsentrasjon i %, K_{Element} er gitt for de enkelte element i tabellen nedenfor

Element	SiO ₂	Al_2O_3	Fe ₂ O ₃	TiO ₂	MgO	CaO	K ₂ O	Na ₂ O	MnO	P_2O_5
$K_{ELEMENT}$ / $\%^{\frac{1}{2}}$	0,053	0,038	0,045	0,020	0,077	0,045	0,036	0,050	0,010	0,025

De oppgitte usikkerhetene er for 1^o nivå (68% konfidensnivå), ved å multiplisere usikkerheten med 2 oppnås et 95% konfidensnivå.

EKSEMPEL

Det er rapportert et analyseresultat på 20.0% (dvs. C i = 20.0%) for Al 2 O 3. Denne konsentrasjonen samt K-verdien fra tabellen over innsatt i likn.[1] gir:

USIKKERHET $= \pm 0.038 \cdot \sqrt{0.1 + 20} = 0.2\%$

Et konfidensintervall på 68%-nivå vil da bli: 20.0 \pm *0.2* %, *og konfidensintervallet på 95%-nivå: 20.0* \pm *0.4* %

PRESISJON: Det kjøres rutinemessig kontrollprøver, som føres i kontrolldiagram (X-diagram). Disse kan forevises om ønskelig.

- ANTALL PRØVER: 44
- ANMERKNINGER: Ingen

Rapporten må ikke gjengis i utdrag uten skriftlig godkjenning fra NGU-Lab.

Ferdig analysert	20. april 2005	Bjørn Nilsen
	Dato	Operatør

XRF-ANALYSE (Hoved) GEOLOGISK MATERIALE ANALYSEKONTRAKTNR. 2004.0391

Prøve navn *	SiO2 %	Al2O3 %	Fe2O3 %	TiO2 %	MgO %	CaO %	Na2O %	K2O %	MnO %	P2O5 %	GI.tap %	SUM %
St.1.	58,63	11,67	4,64	0,65	2,46	3,90	3,11	2,37	0,11	0,16	10,79	98,49
St.2.	57,95	12,08	5,08	0,68	2,81	3,68	3,29	2,31	0,17	0,17	11,95	100,17
St.3.	49,06	9,63	4,20	0,52	2,15	10,11	2,57	1,13	0,12	0,16	19,85	99,50
St.4.	43,47	8,92	3,91	0,49	2,15	14,08	2,84	1,13	0,14	0,16	21,59	98,87
St.5.	54,51	8,55	3,43	0,46	1,70	11,38	2,13	1,14	0,12	0,15	15,07	98,65
St.6.	67,49	7,89	2,98	0,41	1,16	6,74	2,00	1,38	0,07	0,14	9,14	99,40
St.7.	72,41	8,19	3,51	0,48	1,24	3,76	1,93	1,48	0,08	0,13	4,55	97,76
St.8.	64,43	12,39	4,73	0,65	1,79	1,99	2,51	2,58	0,06	0,14	6,98	98,24
St.9.	53,42	9,77	3,68	0,54	1,75	10,91	2,46	1,20	0,16	0,16	15,22	99,27
St.11.	49,55	8,78	3,54	0,47	1,77	12,45	2,45	0,93	0,15	0,13	18,51	98,73
St.12.	65,27	8,44	3,19	0,55	1,40	6,84	2,09	1,32	0,11	0,12	9,98	99,32
St.13.	70,62	9,15	2,69	0,46	1,12	3,68	2,40	1,91	0,07	0,12	6,32	98,56
St.14.	64,39	10,22	3,49	0,53	1,62	4,01	2,64	1,94	0,07	0,15	9,74	98,81
St.15.	65,06	10,38	3,75	0,54	1,65	3,27	2,88	2,00	0,07	0,16	9,74	99,49
St.16.	68,86	10,01	3,85	0,50	1,46	2,23	2,63	2,09	0,07	0,17	7,90	99,78
St.17.	65,23	10,57	3,71	0,56	1,77	2,33	3,00	2,20	0,06	0,16	9,77	99,35
St.18.	60,75	11,86	4,82	0,66	2,20	1,78	3,57	2,43	0,10	0,20	11,31	99,68
St.19.	58,54	11,84	4,98	0,66	2,31	1,69	3,90	2,48	0,14	0,20	12,50	99,25
St.20.	45,23	7,93	3,69	0,45	2,50	12,99	1,95	0,60	0,05	0,29	23,18	98,87
St.21.	57,52	6,68	2,64	0,38	1,99	11,33	1,42	0,79	0,04	0,13	16,07	98,99
St.22.	66,28	8,08	2,91	0,43	1,45	6,33	1,71	1,30	0,05	0,13	10,71	99,38
St.23.	44,36	9,91	4,38	0,60	2,18	12,83	2,58	0,89	0,19	0,17	21,21	99,31
St.24.	43,80	9,82	4,44	0,59	2,31	11,93	2,43	0,89	0,21	0,17	22,34	98,94
St.25.	64,22	10,30	4,35	0,55	1,49	4,55	2,00	1,85	0,09	0,24	9,22	98,84
St.26.	61,14	12,65	5,22	0,67	2,06	1,54	3,29	2,50	0,12	0,24	11,31	100,75
St.27.	51,29	13,46	7,01	0,71	2,45	1,27	4,08	2,62	0,56	0,40	15,34	99,19
St.28.	59,63	12,00	5,21	0,65	2,08	1,75	3,32	2,31	0,14	0,26	12,10	99,45
St.29.	51,45	12,68	6,38	0,68	2,37	3,06	3,57	2,16	0,20	0,42	16,47	99,45
St.30.	53,13	12,82	5,87	0,69	2,28	2,20	3,45	2,37	0,09	0,32	15,32	98,55
St.31.	48,87	13,23	7,12	0,69	2,42	1,35	4,21	2,55	0,33	0,45	17,18	98,39
St.32.	52,76	13,09	6,99	0,68	2,16	1,17	3,89	2,50	0,12	0,46	15,23	99,05
St.33.	49,67	13,50	7,71	0,72	2,26	1,47	3,86	2,55	0,16	0,69	15,87	98,47
St.34.	58,30	11,55	4,69	0,65	2,45	3,98	3,06	2,25	0,09	0,15	11,56	98,73
St.35.	63,23	9,79	3,57	0,53	1,84	5,74	2,30	1,68	0,09	0,13	10,73	99,64
St.36.	54,72	9,24	3,63	0,49	1,91	9,19	2,15	1,28	0,11	0,13	16,68	99,53

XRF-ANALYSE (Hoved) GEOLOGISK MATERIALE ANALYSEKONTRAKTNR. 2004.0391

Prøve navn *	SiO2 %	Al2O3 %	Fe2O3 %	TiO2 %	MgO %	CaO %	Na2O %	K2O %	MnO %	P2O5 %	GI.tap %	SUM %
St.37.	63,01	10,08	3,64	0,54	1,92	4,43	2,63	1,92	0,08	0,14	10,01	98,40
St.38.	51,65	8,79	3,70	0,49	2,01	10,39	2,19	0,99	0,12	0,15	19,03	99,51
St.39.	41,89	7,55	3,35	0,40	1,84	17,44	1,84	0,65	0,13	0,14	24,29	99,51
St.40.	44,00	7,39	3,14	0,40	1,72	16,62	2,01	0,63	0,13	0,15	22,18	98,36
St.41.	61,74	6,77	2,23	0,35	1,07	11,69	1,91	1,12	0,06	0,10	12,12	99,16
St.42.	31,68	4,47	1,93	0,25	1,43	30,25	1,17	0,55	0,05	0,08	27,01	98,87
St.43.	44,20	7,87	3,20	0,42	1,81	16,05	2,56	1,01	0,12	0,16	20,97	98,38
St.44.	58,40	7,51	2,83	0,34	1,31	13,18	2,16	0,87	0,08	0,09	11,88	98,64
St.45.	65,02	10,04	3,84	0,47	1,59	6,20	2,54	1,50	0,12	0,13	7,41	98,85

XRF-ANALYSE (Spor C) GEOLOGISK MATERIALE ANALYSEKONTRAKTNR. 2004.0391

PRESSEDE PRØVER : 5.4 g prøve + 1.2 g Hoechst C voks som bindemiddelAnalyseprogram : SPORHCINSTRUMENT TYPE : Philips PW1480 x-ray spectrometer (Rh-røntgenrør)

DETEKSJONSGRENSER FOR SPORELEMENTER

Element	Mo	Nb	Zr	Y	Sr	Rb	U	Th	Pb	Cr	V	As	Sc	Hf	S	Cl	F
Det.grense / ppm	5	5	5	5	5	5	10	5	10	10	10	5	10	10	1000	1000	1000

ANALYSEUSIKKERHET : Analyseusikkerheten er beregnet fra regresjonsanalyse av internasjonale standarder, hvor det er benyttet en veid regresjonsmodell.

i) Sporelement : Usikkerheten er gitt ved:

USIKKERHET = $\pm K_{Element} \cdot \sqrt{C_i + 10} \, [\text{ppm}]$

[1] men dog aldri < 2% relativ

hvor C_i er den rapporterte konsentrasjon i mg/kg (=ppm), K_{Element} er gitt for de enkelte element i tabellen nedenfor

Element	Mo	Nb	Zr	Y	Sr	Rb	U	Th	Pb	Cr	V	As	Sc	Hf*	S**	Cl**	F**
K _{ELEMENT}	0,64	0,35	0,48	0,28	0,42	0,37	0,48	0,49	0,86	3,5	1,3	0,47	0,51	0,55	0,33	0,08	0,15

De oppgitte usikkerhetene er for 1σ nivå (68% konfidensnivå), ved å multiplisere usikkerheten med 2 oppnås et 95% konfidensnivå.

*) Hf omfattes ikke av akkreditering !

EKSEMPEL

Det er rapportert et analyseresultat på 50 ppm (dvs. C i = 50 ppm) for Mo. Denne konsentrasjonen samt K-verdien fra tabellen over innsatt i likn.[1] gir:

USIKKERHET $= \pm 0.64 \cdot \sqrt{50 + 10} = 5$ ppm Et konfidensintervall på 68%-nivå vil da bli: 50 ± 5 ppm, og konfidensintervallet på 95%-nivå: 50 ± 10 ppm

**) For S, F og Cl benyttes likning [2] og verdier i %

USIKKERHET = $\pm K_{Element} \cdot \sqrt{0.1 + C_i}$ [%]

MERK! Hovedelementsanalyser basert på pressede prøver må anses som av semikvantitativ karakter

PRESISJON : Det kjøres rutinemessig kontrollprøver, som føres i kontrolldiagram (X-diagram). Disse kan forevises om ønskelig.

ANTALL PRØVER: 44

ANMERKNINGER: Ingen

Rapporten må ikke gjengis i utdrag uten skriftlig godkjenning fra NGU-Lab.

Ferdig analysert20.apr.05Bjørn NilsenDatoOperatør

XRF-ANALYSE (Spor C) GEOLOGISK MATERIALE ANALYSEKONTRAKTNR. 2004.0391

-ID-	Мо	Nb	Zr	Y	Sr	Rb	U	Th	Pb	Cr	v	As	Sc	Hf	S	CI	F
	mg/kg	%	%	%													
St.1.	<5	12	192	21	234	90	<10	12	21	89	125	7	17	<10	0,22	2,13	<0.1
St.2.	<5	12	178	20	229	95	<10	15	24	91	126	8	13	<10	0,27	2,35	<0.1
St.3.	<5	9	129	16	398	76	<10	13	30	65	103	11	16	<10	0,36	3,79	<0.1
St.4.	<5	9	117	15	509	72	<10	11	29	56	88	12	23	<10	0,34	3,57	<0.1
St.5.	<5	10	137	16	409	64	<10	9	26	64	90	7	24	<10	0,21	2,49	<0.1
St.6.	<5	8	175	14	296	51	<10	11	22	90	85	<5	15	<10	0,16	1,88	<0.1
St.7.	<5	8	170	16	207	46	<10	8	11	79	99	12	16	<10	<0.1	0,87	<0.1
St.8.	<5	11	189	20	194	89	<10	15	15	95	151	6	14	<10	0,34	1,02	<0.1
St.9.	<5	9	156	18	449	65	<10	12	30	54	84	6	17	<10	0,21	2,67	<0.1
St.11.	<5	8	114	15	491	64	<10	9	23	49	84	6	24	<10	0,27	3,88	<0.1
St.12.	<5	10	255	20	323	56	<10	10	18	61	80	<5	17	<10	0,14	2,61	<0.1
St.13.	<5	8	240	14	248	61	<10	10	14	113	83	11	10	<10	0,10	1,75	<0.1
St.14.	<5	9	201	17	251	69	<10	10	21	74	109	11	12	<10	0,19	2,41	0,17
St.15.	<5	10	196	19	223	72	<10	13	25	83	120	12	10	<10	0,20	2,43	<0.1
St.16.	<5	8	168	17	190	66	<10	10	24	92	146	18	<10	<10	0,20	2,21	<0.1
St.17.	<5	10	194	17	188	75	<10	13	19	92	130	8	13	<10	0,23	2,93	<0.1
St.18.	<5	11	195	19	180	86	<10	12	24	101	150	15	<10	<10	0,28	3,32	<0.1
St.19.	<5	12	188	20	180	88	<10	14	26	96	160	21	12	<10	0,34	3,90	<0.1
St.20.	<5	9	150	19	496	58	<10	10	18	60	99	25	17	<10	0,35	3,89	<0.1
St.21.	<5	7	195	15	354	44	<10	7	15	72	70	7	16	<10	0,20	2,43	<0.1
St.22.	<5	8	207	16	243	54	<10	8	16	74	94	7	13	<10	0,15	1,80	<0.1
St.23.	<5	10	139	20	496	73	<10	12	30	58	96	10	19	<10	0,29	4,16	<0.1
St.24.	<5	11	128	20	470	74	<10	13	25	58	104	14	18	<10	0,35	4,81	<0.1
St.25.	<5	10	207	18	230	68	<10	13	22	103	133	20	13	<10	0,14	1,52	0,1
St.26.	<5	13	196	22	157	89	<10	15	22	106	184	25	14	<10	0,28	2,96	<0.1
St.27.	10	12	157	25	175	96	<10	18	33	95	239	59	13	<10	0,40	3,95	0,1
St.28.	<5	12	182	22	151	85	<10	14	30	102	173	25	20	<10	0,31	3,26	<0.1
St.29.	<5	13	167	23	203	93	<10	16	27	98	199	57	13	<10	0,39	3,79	<0.1
St.30.	<5	13	172	25	172	94	<10	16	28	100	205	33	14	<10	0,38	3,54	<0.1
St.31.	6	13	151	25	1/3	96	<10	16	27	105	238	66	<10	<10	0,48	4,50	<0.1
St.32.	<5	12	163	24	170	92	<10	15	35	108	227	68	15	<10	0,39	3,63	<0.1
St.33.	<5	14	154	24	196	92	<10	12	22	103	240	117	10	<10	0,39	3,69	<0.1
St.34.	<5	11	189	19	236	92	<10	15	21	89	111	<5	17	<10	0,22	2,84	<0.1
St.35.	<5	9	170	15	283	/1	<10	11	19	69	88	6	14	<10	0,19	2,54	<0.1
St.36.	<5	9	143	16	369	/2	<10	13	20	65	95	7	14	<10	0,26	3,40	<0.1
St.37.	<5	10	184	16	256	/6	<10	12	21	88	99	6	13	<10	0,19	2,59	<0.1
St.38.	<5	9	127	16	422	70	<10	13	31	57	87	<5	18	<10	0,29	3,57	<0.1
51.39.	<5	6	102	15	597	63	<10	10	26	48	76	5	21	<10	0,25	3,26	<0.1
St.40.	<5	9	139	1/	543	60	<10	10	31	(2	68	<5	21	<10	0,24	3,20	<0.1
51.41.	<5	6	147	12	388	42	<10	(19	69	44	<5	13	<10	0,15	1,88	<0.1
St.42.	<5	5	69	10	930	29	<10	6	14	51	35	<5	28	<10	0,23	2,36	<0.1

XRF-ANALYSE (Spor C) GEOLOGISK MATERIALE ANALYSEKONTRAKTNR. 2004.0391

-ID-	Мо	Nb	Zr	Y	Sr	Rb	U	Th	Pb	Cr	v	As	Sc	Hf	S	CI	F
	mg/kg	%	%	%													
St.43.	<5	7	114	16	596	54	<10	6	28	47	65	5	20	<10	0,31	4,11	<0.1
St.44.	<5	6	108	13	491	32	<10	5	<10	43	47	7	17	<10	0,11	1,23	<0.1
St.45.	<5	8	155	17	307	50	<10	10	11	83	88	7	14	<10	0,12	1,73	<0.1

XRF-ANALYSE (Spor D) GEOLOGISK MATERIALE ANALYSEKONTRAKTNR. 2004.0391

PRESSEDE PRØVER : 5.4 g prøve + 1.2 g Hoechst C voks som bindemiddel Analyseprogram : SPORHD INSTRUMENT TYPE : Philips PW1480 x-ray spectrometer (Rh-røntgenrør)

DETEKSJONSGRENSER FOR SPORELEMENTER

Element	Ba	Sb	Sn	Ga	Zn	Cu	Ni	Yb	Co	Ce	Nd	La	W	Cs	Ta	Pr
Det.grense / ppm	10	10	10	10	5	10	5	15	5	10	10	10	10	10	10	10

ANALYSEUSIKKERHET : Analyseusikkerheten er beregnet fra regresjonsanalyse av internasjonale standarder, hvor det er benyttet en veid regresjonsmodell.

i) Sporelement :

Usikkerheten er gitt ved:

USIKKERHET = $\pm K_{Element} \cdot \sqrt{C_i + 10} \text{ [ppm]}$

men dog aldri lavere enn 2% relativ

hvor C_i er den rapporterte konsentrasjon i ppm, K_{Element} er gitt for de enkelte element i tabellen nedenfor

Element	Ba	Sb	Sn	Ga	Zn	Cu	Ni	Yb	Co	Ce	Nd	La	W	Cs*	Ta*	Pr*
$K_{ELEMENT} / ppm^{^{1\!\!/_2}}$	1,6	0,75	0,73	0,52	0,86	1,3	0,68	0,80	0,46	1,1	1,0	0,52	0,8	1,13	0,79	0,72

De oppgitte usikkerhetene er for 1σ nivå (68% konfidensnivå), ved å multiplisere usikkerheten med 2 oppnås et 95% konfidensnivå.

*) Omfattes ikke av akkreditering

EKSEMPEL

Det er rapportert et analyseresultat på 100 ppm for Zn. Denne konsentrasjonen samt K-verdien fra tabellen over innsatt i likn.[1] gir:

USIKKERHET = $\pm 0.86 \cdot \sqrt{100 + 10} = 9$ ppm *Et konfidensintervall på 68%-nivå vil da bli: 100* ± 9 ppm, og konfidensintervallet på 95%-nivå: 100 ± 18 ppm

USIKKERHET = $\pm K_{Element} \cdot \sqrt{0.1 + C_i}$ [%]

MERK! Hovedelementsanalyser basert på pressede prøver må anses som av semikvantitativ karakter

PRESISJON : Det kjøres rutinemessig kontrollprøver, som føres i kontrolldiagram (X-diagram). Disse kan forevises om ønskelig.

ANTALL PRØVER: 44

ANMERKNINGER: Ingen

Rapporten må ikke gjengis i utdrag uten skriftlig godkjenning fra NGU-Lab.

Ferdig analysert	20. apr. 2005	Bjørn Nilsen
	Dato	Operatør

XRF-ANALYSE (Spor D) GEOLOGISK MATERIALE ANALYSEKONTRAKTNR. 2004.0391

-ID-	Ва	Sb	Sn	Ga	Zn	Cu	Ni	Yb	Co	Ce	La	Nd	w	Cs	Та	Pr
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg						
St.1.	536	<10	<10	<10	73	28	30	<15	20	47	31	21	16	<10	<10	15
St.2.	561	<10	<10	<10	78	30	32	<15	21	73	23	19	18	<10	<10	13
St.3.	434	<10	<10	<10	71	25	30	<15	17	38	20	18	13	<10	<10	<10
St.4.	385	<10	<10	<10	67	22	27	<15	17	59	20	21	<10	<10	<10	<10
St.5.	461	<10	<10	<10	51	12	24	<15	13	50	26	15	<10	<10	<10	<10
St.6.	544	<10	<10	<10	39	13	16	<15	13	37	22	13	17	<10	<10	10
St.7.	404	<10	<10	<10	41	14	14	<15	14	27	18	10	23	<10	<10	<10
St.8.	1527	<10	<10	12	76	21	29	<15	19	65	31	26	20	<10	<10	12
St.9.	572	<10	<10	<10	56	23	21	<15	12	39	19	15	<10	<10	<10	<10
St.11.	504	<10	<10	<10	52	24	19	<15	12	22	23	15	<10	<10	13	<10
St.12.	542	<10	<10	<10	43	19	13	<15	14	48	26	14	11	<10	<10	<10
St.13.	572	<10	<10	<10	39	15	12	<15	13	48	18	20	16	<10	<10	<10
St.14.	610	<10	<10	<10	55	20	18	<15	15	37	27	14	16	<10	<10	12
St.15.	613	<10	<10	<10	55	17	23	<15	15	47	31	22	12	<10	<10	10
St.16.	580	<10	<10	<10	55	20	19	<15	15	48	28	15	17	10	<10	<10
St.17.	619	<10	<10	<10	61	23	26	<15	15	43	33	17	15	11	<10	10
St.18.	645	<10	<10	12	73	25	31	<15	17	63	30	17	11	<10	<10	<10
St.19.	635	<10	<10	<10	78	21	32	<15	21	61	19	22	12	<10	<10	14
St.20.	490	<10	<10	<10	52	13	14	<15	11	32	24	13	<10	<10	<10	<10
St.21.	439	<10	<10	<10	41	13	12	<15	12	24	16	12	18	12	<10	12
St.22.	439	<10	<10	<10	38	17	10	<15	12	32	24	14	16	<10	<10	<10
St.23.	549	<10	<10	<10	67	28	31	<15	15	44	22	16	<10	<10	<10	<10
St.24.	560	<10	<10	<10	72	31	30	<15	16	46	24	13	<10	12	<10	<10
St.25.	506	<10	<10	<10	48	19	18	<15	18	51	29	20	<10	<10	<10	14
St.26.	546	<10	<10	<10	71	23	30	<15	17	65	33	28	19	<10	<10	16
St.27.	744	<10	<10	11	86	21	40	<15	20	67	33	34	<10	13	<10	14
St.28.	513	<10	<10	<10	68	24	29	<15	18	45	30	17	17	<10	<10	14
St.29.	549	<10	<10	14	75	21	29	<15	20	65	34	27	<10	10	<10	14
St.30.	522	<10	<10	11	79	20	36	<15	19	67	36	29	16	10	11	11
St.31.	564	<10	<10	12	80	23	38	<15	22	67	37	31	10	<10	<10	<10
St.32.	520	<10	<10	11	72	16	32	<15	17	59	32	27	<10	<10	10	<10
St.33.	567	<10	<10	10	78	21	32	<15	20	74	40	29	<10	10	11	<10
St.34.	530	<10	<10	<10	71	24	32	<15	18	62	37	26	18	12	<10	<10
St.35.	497	<10	<10	<10	55	16	24	<15	16	41	22	19	17	<10	10	<10
St.36.	461	<10	<10	13	58	15	24	<15	16	51	22	15	<10	<10	<10	14
St.37.	585	<10	<10	<10	58	17	24	<15	16	48	23	16	14	<10	<10	12
St.38.	634	<10	<10	<10	60	14	25	<15	15	52	18	18	<10	<10	<10	12
St.39.	342	<10	<10	<10	64	17	27	<15	14	40	15	18	11	<10	<10	10
St.40.	407	<10	<10	<10	60	12	24	<15	15	36	16	16	<10	<10	<10	15
St.41.	375	<10	<10	<10	34	13	8	<15	12	22	14	<10	12	<10	<10	<10
St.42.	203	<10	<10	<10	30	<\$₽D	RD Base	tpåra¢ppr	nal ver. 28:	av 19.48	2 11	<10	<10	<10	12	<10

XRF-ANALYSE (Spor D) GEOLOGISK MATERIALE ANALYSEKONTRAKTNR. 2004.0391

-ID-	Ва	Sb	Sn	Ga	Zn	Cu	Ni	Yb	Co	Ce	La	Nd	w	Cs	Та	Pr
	mg/kg															
St.43.	393	<10	<10	<10	59	11	16	<15	12	35	15	13	<10	<10	12	<10
St.44.	309	<10	<10	<10	30	11	5	<15	12	35	20	10	17	<10	<10	<10
St.45.	500	<10	<10	<10	40	15	13	<15	15	30	18	11	14	<10	<10	<10

INSTRUMENT:	Philips X'per	'hilips X'pert MPD med Cu røntgenrør					
PROSJEKTNR.:	294800	OPPDRAGSGIVER: Jochen Knies					
PRØVEART: Sediment		ANTALL PRØVER: 44					
BEHANDLINGSME	ETODE:	Finfraksjon < 2 µm ble tatt ut ved synking (Stokes lov). Fraksjonen ble overført til keramisk filter, med påfølgende XRD-opptak, scan 2-69°20, scan speed 0.02 °20/s. Etter opptak av ubehandlet prøve, ble prøvene reanalysert først etter etylglykolbehandling og deretter varmebehandling ved ca. 550°C. Ved disse reanalysene ble det utført scan. 2-35°20, scan speed 0.02 °20/s. For alle XRD scan er følgende oppsett benyttet: Receiving slit= 0.2, Step size= 0.04°20, Time pr. step = 2 s, variabel divergense slit (Illum.lenght=12mm).					
ARBEIDET UTFØR	RT AV: Andrea	as Grimstvedt, Ann E. Karlsen					
ANTALL SIDER:	1+44 v	vedlegg (XRD-opptak for hver prøve med peak search og sammenstilling etter ulik behandling)					
PRESISJON :	Det kj forevis	Det kjøres rutinemessig kontrollprøver (2θ-verdi/d-verdi), som føres i kontrolldiagram (X-diagram). Disse kan forevises om ønskelig.					
ANMERKNINGER:	dentif er hove det for anmer	Identifisering er utført manuelt da prøveprep. inkluderer orientering (00 <i>l</i> -plansett) av leirmineraler (datakort/dat er hovedsakelig basert på "random" pulve). Merk at alle di-data er oppgitt med automatisk slit. For noen prøver det forekommer topper forårsaket av prøveplaten (Corrundum). Se forøvrig de påfølgende sider for flere anmerkninger. Alle data gitt i vedleggene foreligger også på regneark(Excel), og kan leveres på forespørsel.					

Rapporten må ikke gjengis i utdrag uten skriftlig godkjenning fra NGU-Lab.

Ferdig analysert	31.3.2005	Ann E. Karlsen /Andreas Grimstvedt
	Dato	OPERATØR/TOLKNING

KOMMENTARER TIL XRD-ANALYSE

For hver prøve følger det med utskrift av diffraktogramet hvor beregnede topper er innsatt som vertikale linjer (peak search).

PEAK SEARCH

Tabell med posisjonen (20-verdi med tilhørende d-verdi) og høyden (intensitet) på beregnede topper. Videre kolonne med relative intensiteter (i forhold til høyeste topp)

Tabell 1 Veiledende oppsummering identifisering ubehandlet prøve (før EG- og varme-behandling) finfraksjon <2µm.

Prøve id	Filnavn	Sannsynlige mineraler	Andre mulige mineraler
1	0439101	Kloritt**, Glimmer, Karbonat (eks. calcite), Kvarts	Smektitt*, Plagioklas (eks. albite), amfibol
2	0439102	Kloritt**, Glimmer, Karbonat (eks. calcite). Kvarts	Smektitt*, Plagioklas (eks. albite), amfibol
3	0439103	Kloritt**, Glimmer, Karbonat (eks. calcite). Kvarts	Smektitt*, Plagioklas (eks. albite), amfibol
4	0439104	Kloritt**, Glimmer, Karbonat (eks. calcite). Kvarts	Smektitt*, Plagioklas (eks. albite), amfibol
5	0439105	Kloritt**, Glimmer, Karbonat (eks. calcite). Kvarts	Smektitt*, Plagioklas (eks. albite), amfibol
6	0439106	Kloritt**, Glimmer, Karbonat (eks. calcite). Kvarts	Smektitt*, Plagioklas (eks. albite), amfibol
7	0439107	Kloritt**, Glimmer, Karbonat (eks. calcite). Kvarts	Smektitt*, Plagioklas (eks. albite), amfibol
8	0439108	Kloritt**, Glimmer, Karbonat (eks. calcite). Kvarts	Smektitt*, Plagioklas (eks. anorthite)
9	0439109	Kloritt**, Glimmer, Karbonat (eks. calcite). Kvarts	Smektitt*, Plagioklas (eks. albite), amfibol
11	0439110	Kloritt**, Glimmer, Karbonat (eks. calcite). Kvarts	Smektitt*, Feltspat, amfibol
12	0439111	Kloritt**, Glimmer, Karbonat (eks. calcite). Kvarts	Smektitt*, Feltspat, amfibol
13	0439112	Kloritt**, Glimmer, Karbonat (eks. calcite). Kvarts	Smektitt*, Feltspat, amfibol
14	0439113	Kloritt**, Glimmer, Karbonat (eks. calcite). Kvarts	Smektitt*, Feltspat, amfibol
15	0439114	Kloritt**, Glimmer, Karbonat (eks. calcite). Kvarts	Smektitt*, Feltspat, amfibol
16	0439115	Kloritt**, Glimmer, Karbonat (eks. calcite). Kvarts	Smektitt*, Feltspat, amfibol
17	0439116	Kloritt**, Glimmer, Karbonat (eks. calcite). Kvarts	Smektitt*, Feltspat, amfibol
18	0439117	Kloritt**, Glimmer, Karbonat (eks. calcite). Kvarts	Smektitt*, Feltspat, amfibol
19	0439118	Kloritt**, Glimmer, Karbonat (eks. calcite). Kvarts	Smektitt*, Feltspat, amfibol
20	0439119	Kloritt**, Glimmer, Karbonat (eks. calcite). Kvarts	Smektitt*, Feltspat,
21	0439120	Kloritt**, Glimmer, Karbonat (eks. calcite). Kvarts	Smektitt*, Feltspat,
22	0439121	Kloritt**, Glimmer, Karbonat (eks. calcite). Kvarts	Smektitt*, Feltspat,
23	0439122	Kloritt**, Glimmer, Karbonat (eks. calcite). Kvarts	Smektitt*, Feltspat, amfibol
24	0439123	Kloritt**, Glimmer, Karbonat (eks. calcite). Kvarts	Smektitt*, Feltspat,
25	0439124	Kloritt**, Glimmer, Karbonat (eks. calcite). Kvarts	Smektitt*, Feltspat,
26	0439125	Kloritt**, Glimmer, Karbonat (eks. calcite). Kvarts	Smektitt*, Feltspat,
27	0439126	Kloritt**, Glimmer, Karbonat (eks. calcite). Kvarts	Smektitt*, Feltspat,
28	0439127	Kloritt**, Glimmer, Karbonat (eks. calcite). Kvarts	Feltspat,
29	0439128	Kloritt**, Glimmer, Karbonat (eks. calcite). Kvarts	Smektitt*, Feltspat,
30	0439129	Kloritt**, Glimmer, Karbonat (eks. calcite). Kvarts	Smektitt*, Feltspat,
31	0439130	Kloritt**, Glimmer, Karbonat (eks. calcite). Kvarts	Smektitt*
32	0439131	Kloritt**, Glimmer, Karbonat (eks. calcite). Kvarts	
33	0439132	Kloritt**, Glimmer, Karbonat (eks. calcite). Kvarts	
34	0439133	Kloritt**, Glimmer, Karbonat (eks, calcite), Kvarts	Amfibol, feltspat

Norges geologiske undersøkelse 7491 TRONDHEIM Tlf.: 73 90 40 00 Telefaks: 73 92 16 20

XRD-ANALYSER (Kvalitativ mineralbestemmelse) Analysekontraktsnr: 2004.0391

Prøve id	Filnavn	Sannsynlige mineraler	Andre mulige mineraler
35	0439134	Kloritt**, Glimmer, Karbonat (eks. calcite). Kvarts	Smektitt*, amfibol, feltspat
36	0439135	Kloritt**, Glimmer, Karbonat (eks. calcite). Kvarts	Smektitt*, amfibol, feltspat
37	0439136	Kloritt**, Glimmer, Karbonat (eks. calcite). Kvarts	Smektitt*, amfibol, feltspat
38	0439137	Kloritt**, Glimmer, Karbonat (eks. calcite). Kvarts	Smektitt*, amfibol, feltspat
39	0439138	Kloritt**, Glimmer, Karbonat (eks. calcite). Kvarts	Smektitt*
40	0439139	Kloritt**, Glimmer, Karbonat (eks. calcite). Kvarts	Smektitt*, amfibol, feltspat
41	0439140	Kloritt**, Glimmer, Karbonat (eks. calcite). Kvarts	Smektitt*, amfibol, feltspat
42	0439141	Kloritt**, Glimmer, Karbonat (eks. calcite). Kvarts	Smektitt*
43	0439142	Kloritt**, Glimmer, Karbonat (eks. calcite). Kvarts	Smektitt*, Hydroglimmer (eks. stilpnomelane), amfibol
44	0439143	Kloritt**, Glimmer, Karbonat (eks. calcite). Kvarts	Smektitt*, amfibol
45	0439144	Kloritt**, Glimmer, Karbonat (eks. calcite). Kvarts	Smektitt*, amfibol, plagioklas

Kommentarer

- *)Indikasjon på smektitt/blandsjikt er her kun basert på bred topp i område 12-15Å, se tabell 2 for en mer spesifikk bestemmelse (glykolbehandlig og varmebehandling)
- **)Serpentin overlapper også med kloritt og kaolintt (7.1 og 3.56 Å), denne er ikke spesifikt vurdert. Vedrørende kaolinitt se kommentarer til tabell 2. For spesifikk identifikasjon av kloritt, se tabell 2.
- Påvisning av feltspat/plagioklas er relativt usikker da dette er kun basert på få linjer, og det er vanskelig å event. skille mellom disse.
- Mineraler indikerert under "Andre mulige mineraler" er usikre da de ofte er basert på kun en linje..
- Opptak/prøver som inneholder mange mineraler/topper, kan gi mange muligheter for linjeoverlapp
- I tilfeller med relativt mange linjer er mineraler med relativt få topper vanskelig å påvise.
- Mineraler som foreligger i relativt sett små mengder kan være vanskelig å påvise.
- Andre kombinasjoner av mineraler enn de antydet er også mulig

Tabell 2 Effekt av etylglykol (EG) og varmebehandling (ca. 550 °C)

Filnavn	Pr. id	EG-behand.	Varme behandling	Kommentar
0439101b og c	1	Ny topp ved ca. 17 Å	Bortfall topp ved 17 Å. Stabil eller økning topp ved ca. 10 Å. Reduserte men stabile topper ved 7 og 14 Å.	Ny topp ved ca 17 Å etter glykolbeh. og forsvinner etter varmebehandling indikerer smektitt. Stabile topper ved 7 og 14 Å etter glykol- og varmebeh. indikerer kloritt ^{iⅈ} .
0439102b og c	2	Ny topp ved ca. 17 Å	Bortfall topp ved 17 Å. Stabil eller økning topp ved ca. 10 Å. Reduserte men stabile topper ved 7 og 14 Å.	Ny topp ved ca 17 Å etter glykolbeh. og forsvinner etter varmebehandling indikerer smektitt. Stabile topper ved 7 og 14 Å etter glykol- og varmebeh. indikerer kloritt ^{iⅈ} .
0439103b og c	3	Ny topp ved ca. 17 Å	Bortfall topp ved 17 Å. Stabil eller økning topp ved ca. 10 Å. Reduserte men stabile topper ved 7 og 14 Å.	Ny topp ved ca 17 Å etter glykolbeh. og forsvinner etter varmebehandling indikerer smektitt. Stabile topper ved 7 og 14 Å etter glykol- og varmebeh. indikerer kloritt ^{iⅈ} .
0439104b og c	4	Ny topp ved ca. 17 Å	Bortfall topp ved 17 Å. Stabil eller økning topp ved ca. 10 Å. Reduserte men stabile topper ved 7 og 14 Å.	Ny topp ved ca 17 Å etter glykolbeh. og forsvinner etter varmebehandling indikerer smektitt . Stabile topper ved 7 og 14 Å etter glykol- og varmebeh. indikerer kloritt ^{iⅈ} .
0439105b og c	5	Ny topp ved ca. 17 Å	Bortfall topp ved 17 Å. Stabil eller økning topp ved ca. 10 Å. Reduserte men stabile topper ved 7 og 14 Å.	Ny topp ved ca 17 Å etter glykolbeh. og forsvinner etter varmebehandling indikerer smektitt. Stabile topper ved 7 og 14 Å etter glykol- og varmebeh. indikerer kloritt ^{iⅈ} .
0439106b og c	6	Ny topp ved ca. 17 Å	Bortfall topp ved 17 Å. Stabil eller økning topp ved ca. 10 Å. Reduserte men stabile topper ved 7 og 14 Å.	Ny topp ved ca 17 Å etter glykolbeh. og forsvinner etter varmebehandling indikerer smektitt. Stabile topper ved 7 og 14 Å etter glykol- og varmebeh. indikerer kloritt ^{iⅈ} .
0439107b og c	7	Ny topp ved ca. 17 Å	Bortfall topp ved 17 Å. Stabil eller økning topp ved ca. 10 Å. Reduserte men stabile topper ved 7 og 14 Å.	Ny topp ved ca 17 Å etter glykolbeh. og forsvinner etter varmebehandling indikerer smektitt. Stabile topper ved 7 og 14 Å etter glykol- og varmebeh. indikerer kloritt ^{iⅈ} .
0439108b og c	8	Ny topp ved ca. 17 Å	Bortfall topp ved 17 Å. Stabil eller økning topp ved ca. 10 Å. Reduserte men stabile topper ved 7 og 14 Å.	Ny topp ved ca 17 Å etter glykolbeh. og forsvinner etter varmebehandling indikerer smektitt. Stabile topper ved 7 og 14 Å etter glykol- og varmebeh. indikerer kloritt ^{iⅈ} .
0439109b og c	9	Ny topp ved ca. 17 Å	Bortfall topp ved 17 Å. Stabil eller økning topp ved ca. 10 Å. Reduserte men stabile topper ved 7 og 14 Å.	Ny topp ved ca 17 Å etter glykolbeh. og forsvinner etter varmebehandling indikerer smektitt. Stabile topper ved 7 og 14 Å etter glykol- og varmebeh. indikerer kloritt ^{iⅈ} .
0439110b og c	11	Ny topp ved ca. 17 Å	Bortfall topp ved 17 Å. Stabil eller økning topp ved ca. 10 Å. Reduserte men stabile topper ved 7 og 14 Å.	Ny topp ved ca 17 Å etter glykolbeh. og forsvinner etter varmebehandling indikerer smektitt. Stabile topper ved 7 og 14 Å etter glykol- og varmebeh. indikerer kloritt ^{iⅈ} .
0439111b og c	12	Ny topp ved ca. 17 Å	Bortfall topp ved 17 Å. Stabil eller økning topp ved ca. 10 Å. Reduserte men stabile topper ved 7 og 14 Å.	Ny topp ved ca 17 Å etter glykolbeh. og forsvinner etter varmebehandling indikerer smektitt. Stabile topper ved 7 og 14 Å etter glykol- og varmebeh. indikerer kloritt ^{iⅈ} .
0439112b og c	13	Ny topp ved ca. 17 Å	Bortfall topp ved 17 Å. Stabil eller økning topp ved ca. 10 Å. Reduserte men stabile topper ved 7 og 14 Å.	Ny topp ved ca 17 Å etter glykolbeh. og forsvinner etter varmebehandling indikerer smektitt. Stabile topper ved 7 og 14 Å etter glykol- og varmebeh. indikerer kloritt ^{iⅈ} .
0439113b og c	14	Ny topp ved ca. 17 Å	Bortfall topp ved 17 Å. Stabil eller økning topp ved ca. 10 Å. Reduserte men stabile topper ved 7 og 14 Å.	Ny topp ved ca 17 Å etter glykolbeh. og forsvinner etter varmebehandling indikerer smektitt. Stabile topper ved 7 og 14 Å etter glykol- og varmebeh. indikerer kloritt ^{iⅈ} .
0439114b og c	15	Ny topp ved ca. 17 Å	Bortfall topp ved 17 Å. Stabil eller økning topp ved ca. 10 Å. Reduserte men stabile topper ved 7 og 14 Å.	Ny topp ved ca 17 Å etter glykolbeh. og forsvinner etter varmebehandling indikerer smektitt. Stabile topper ved 7 og 14 Å etter glykol- og varmebeh. indikerer kloritt ^{iⅈ} .
0439115b og c	16	Ny topp ved ca. 17 Å	Bortfall topp ved 17 Å. Stabil eller økning topp ved ca. 10 Å. Reduserte men stabile topper ved 7 og 14 Å.	Ny topp ved ca 17 Å etter glykolbeh. og forsvinner etter varmebehandling indikerer smektitt. Stabile topper ved 7 og 14 Å etter glykol- og varmebeh. indikerer kloritt ^{iⅈ} .
0439116b og c	17	Ny topp ved ca. 17 Å	Bortfall topp ved 17 Å. Stabil eller økning topp ved ca. 10 Å. Reduserte men stabile topper ved 7 og 14 Å.	Ny topp ved ca 17 Å etter glykolbeh. og forsvinner etter varmebehandling indikerer smektitt. Stabile topper ved 7 og 14 Å etter glykol- og varmebeh. indikerer kloritt ^{iⅈ} .
0439117b og c	18	Ny topp ved ca. 17 Å	Bortfall topp ved 17 Å. Stabil eller økning topp ved ca. 10 Å. Reduserte men stabile topper ved 7 og 14 Å.	Ny topp ved ca 17 Å etter glykolbeh. og forsvinner etter varmebehandling indikerer smektitt. Stabile topper ved 7 og 14 Å etter glykol- og varmebeh. indikerer kloritt ^{iⅈ} .
0439118b og c	19	Ny topp ved ca. 17 Å	Bortfall topp ved 17 Å. Stabil eller økning topp ved ca. 10 Å. Reduserte men stabile topper ved 7 og 14 Å.	Ny topp ved ca 17 Å etter glykolbeh. og forsvinner etter varmebehandling indikerer smektitt . Stabile topper ved 7 og 14 Å etter glykol- og varmebeh. indikerer kloritt ^{iⅈ} .
0439119b og c	20	Ny topp ved ca. 17 Å	Bortfall topp ved 17 Å. Stabil eller økning topp ved ca. 10 Å. Reduserte men stabile topper ved 7 og 14 Å.	Ny topp ved ca 17 Å etter glykolbeh. og forsvinner etter varmebehandling indikerer smektitt. Stabile topper ved 7 og 14 Å etter glykol- og varmebeh. indikerer kloritt ^{iⅈ} .

Norges geologiske undersøkelse 7491 TRONDHEIM Tlf.: 73 90 40 00 Telefaks: 73 92 16 20

XRD-ANALYSER (Kvalitativ mineralbestemmelse) Analysekontraktsnr: 2004.0391

Filnavn	Pr. id	EG-behand.	Varme behandling	Kommentar
0439120b og c	21	Ny topp ved ca. 17 Å	Bortfall topp ved 17 Å. Stabil eller økning topp ved ca. 10 Å. Reduserte men stabile topper ved 7 og 14 Å.	Ny topp ved ca 17 Å etter glykolbeh. og forsvinner etter varmebehandling indikerer smektitt. Stabile topper ved 7 og 14 Å etter glykol- og varmebeh. indikerer kloritt ^{iⅈ} .
0439121b og c	22	Ny topp ved ca. 17 Å	Bortfall topp ved 17 Å. Stabil eller økning topp ved ca. 10 Å. Reduserte men stabile topper ved 7 og 14 Å.	Ny topp ved ca 17 Å etter glykolbeh. og forsvinner etter varmebehandling indikerer smektitt. Stabile topper ved 7 og 14 Å etter glykol- og varmebeh. indikerer kloritt ^{iⅈ} .
0439122b og c	23	Ny topp ved ca. 17 Å	Bortfall topp ved 17 Å. Stabil eller økning topp ved ca. 10 Å. Reduserte men stabile topper ved 7 og 14 Å.	Ny topp ved ca 17 Å etter glykolbeh. og forsvinner etter varmebehandling indikerer smektitt. Stabile topper ved 7 og 14 Å etter glykol- og varmebeh. indikerer kloritt ^{iⅈ} .
0439123b og c	24	Ny topp ved ca. 17 Å	Bortfall topp ved 17 Å. Stabil eller økning topp ved ca. 10 Å. Reduserte men stabile topper ved 7 og 14 Å.	Ny topp ved ca 17 Å etter glykolbeh. og forsvinner etter varmebehandling indikerer smektitt. Stabile topper ved 7 og 14 Å etter glykol- og varmebeh. indikerer kloritt ^{iⅈ} .
0439124b og c	25	Ny topp ved ca. 17 Å	Bortfall topp ved 17 Å. Stabil eller økning topp ved ca. 10 Å. Reduserte men stabile topper ved 7 og 14 Å.	Ny topp ved ca 17 Å etter glykolbeh. og forsvinner etter varmebehandling indikerer smektitt. Stabile topper ved 7 og 14 Å etter glykol- og varmebeh. indikerer kloritt ^{iⅈ} .
0439125b og c	26	Ny topp ved ca. 17 Å	Bortfall topp ved 17 Å. Stabil eller økning topp ved ca. 10 Å. Reduserte men stabile topper ved 7 og 14 Å.	Ny topp ved ca 17 Å etter glykolbeh. og forsvinner etter varmebehandling indikerer smektitt. Stabile topper ved 7 og 14 Å etter glykol- og varmebeh. indikerer kloritt ^{iⅈ} .
0439126b og c	27	Ingen vesentlige endringer	Reduserte men stabile topper ved 7 og 14 Å.	Stabile topper ved 7 og 14 Å etter glykol- og varmebeh. indikerer kloritt ^{iⅈ}
0439127b og c	28	Ny topp ved ca. 17 Å	Bortfall topp ved 17 Å. Stabil eller økning topp ved ca. 10 Å. Reduserte men stabile topper ved 7 og 14 Å.	Ny topp ved ca 17 Å etter glykolbeh. og forsvinner etter varmebehandling indikerer smektitt. Stabile topper ved 7 og 14 Å etter glykol- og varmebeh. indikerer kloritt ^{iⅈ} .
0439128b og c	29	Ny topp ved ca. 17 Å	Bortfall topp ved 17 Å. Stabil eller økning topp ved ca. 10 Å. Reduserte men stabile topper ved 7 og 14 Å.	Ny topp ved ca 17 Å etter glykolbeh. og forsvinner etter varmebehandling indikerer smektitt. Stabile topper ved 7 og 14 Å etter glykol- og varmebeh. indikerer kloritt ^{iⅈ} .
0439129b og c	30	Ny topp ved ca. 17 Å	Bortfall topp ved 17 Å. Stabil eller økning topp ved ca. 10 Å. Reduserte men stabile topper ved 7 og 14 Å.	Ny topp ved ca 17 Å etter glykolbeh. og forsvinner etter varmebehandling indikerer smektitt. Stabile topper ved 7 og 14 Å etter glykol- og varmebeh. indikerer kloritt ^{iⅈ} .
0439130b og c	31	Ingen vesentlige endringer	Reduserte men stabile topper ved 7 og 14 Å.	Stabile topper ved 7 og 14 Å etter glykol- og varmebeh. indikerer kloritt^{isli}
0439131b og c	32	Ingen vesentlige endringer	Reduserte men stabile topper ved 7 og 14 Å.	Stabile topper ved 7 og 14 Å etter glykol- og varmebeh. indikerer kloritt^{is}ii
0439132b og c	33	Ingen vesentlige endringer	Reduserte men stabile topper ved 7 og 14 Å.	Stabile topper ved 7 og 14 Å etter glykol- og varmebeh. indikerer kloritt^{isli}
0439133b og c	34	Ny topp ved ca. 17 Å	Bortfall topp ved 17 Å. Stabil eller økning topp ved ca. 10 Å. Reduserte men stabile topper ved 7 og 14 Å.	Ny topp ved ca 17 Å etter glykolbeh. og forsvinner etter varmebehandling indikerer smektitt. Stabile topper ved 7 og 14 Å etter glykol- og varmebeh. indikerer kloritt ^{iⅈ} .
0439134b og c	35	Ny topp ved ca. 17 Å	Bortfall topp ved 17 Å. Stabil eller økning topp ved ca. 10 Å. Reduserte men stabile topper ved 7 og 14 Å.	Ny topp ved ca 17 Å etter glykolbeh. og forsvinner etter varmebehandling indikerer smektitt. Stabile topper ved 7 og 14 Å etter glykol- og varmebeh. indikerer kloritt ^{iⅈ} .
0439135b og c	36	Ny topp ved ca. 17 Å	Bortfall topp ved 17 Å. Stabil eller økning topp ved ca. 10 Å. Reduserte men stabile topper ved 7 og 14 Å.	Ny topp ved ca 17 Å etter glykolbeh. og forsvinner etter varmebehandling indikerer smektitt. Stabile topper ved 7 og 14 Å etter glykol- og varmebeh. indikerer kloritt ^{iⅈ} .
0439136b og c	37	Ny topp ved ca. 17 Å	Bortfall topp ved 17 Å. Stabil eller økning topp ved ca. 10 Å. Reduserte men stabile topper ved 7 og 14 Å.	Ny topp ved ca 17 Å etter glykolbeh. og forsvinner etter varmebehandling indikerer smektitt. Stabile topper ved 7 og 14 Å etter glykol- og varmebeh. indikerer kloritt ^{iⅈ} .
0439137b og c	38	Ny topp ved ca. 17 Å	Bortfall topp ved 17 Å. Stabil eller økning topp ved ca. 10 Å. Reduserte men stabile topper ved 7 og 14 Å.	Ny topp ved ca 17 Å etter glykolbeh. og forsvinner etter varmebehandling indikerer smektitt. Stabile topper ved 7 og 14 Å etter glykol- og varmebeh. indikerer kloritt ^{iⅈ} .
0439138b og c	39	Ny topp ved ca. 17 Å	Bortfall topp ved 17 Å. Stabil eller økning topp ved ca. 10 Å. Reduserte men stabile topper ved 7 og 14 Å.	Ny topp ved ca 17 Å etter glykolbeh. og forsvinner etter varmebehandling indikerer smektitt. Stabile topper ved 7 og 14 Å etter glykol- og varmebeh. indikerer kloritt ^{iⅈ} .
0439139b og	40	Ny topp ved ca. 17 Å	Bortfall topp ved 17 Å. Stabil eller økning topp ved ca. 10 Å. Reduserte men stabile topper ved 7 og 14 Å.	Ny topp ved ca 17 Å etter glykolbeh. og forsvinner etter varmebehandling indikerer smektitt. Stabile topper ved 7 og 14 Å etter glykol- og varmebeh, indikerer kloritt ^{iⅈ}
0439140b og	41	Ny topp ved ca. 17 Å	Bortfall topp ved 17 Å. Stabil eller økning topp ved ca.	Ny topp ved ca 17 Å etter glykolbeh. og forsvinner etter varmebehandling indikerer

XRD-ANALYSER (Kvalitativ mineralbestemmelse) Analysekontraktsnr: 2004.0391

Filnavn	Pr. id	EG-behand.	Varme behandling	Kommentar
С			10 Å. Reduserte men stabile topper ved 7 og 14 Å.	smektitt. Stabile topper ved 7 og 14 Å etter glykol- og varmebeh. indikerer kloritt ^{iⅈ} .
0439141b og c	42	Ny topp ved ca. 17 Å	Bortfall topp ved 17 Å. Stabil eller økning topp ved ca. 10 Å. Reduserte men stabile topper ved 7 og 14 Å.	Ny topp ved ca 17 Å etter glykolbeh. og forsvinner etter varmebehandling indikerer smektitt. Stabile topper ved 7 og 14 Å etter glykol- og varmebeh. indikerer kloritt ^{iⅈ} .
0439142b og c	43	Ny topp ved ca. 17 Å	Bortfall topp ved 17 Å. Stabil eller økning topp ved ca. 10 Å. Reduserte men stabile topper ved 7 og 14 Å.	Ny topp ved ca 17 Å etter glykolbeh. og forsvinner etter varmebehandling indikerer smektitt. Stabile topper ved 7 og 14 Å etter glykol- og varmebeh. indikerer kloritt ^{iⅈ} .
0439143b og c	44	Ny topp ved ca. 17 Å	Bortfall topp ved 17 Å. Stabil eller økning topp ved ca. 10 Å. Reduserte men stabile topper ved 7 og 14 Å.	Ny topp ved ca 17 Å etter glykolbeh. og forsvinner etter varmebehandling indikerer smektitt. Stabile topper ved 7 og 14 Å etter glykol- og varmebeh. indikerer kloritt ^{iⅈ} .
0439144b og c	45	Ny topp ved ca. 17 Å	Bortfall topp ved 17 Å. Stabil eller økning topp ved ca. 10 Å. Reduserte men stabile topper ved 7 og 14 Å.	Ny topp ved ca 17 Å etter glykolbeh. og forsvinner etter varmebehandling indikerer smektitt . Stabile topper ved 7 og 14 Å etter glykol- og varmebeh. indikerer kloritt ^{iⅈ} .

Kommentarer

- i Da serpentin overlapper med flere topper for kloritt og kaolinitt kan også dette mineral være tilstede, men vanligvis skal serpentin være mer varmebestandig enn kaolinitt (stabil topp ved ca. 7Å etter varmebehandling), kaolinitt topp 7 Å vil vanligvis forsvinne.
- ii Da kloritt er sannsynligvis tilstede i prøvene er det vanskelig å kunne påvise eventuell kaolinitt pga. overlapp. Event kaolinitt kan videre vurderes ut fra event dobbelt topp ved ca 7 Å og en oppslitting i to topper ved hhv. 3.56 og 3.58 Å (for de fleste prøver synes dette å opptre).

Bakgrunn : Veiledende identifisering

Den veiledende identifiseringen er hovedsakelig vurdert ut fra mineraler angitt nedenfor, samt div. litteratur som bla inkluderer D.M. Moore and R. C. Reynolds Jr., X-ray Diffraction and the Identification and Analysis of Clay Minerals, Sec. Ed., Oxford, 1997, G. W. Brindley and G. Brown, Crystal Structures of Clay Minerals and their X-Ray Identification, Mineralogical Soc. Monograph no. 56, Spottiswoode, London (1980)

Leirmineraler

Leirmineralene skal foreligge mest mulig orientert, slik at plansett i z-retning gir opphav til reflekser (dvs. fra plansett 001). Avstand mellom topper for et gitt mineral skal da være tilnærmet konstant, ut fra følgende sammenheng :

$$d_{00l} = \frac{d_{001}}{l}$$

Denne sammenhengen kan omformes via Braggs lov til vinkler (gjelder for små vinkelintervaller) : $\theta \approx l \cdot \text{Konstant}$

I de påfølgende tabeller er det oppgitt d-verdier med tilhørende rel.intensitet for en del aktuelle mineraler. Merk at de oppgitte relative intensiteter er ved bruk av fast divergens spalte.

Tabell 3 Verdi for Clinochlore JCPDS Kort nr. 24-0506

d-verdi (Å)	hkl	Irel
14.24	001	67
7.12	002	100
4.75	003	43
3.56	004	53
2.85	005	9

Tabell 4 Verdi for illitt

d-verdi (Å)	hkl	Irel
10.0	001	100
5.00	002	20
3.33	003	90
2.50	004	10

Tabell 5 Verdi for Kaolinitt JCPDS Kort nr. 14-0164

d-verdi (Å)	hkl	Irel
7.17	001	100
3.579	002	80
2.385	003	25

<u>Smektitt</u>

Gir ofte bred topp rundt 10-12 Å i ubehandlet prøve, ved EG-behandling flytter toppen seg til ca. 17Å. Ved varmebehandling kollapser strukturen og går over til illitt, som kan observeres med at topp ved 17 Å forsvinner mens ny topp eller økning ved 10 Å.

Effekt av etylglykol og varmebehandling

I tabellen nedenfor er gitt en oversikt over endringer som oppstår for første refleksjoner

Tabell 6 Effekt av I	EG- og varme	ebehandling for først	e lavvinkel refleksjon	utvalgte leirmineraler
----------------------	--------------	-----------------------	------------------------	------------------------

Mineral	Ubehandlet (luft tørket)	Etylglykol behandling	Varmebehandling (550 °C)	Topp forsvinner ved
Kaolinitt	7 Å	7 Å	Forsvinner	500-550°C
Serpentin	7 Å	7 Å	Reduseres/forsvinner	575-700°C
Smektitt	10-14 Å (B)	17 Å	10 Å	> 700°C
Kloritt	14 Å	14 Å	14 Å	> 600°C

Ikke leirmineraler

Tabell 7 Verdi for Kvarts JCPDS Kort nr. 05-0490

d-verdi (Å)	hkl	Irel
4.26	100	35
3.343	101	100
2.458	110	12
2.282	102	12

Videre er plagioklas (3.19-3.21 Å), kalsitt (3.04 Å), og feltspat vurdert, disse er imidlertid relativt usikre da de stort sett er basert på kun en linje/refleks.

Korreksjoner

i) Korreksjon for avvik i prøvehøyde relativt til referanseplan

Event. avvik fra referanseplan kan korrigeres i hht. følgende likning:

$$\Delta 2\theta = GRADER\left(\frac{x \cdot \cos(\theta)}{R}\right)$$

R er goniometer radius i mm (R_{NGU} =237 mm) *x* er avstand fra referanseplan i mm (positiv ved for høyt i forhold til referanse planet.

x kan f.eks. bestemmes ut fra en referanse topp (eks. kvarts)

ii) Omregning intetsitet: automatisk slit versus fast slit

De oppgitte intensiteter (DI_data) er oppgitt på basis av automatisk divergense spalte. Det er imidlertid mulig å omregne disse til som om de er analysert med fast spalte, og da i hht. følgende sammenheng :

$$\frac{I_{Fixed}}{I_{Autom.slit}} = \frac{2R \tan\left(\frac{\delta_f}{2}\right)}{L_a \sin \theta} \cdot = \frac{C}{\sin \theta}$$

 I_{Fixed} er intensitet målt med fast divergens slit $I_{\text{automatic.slit}}$ er intensitet målt med automatisk divergens slit R er diffraktometer radius (NGU=237 mm)

 $\delta_{\rm f}$ er vidden på den daste divergens slit

 $L_{\rm a}$ er bestrålet lengde med automatisk slit

C er en konstant (kan bestemmes enten fra størrelsen på divergens slit eller fra den vinkel hvor intensiteten er de samme)

For omregnede verdier er det i prinsippet kun de relative intensiteter som bør benyttes.

Norges geologiske undersøkelse 7491 TRONDHEIM Tlf.: 73 90 40 00 Telefaks: 73 92 16 20

XRD-ANALYSER (Kvalitativ mineralbestemmelse) Analysekontraktsnr: 2004.0391

VEDLEGG

Vedlegg 1	Diffraktogram, resultat fra peak search m.m	Prøve id.:	1	Resultatfil: 0439101(ubeh.), 0439101b (glyk. beh.) 0439101c (varmebeh.)
Vedlegg 2	Diffraktogram, resultat fra peak search m.m	Prøve id.:	2	Resultatfil: 0439102(ubeh.), 0439102b (glyk. beh.) 0439102c (varmebeh.)
Vedlegg 3	Diffraktogram, resultat fra peak search m.m	Prøve id.:	3	Resultatfil: 0439103(ubeh.), 0439103b (glyk. beh.) 0439103c (varmebeh.)
Vedlegg 4	Diffraktogram, resultat fra peak search m.m	Prøve id.:	4	Resultatfil: 0439104(ubeh.), 0439104b (glyk. beh.) 0439104c (varmebeh.)
Vedlegg 5	Diffraktogram, resultat fra peak search m.m	Prøve id.:	5	Resultatfil: 0439105(ubeh.), 0439105b (glyk. beh.) 0439105c (varmebeh.)
Vedlegg 6	Diffraktogram, resultat fra peak search m.m	Prøve id.:	6	Resultatfil: 0439106(ubeh.), 0439106b (glyk. beh.) 0439106c (varmebeh.)
Vedlegg 7	Diffraktogram, resultat fra peak search m.m	Prøve id .:	7	Resultatfil: 0439107(ubeh.), 0439107b (glyk. beh.) 0439107c (varmebeh.)
Vedlegg 8	Diffraktogram, resultat fra peak search m.m	Prøve id .:	8	Resultatfil: 0439108(ubeh.), 0439108b (glyk. beh.) 0439108c (varmebeh.)
Vedlegg 9	Diffraktogram, resultat fra peak search m.m	Prøve id .:	9	Resultatfil: 0439109(ubeh.), 0439109b (glyk. beh.) 0439109c (varmebeh.)
Vedlegg 10	Diffraktogram, resultat fra peak search m.m	Prøve id .:	11	Resultatfil: 0439110(ubeh.), 0439110b (glyk. beh.) 0439110c (varmebeh.)
Vedlegg 11	Diffraktogram, resultat fra peak search m.m	Prøve id.:	12	Resultatfil: 0439111(ubeh.), 0439111b (glyk. beh.) 0439111c (varmebeh.)
Vedlegg 12	Diffraktogram, resultat fra peak search m.m	Prøve id.:	13	Resultatfil: 0439112(ubeh.), 0439112b (glyk. beh.) 0439112c (varmebeh.)
Vedlegg 13	Diffraktogram, resultat fra peak search m.m	Prøve id.:	14	Resultatfil: 0439113(ubeh.), 0439113b (glyk. beh.) 0439113c (varmebeh.)
Vedlegg 14	Diffraktogram, resultat fra peak search m.m	Prøve id.:	15	Resultatfil: 0439114(ubeh.), 0439114b (glyk. beh.) 0439114c (varmebeh.)
Vedlegg 15	Diffraktogram, resultat fra peak search m.m	Prøve id.:	16	Resultatfil: 0439115(ubeh.), 0439115b (glyk. beh.) 0439115c (varmebeh.)
Vedlegg 16	Diffraktogram, resultat fra peak search m.m	Prøve id.:	17	Resultatfil: 0439116(ubeh.), 0439116b (glyk. beh.) 0439116c (varmebeh.)
Vedlegg 17	Diffraktogram, resultat fra peak search m.m	Prøve id.:	18	Resultatfil: 0439117(ubeh.), 0439117b (glyk. beh.) 0439117c (varmebeh.)
Vedlegg 18	Diffraktogram, resultat fra peak search m.m	Prøve id.:	19	Resultatfil: 0439118(ubeh.), 0439118b (glyk. beh.) 0439118c (varmebeh.)
Vedlegg 19	Diffraktogram, resultat fra peak search m.m	Prøve id.:	20	Resultatfil: 0439119(ubeh.), 0439119b (glyk. beh.) 0439119c (varmebeh.)
Vedlegg 20	Diffraktogram, resultat fra peak search m.m	Prøve id .:	21	Resultatfil: 0439120(ubeh.), 0439120b (glyk. beh.) 0439120c (varmebeh.)
Vedlegg 21	Diffraktogram, resultat fra peak search m.m	Prøve id .:	22	Resultatfil: 0439121(ubeh.), 0439121b (glyk. beh.) 0439121c (varmebeh.)
Vedlegg 22	Diffraktogram, resultat fra peak search m.m	Prøve id .:	23	Resultatfil: 0439122(ubeh.), 0439122b (glyk. beh.) 0439122c (varmebeh.)
Vedlegg 23	Diffraktogram, resultat fra peak search m.m	Prøve id .:	24	Resultatfil: 0439123(ubeh.), 0439123b (glyk. beh.) 0439123c (varmebeh.)
Vedlegg 24	Diffraktogram, resultat fra peak search m.m	Prøve id.:	25	Resultatfil: 0439124(ubeh.), 0439124b (glyk. beh.) 0439124c (varmebeh.)
Vedlegg 25	Diffraktogram, resultat fra peak search m.m	Prøve id .:	26	Resultatfil: 0439125(ubeh.), 0439125b (glyk. beh.) 0439125c (varmebeh.)
Vedlegg 26	Diffraktogram, resultat fra peak search m.m	Prøve id .:	27	Resultatfil: 0439126(ubeh.), 0439126b (glyk. beh.) 0439126c (varmebeh.)
Vedlegg 27	Diffraktogram, resultat fra peak search m.m	Prøve id .:	28	Resultatfil: 0439127(ubeh.), 0439127b (glyk. beh.) 0439127c (varmebeh.)
Vedlegg 28	Diffraktogram, resultat fra peak search m.m	Prøve id .:	29	Resultatfil: 0439128(ubeh.), 0439128b (glyk. beh.) 0439128c (varmebeh.)
Vedlegg 29	Diffraktogram, resultat fra peak search m.m	Prøve id .:	30	Resultatfil: 0439129(ubeh.), 0439129b (glyk. beh.) 0439129c (varmebeh.)
Vedlegg 30	Diffraktogram, resultat fra peak search m.m	Prøve id .:	31	Resultatfil: 0439130(ubeh.), 0439130b (glyk. beh.) 0439130c (varmebeh.)
Vedlegg 31	Diffraktogram, resultat fra peak search m.m	Prøve id.:	32	Resultatfil: 0439131(ubeh.), 0439131b (glyk. beh.) 0439131c (varmebeh.)
Vedlegg 32	Diffraktogram, resultat fra peak search m.m	Prøve id.:	33	Resultatfil: 0439132(ubeh.), 0439132b (glyk. beh.) 0439132c (varmebeh.)
Vedlegg 33	Diffraktogram, resultat fra peak search m.m	Prøve id.:	34	Resultatfil: 0439133(ubeh.), 0439133b (glyk. beh.) 0439133c (varmebeh.)
Vedlegg 34	Diffraktogram, resultat fra peak search m.m	Prøve id.:	35	Resultatfil: 0439134(ubeh.), 0439134b (glyk. beh.) 0439134c (varmebeh.)
Vedlegg 35	Diffraktogram, resultat fra peak search m.m	Prøve id .:	36	Resultatfil: 0439135(ubeh.), 0439135b (glyk. beh.) 0439135c (varmebeh.)
Vedlegg 36	Diffraktogram, resultat fra peak search m.m	Prøve id.:	37	Resultatfil: 0439136(ubeh.), 0439136b (glyk. beh.) 0439136c (varmebeh.)
Vedlegg 37	Diffraktogram, resultat fra peak search m.m	Prøve id.:	38	Resultatfil: 0439137(ubeh.), 0439137b (glyk. beh.) 0439137c (varmebeh.)
Vedlegg 38	Diffraktogram, resultat fra peak search m.m	Prøve id.:	39	Resultatfil: 0439138(ubeh.), 0439138b (glyk. beh.) 0439138c (varmebeh.)
Vedlegg 39	Diffraktogram, resultat fra peak search m.m	Prøve id.:	40	Resultatfil: 0439139(ubeh.), 0439139b (glyk. beh.) 0439139c (varmebeh.)
Vedlegg 40	Diffraktogram, resultat fra peak search m.m	Prøve id .:	41	Resultatfil: 0439140(ubeh.), 0439140b (glyk. beh.) 0439140c (varmebeh.)
Vedlegg 41	Diffraktogram, resultat fra peak search m.m	Prøve id.:	42	Resultatfil: 0439141(ubeh.), 0439141b (glyk. beh.) 0439141c (varmebeh.)
Vedlegg 42	Diffraktogram, resultat fra peak search m.m	Prøve id.:	43	Resultatfil: 0439142(ubeh.), 0439142b (glyk. beh.) 0439142c (varmebeh.)
Vedlegg 43	Diffraktogram, resultat fra peak search m.m	Prøve id.:	44	Resultatfil: 0439143(ubeh.), 0439143b (glyk. beh.) 0439143c (varmebeh.)

Delrapport XRD side 11

XRD-ANALYSER (Kvalitativ mineralbestemmelse) Analysekontraktsnr: 2004.0391

Vedlegg 44 Diffraktogram, resultat fra peak search m.m Prøve id.: 45 Resultatfil: 0439144(ubeh.), 0439144b (glyk. beh.) 0439144c (varmebeh.)

Barents Sea marine sediment samples geochemistry

Appendix 3

Cumulative grain-size diagrams

Barents Sea marine sediment samples geochemistry

Appendix 4

Additional geochemical maps

Barents Sea marine sediment samples geochemistry

Appendix 5

Q-mode analysis and R-mode figures and tables

	Factor coordinates of the variables, based on correlations					
Variable	(Spreadsheet_Std-ized in Workbook1.stw)					
	Factor 1	Factor 2	Factor 3	Factor 4	Factor 5	
Cu_p	-0,847653	0,137529	-0,291281	0,082516	-0,141197	
Zn_p	-0,963259	-0,021732	-0,087394	0,187115	-0,023557	
Pb_p	-0,724259	0,421470	-0,049585	-0,054380	0,210320	
Ni_p	-0,952926	0,035625	-0,198884	0,072055	-0,030240	
Co_p	-0,845117	0,013739	-0,413244	-0,139181	-0,129738	
V_p	-0,869508	0,048771	0,250356	0,161436	-0,191421	
Mo_p	-0,187818	0,535757	0,104883	-0,309251	-0,493768	
Cr_p	-0,920977	-0,218601	-0,189264	0,142811	-0,024471	
Ba_p	-0,276393	0,085362	-0,099645	-0,124994	-0,171654	
Sr_p	0,496215	0,759370	-0,340227	0,163568	-0,092064	
Zr_p	-0,461366	-0,457383	-0,646435	-0,103251	-0,168292	
B_P	-0,902908	0,080730	-0,041305	0,266696	0,070996	
Be_p	-0,948641	-0,048445	0,188109	0,089053	0,052268	
Li_p	-0,981295	0,063424	0,017153	0,066514	0,007791	
Sc_p	-0,940784	-0,120061	-0,277985	0,073382	-0,019190	
Ce_p	-0,578154	-0,473053	-0,594188	0,079245	-0,121875	

La_p	-0,569267	-0,362928	-0,638210	0,060627	-0,165670
Y_p	-0,829761	0,035432	-0,354254	-0,018872	-0,260992
As_p	-0,541043	0,272997	0,551987	-0,067575	-0,255049
SiO2	0,211868	-0,895774	0,312748	-0,083550	-0,017558
A12O3	-0,930913	-0,259475	0,030643	-0,095810	0,059554
Fe2O3	-0,892813	0,089329	0,181291	-0,066020	-0,127754
TiO2	-0,939947	-0,176433	-0,075514	-0,096838	0,111146
MgO	-0,740260	0,249655	-0,361562	-0,186088	0,261471
CaO	0,604500	0,677363	-0,348176	0,136010	-0,096852
Na2O	-0,835041	-0,057645	0,085217	-0,179826	0,327201
K2O	-0,755907	-0,561294	0,135154	-0,055546	0,054176
MnO	-0,262934	0,529929	0,063130	-0,632211	-0,134737
P2O5	-0,650492	0,323264	0,532080	-0,082851	-0,051348
LOI_x	-0,041314	0,945863	-0,248491	0,121420	0,095181
Cs_x	-0,200885	0,227380	0,229023	-0,311660	-0,107563
Ga_x	-0,594984	0,091198	0,148748	-0,066655	-0,317179
Nb_x	-0,904889	-0,111025	0,025910	-0,139929	0,161263
Nd_x	-0,869109	0,051654	0,102944	-0,121170	-0,114636
Rb_x	-0,941505	-0,198135	-0,138663	-0,079995	0,102196
Th_x	-0,820375	-0,157353	-0,043590	-0,213802	0,000364
S_x	-0,619069	0,688620	0,054575	0,003185	0,156995
Cl_x	-0,344805	0,782520	-0,060057	-0,133609	0,367736
F_x	-0,083379	-0,102500	-0,095367	-0,350727	-0,262713
t_S	-0,415759	0,714209	-0,042029	-0,227709	0,091289
t_C	0,093627	0,929862	-0,100801	0,273686	0,018661
TOC	-0,821639	0,267971	0,351239	0,223452	0,166891
CARBONATE_	0,558585	0,741433	-0,296811	0,135910	-0,076716
LT63	-0,786273	0,210168	-0,290857	-0,183864	0,292083
Cd_	-0,267898	0,214246	-0,250574	0,565923	-0,493257
Se_p	-0,696149	0,182755	0,114967	0,384471	0,100455
Hg_p	-0,683487	0,201469	0,232322	0,231865	-0,010065
Smectite	0,256953	-0,308609	-0,416265	0,236892	0,400711
Illite	0,488823	0,175918	-0,407173	-0,476673	-0,119578
Kaolinite	-0,550938	-0,130150	0,467822	0,392742	-0,189067
Chlorite	-0,414126	0,260076	0,589811	-0,005143	-0,019123

Casa	Factor coordinates Mosby0304_0_1cr	Factor coordinates of cases, based on correlations (Spreadsheet_Std-ized in Mosby0304_0_1cmstw)					
Case	Factor 1	Factor 2	Factor 3	Factor 4	Factor 5		
625	-3,80195	-1,53065	-2,64203	-1,48411	-1,49380		
627	2,27092	-2,65802	-1,21280	-0,91654	0,06456		
629	-3,17807	-2,33534	-1,46455	-0,43409	0,01880		
631	-6,00337	-0,43785	-1,72362	0,28229	1,67118		
633	-0,04837	-2,09662	2,77788	0,71272	-0,90442		
635	-2,97779	-0,50698	2,26751	1,45490	1,40855		
639	-7,26438	0,27169	0,53131	1,49833	1,08811		
643	-6,70222	-1,65820	-0,84492	2,59772	-0,17398		
645	-5,19049	-1,19418	1,04664	2,61643	-1,54200		
647	-5,56514	0,09782	0,01965	0,40721	2,05505		
649	-5,26041	-0,02027	-0,33357	1,32783	1,81567		
651	-4,96504	0,00600	0,77534	0,44876	0,79894		
653	-5,79387	-2,25363	-2,28128	1,43595	1,08025		
655	-4,59401	-1,88686	-0,04698	1,47716	1,95522		
657	3,85169	-4,20487	0,54984	0,21135	0,58211		
659	4,99792	-3,10892	-0,04262	-1,50425	0,18262		
661	-2,06584	-1,73296	-3,46521	-1,59328	-0,17448		
663	7,73059	-3,50841	2,09832	-0,65531	0,24540		
665	2,25634	-3,81964	-0,98119	-0,09295	0,68509		
667	1,57297	-3,87762	0,25480	0,73159	0,73233		
669	-3,37616	-2,67885	-1,48665	0,74269	0,42939		
671	-5,93649	-1,59555	-1,68781	0,73441	-0,28403		
673	1,36653	-3,04596	3,53382	2,35411	-0,62657		
675	-1,06821	-2,21487	1,50894	2,96467	-1,38248		
677	-8,21261	-1,54529	-1,67775	4,87271	-3,57219		
679	-8,77488	0,53181	2,44382	1,54783	-5,20245		
681	1,87797	-3,85911	2,01068	1,53440	-0,56217		
690	-3,19542	-4,40640	-4,91703	-2,09037	-2,94961		
692	7,27404	-4,12656	2,19134	-1,18763	-1,05474		
1	-1,15758	-1,53536	-2,78508	-1,42535	1,20841		
2	-2,52572	-1,18434	-3,30576	-1,72760	1,08140		
3	0,27075	3,01091	-2,61226	0,57785	1,25360		
4	0,86174	4,79582	-2,92104	0,35587	0,37593		
5	4,17633	1,86512	-1,18917	-0,37961	-0,93918		
6	6,53186	-1,23606	0,68471	-0,62761	-0,36594		
7	6,61869	-3,61262	1,76418	-0,34744	-0,79843		
8	-2,55050	-2,23688	-1,99935	-1,23259	-1,98188		
9	3,17528	2,17634	-1,35725	-1,21489	-0,84200		

11	2,89742	3,60860	-1,75234	-0,17422	-0,32206
12	5,13617	-1,00290	-0,79223	-1,13961	-0,44884
13	5,89520	-2,91668	0,69087	-0,88322	-0,09198
14	2,47152	-1,57988	-0,13508	-1,33573	-0,45291
15	1,76313	-1,28159	0,28018	-0,48368	1,11915
16	2,20103	-1,95247	1,29610	0,30680	0,17952
17	0,53667	-1,20523	1,03093	-0,10677	0,46430
18	-2,68238	-0,33880	-0,16598	-0,66801	1,01480
19	-3,48066	0,00636	-0,82576	-0,72914	2,20888
20	2,82796	6,34275	2,16986	1,80518	1,68409
21	6,93076	2,19667	2,54266	1,73463	0,91994
22	5,92472	-0,62191	2,48184	0,72223	0,47458
23	-0,24198	4,52084	-3,20782	-0,36936	0,00988
24	-0,85936	4,97397	-3,02940	-0,11648	0,88624
25	1,91628	-0,82679	0,96317	-0,67990	-1,46816
26	-2,90519	-0,26675	2,11168	-0,47194	1,69413
27	-7,66217	5,11050	3,08763	-5,69796	-3,64159
28	-2,22275	0,33698	2,13294	-0,45330	2,14923
29	-5,40488	3,36947	3,00487	-1,02159	0,43205
30	-4,34800	1,85769	2,23396	-0,65041	1,58763
31	-6,97194	4,64857	3,75310	-2,77628	-0,36691
32	-5,06367	2,89258	4,16498	-1,16338	0,48446
33	-6,34658	3,86769	5,05069	-1,59006	0,01012
34	-1,12407	-1,34183	-2,31801	-1,68303	0,87374
35	3,16510	-1,03067	-0,52225	-0,63276	0,96371
36	1,28912	1,53577	-2,01186	-0,08292	-0,61260
37	2,20737	-1,20072	-0,83243	-1,15604	0,58025
38	1,71253	3,53377	-1,11241	0,09253	0,28492
39	4,37518	5,36765	-2,49502	1,25763	-0,57605
40	3,81947	5,25646	-1,80918	0,67867	-0,74214
41	9,59696	0,58096	0,95644	-0,24853	-0,01694
42	10,89761	8,00045	-1,63499	3,02015	-1,53180
43	3,84125	5,95441	-0,92886	1,17406	-0,43845
44	9,82240	0,39832	1,19382	0,35056	-0,90412
45	5,46069	-1,44084	0,94707	-0,80130	-0,28930

Barents Sea marine sediment samples geochemistry

Appendix 6

National and international marine sediment environmental mapping and monitoring activities
Barents Sea marine sediment samples geochemistry

Appendix 6

National and international marine sediment environmental mapping and monitoring activities

International environmental monitoring activities

The international environmental monitoring activities are tied to the long-term monitoring of sediments through the Arctic monitoring and assessment programme (AMAP). The AMAP programme has been going on since 1991, and has so far compiled marine sediment data from the Barents Sea in the AMAP assessment report – Arctic Pollution Issues (1998).

The Oslo - Paris convention (OSPAR) aims at protecting the marine environment in the northernmost part of the Atlantic against pollution. OSPAR has been in operation since 1992, with regular sampling and analysis for a range of contaminants (metals, organic pollutants and radionuclides) in marine sediments within the Joint Assessment and Monitoring Program which be assessed (JAMP), can on the homepage: http://www.ospar.org/eng/doc/Status OSPAR monitoring guidelines.doc. Norwegian sample stations along the coast have been established since 1994. The Norwegian JAMP-activities contribute to the Norwegian OSPAR data reporting. Data from the northern parts of Norwegian waters is also submitted to AMAP. The latest OSPAR quality status report (QSR) is from 2003, and the next is planned for 2010 according to information from http://www.sft.no/arbeidsomr/overvaking/program/dbafile5402.html.

Other related programs, which are not directly concerned with mapping and monitoring of pollution are:

- Protection of the arctic marine environment (PAME) aims at protecting the marine environment in the arctic.
- Arctic Council Action Plan (ACAP) works for reduction and eliminating pollution of the arctic environment.

The Mareano data will provide new information about the concentrations of organic and inorganic contaminants in marine sediments in the Barents Sea region and the Norwegian Sea both temporally and spatially.

Since most of the contaminants are either bound to fine-grained clayey sediments or organic matter, the sediment and geochemical data will give valuable information about where to expect sinks for fine-grained and/or organic-rich sediments and contaminants, and where to expect non-deposition within the Barents Sea.

The application of a multidisciplinary approach using geochemical data from sediment samples, shallow seismic data and video-recording of the sea-bottom will strengthen the understanding of depositional processes as well as important natural and anthropogenic activities influencing the surface sediments.

Norwegian and Russian environmental monitoring activities The newly released Norwegian parliament environmental monitoring plan (March 31st 2006) for the Barents Sea gives an overview of the status as well as the future needs for new environmental monitoring activities. The following homepage gives the details of the monitoring status and future needs <u>http://npolar.no/barentshav/</u>. The Mareano program will provide new information about the status of the marine sedimentary environment regarding contaminant concentrations.

National environmental monitoring and mapping activities in Norway and Russia have been carried out in the past 20 years. In Norway there has been activities related to pollution investigation in harbours in Finnmark, Troms and Nordland as a part of a national program reported through the state pollution authorities (SFT). Results from the investigations are found on <u>http://www.sft.no/</u>.

Sampling and analysis of sediments for contents of heavy metals in the Eastern Finnmark coastal water was carried out by NGU in 1999 (Jensen and Longva, 1999). Generally the metal contents of the sediments were low in the top layer, and in most cases in Class I or Class II in the SFT marine sediment classification system.

Akvaplan Niva, Murmansk Marine Biological Institute (MMBI) and NGU compiled environmental projects from the Barents Sea in the Norwegian – Russian border area (Savinov et al., 1999).

The Norwegian Polar Institutes manages an environmental monitoring program for Svalbard and Jan Mayen (MOSJ), including surrounding waters. Information about MOSJ can be assessed at the Norwegian Polar Institute homepage: <u>http://miljo.npolar.no/mosj/start.htm</u>.

Through the LOIRA-program (Land-Ocean-Interaction in the Russian Arctic), the Russian scientific community has focused on the connection between pollution on land and the transport of the contamination to the sea.