The development of the landscape

The Svalbard landscape is formed through a combination of tectonic uplift and subsequent glacial erosion. The Svalbard landscape is formed through a combination of tectonic uplift and subsequent glacial erosion. Marine deposits have been present in the Svalbard landscape since the last ice age, and are still being subjected to weathering and shape processes that have been tilting the landscape. The result of these processes is the present landscape of marine sediments on top of the mountain plateau, as well as in the block fans and extension siltstone material deposited on the valley slopes. Tectonic processes, landform interactions, as well as landscape development, have helped shaped the landscape by controlling the rate of erosion and deposition of sediments. The different processes are often combined to form different types of slope fans with different types of sedimentology, geometry and grain size distribution.

Permafrost and related landforms

Permafrost is present on the mountain plateau and at the sea level. It is formed in areas with continuous permafrost, which means that the temperature is below freezing point for more than two years a year. Permafrost formation is dependent on the climate and the topography. In mountainous areas, the temperature is lower than in flat areas, and permafrost is more common. Permafrost formation is also dependent on the climate and the topography. In mountainous areas, the temperature is lower than in flat areas, and permafrost is more common. Permafrost has been present in the Svalbard landscape since the last ice age, and is still being subjected to weathering and shape processes that have been tilting the landscape. The result of these processes is the present landscape of marine sediments on top of the mountain plateau, as well as in the block fans and extension siltstone material deposited on the valley slopes.

Debris flows - rocks in motion

Debris flows are mass movements of rock, soil, and debris that occur when the weight of the material is greater than the frictional resistance. Debris flows are common in areas with steep slopes and can be triggered by heavy rainfall or melting of snow. Debris flows can be very powerful and can travel long distances. They can also be very destructive and can cause significant damage to infrastructure and homes. Debris flows are often associated with other types of slope processes, such as landslides, avalanches, and rock falls. Debris flows can also be triggered by human activities, such as mining or construction. Debris flows are often associated with other types of slope processes, such as landslides, avalanches, and rock falls. Debris flows can also be triggered by human activities, such as mining or construction.

Landslides - moving mountains

Landslides are mass movements of rock, soil, and debris that occur when the weight of the material is greater than the frictional resistance. Landslides can be triggered by heavy rainfall or melting of snow. Landslides can be very powerful and can travel long distances. They can also be very destructive and can cause significant damage to infrastructure and homes. Landslides are often associated with other types of slope processes, such as debris flows, avalanches, and rock falls. Landslides can also be triggered by human activities, such as mining or construction. Landslides are often associated with other types of slope processes, such as debris flows, avalanches, and rock falls. Landslides can also be triggered by human activities, such as mining or construction.