Landscape Geochemistry (Critical Zone Research, Multi-media geochemistry)

Based on Vernadsky’s (1926) book on “The Biosphere” the concept of landscape geochemistry developed in the 1940ies in Russia. Landscape geochemistry studies the migration of chemical elements in a landscape and especially between the different compartments of the Ecosystem.
The terrestrial moss Hylocomium splendens, which is often taken to represent atmospheric element input to a forest ecosystem.
The terrestrial moss Hylocomium splendens,
which is often taken to represent atmospheric
element input to a forest ecosystem.

Today “critical zone research”, the study of element behaviour at the Earth surface, is the western equivalent to the Russian “landscape geochemistry”. The critical zone is the near surface environment where the complex interactions of lithosphere (the rocks), pedosphere (the soils), hydrosphere (ground and surface water), biosphere (plants and animals) and the atmosphere (rain, snow, “climate in general) take place. The critical zone sustains all life on Earth.

NGU has started as early as in the late 1980ies with multi-media geochemical surveys – at that time still for mineral exploration (Bølviken et al., 1986). As early as 1993 the “Kola Ecogeochemistry Project” combined 4 different sample materials to better understand the environmental impact of the Russian nickel industry on the vulnerable arctic environment (Reimann et al., 1998). Since then quite a number of studies comparing the geochemistry of many different sample materials from the local to the continental scale have been carried out and help to better understand the human impact on the Norwegian environment.

 Forenklet modell av det intrikate samspillet mellom ulike komponenter i et økosystem (planter, representert her  med røsslyng (HEA), piletre (WIL), bjørk (BIR) og einebær (JUN) og bare to jordlag O-horisont (OHO) og C-horisont (CHO).
 Simplified conceptual model of the intricate interplay between the different compartment of an ecosystem (plants represented here by heather (HEA), willow (WIL), birch (BIR) and juniper (JUN) and only two soil O (OHO) and C horizons (CHO) shown.
Et av de viktigste resultatene fra Kola Ecogeochemistry prosjektet: forskjellige materialer samlet på samme område forteller ulike historier. Mose er sterkt påvirkninger av utslipp fra den russiske nikkel industrien, mineraljord (C horisont) reflekterer geologi, mens i jord (O horisont) er klima og vegetasjons soner viktig for observert element distribusjon.
One of the key results from the Kola Ecogeochemistry Project: different sample materials collected at the same sites tell a different story. Moss is strongly influences by emissions from the Russian Nickel industry, the soil C horizon reflects geology, while in the soil O horizon climate and vegetation zones play a key role for the observed element distribution.
Boxplot som sammenligner element konsentrasjoner i bare ett eksempel materiale (tyttebær) mellom 9 forskjellige nedbørfelt (C1-C9) spredt over Nord-Europa (venstre) og mellom 9 plantearter samlet på samme områder (MOS: terrestrisk mose, BLU: blåbær, COX: tyttebær, EMP: krekling, BIR: bjørkeblader, WIL: piletre blader, PIN: furu nåler, SPR: Gran nåler). C6 (venstre) representerer et forurenset nedslagsfelt. Merk at konsentrasjons forskjellene er mye større mellom forskjellige plantearter.
Boxplot comparison of element concentrations as measured in a variety of different sample materials at the same sites along a 120 km long transect (ROCK: bedrock, CHO: soil C horizon, BHO: soil B horizon, OHO: soil O-horizon, MOS: terrestrial moss, FER: fern, EMA: European mountain ash leaves, BIL: birch leaves, BBA: birch bark, BWO: birch wood, SNE: spruce needles, TWI: spruce twigs, STW: 

Selected publications:

  • BØLVIKEN, B., BERGSTROM, J., BJÖRKLUND, A., et al. 1986.  Geochemical Atlas of Northern Fennoscandia, Scale 1:4,000,000. Mapped by Geological Surveys of Finland, Norway and Sweden with Swedish Geological Co. and the Geological Survey of Sweden.  Nordic Council of Ministers, 19 p. and 155 maps.
  • KASHULINA, G., REIMANN, C., FINNE, T.E., HALLERAKER, J.H., ÄYRÄS, M. AND CHEKUSHIN, V.A., 1997. The state of the ecosystems in the central Barents Region: scale, factors and mechanism of disturbance. Science of the Total Environment 206: 203-225.
  • KASHULINA, G., REIMANN, C., FINNE, T.E., CARITAT, P. de & NISKAVAARA, H., 1998. Factors influencing NO3 concentrations in rain, stream water, ground water and podzol profiles of eight small catchments in the European Arctic. Nitrogen, the Confer-N-s, First International Nitrogen Conference (Noordwijkerhout, The Netherlands, 23-27 March 1998), Proceedings volume, Elsevier, Amsterdam: 559-568 & Environmental Pollution, 102, S1: 559-568.
  • KASHULINA, G. & REIMANN, C., 2001. Sulphur in the arctic environment (1): results of a catchment-based multi-medium study. Environmental Pollution 114: 3-19.
  • REIMANN, C., ÄYRÄS, M., CHEKUSHIN, V., et al., 1998. Environmental Geochemical Atlas of the Central Barents Region. NGU-GTK-CKE Special Publication, Geological Survey of Norway, Trondheim, Norway.