NGU Report 2012.014

Compilation of geochronological data for Cenozoic volcanic activity on the African plate and for selected Northern African sedimentary basins
Report

<table>
<thead>
<tr>
<th>Report no.:</th>
<th>2012.014</th>
<th>ISSN 0800-3416</th>
<th>Grading:</th>
<th>Open</th>
</tr>
</thead>
</table>

Title: Compilation of geochronological data for Cenozoic volcanic activity on the African plate and for selected Northern African sedimentary basins

Authors:
Bart W.H. Hendriks

Client: NGU, Statoil

County:

Map-sheet name (M=1:250.000):

Deposit name and grid-reference:

Fieldwork carried out:

Date of report: February 15, 2012

Project no.: 326100

Price (NOK):

Map enclosures:

Summary:
A compilation of published isotope geochronological data for Cenozoic volcanic / magmatic activity on the African plate and for part of the adjacent Antarctic plate was created within The African Plate project (TAP; collaboration between NGU and Statoil). This compilation covers the continental as well as the oceanic part of the African plate. Areas with documented recent or historic volcanic or magmatic activity are also included. In addition, geochronological data for selected Northern African sedimentary basins (Tadouenni, Kufra, Murzuq, Illizi, Sirte) were included. The vast majority of these data are from surface outcrops in areas immediately adjacent to these basins, rather than from the basins themselves (where few published isotope ages exist). Published data included in this database are obtained from the following isotope geochronological methods: Ar/Ar, K/Ar, Re/Os, Rb/Sr, Sm/Nd, Lu/Hf, FT, U/Pb, Pb/Pb and U-Th/Pb. Details on laboratory methodologies, age statistics, etc., are included as much as possible. For the Cenozoic volcanics a subdivision into alkaline and non-alkaline rocks was made following a broad definition by Woolley (2001) as well as a much more narrow definition by Kevin C. Burke (including only nephelinite, nepheline syenite, phonolite and sóvite).

Keywords:
- geochronology
- Volcanic rocks
- Africa
 - Cenozoic
 - sedimentary basin
 - isotope
 - alkaline
CONTENTS

1. Introduction
2. Field names in the Microsoft Access Database
3. Geochronological database for Cenozoic volcanic and magmatic events
4. Geochronological database for selected Northern African basins
 4.1 Taoudenni basin
 4.2 Al Kufra, Murzuk, Illizi and Sirte basins
5. References (269)

FIGURES

Figure 1. Volcanics younger than 30 Ma on the African plate and part of the adjacent Antarctic plate. Red line representing the 1% slow shear wave velocity boundary at the Core-Mantle Boundary
Figure 2. Northern African basins selected for inclusion in the geochronology database
Figure 3. Crystalline basement ages (incl. Pan-African) for the Taoudenni basin area
Figure 4. Histogram for crystalline basement ages (incl. Pan-African) for the Taoudenni basin area
Figure 5. Central Atlantic Magmatic Province (CAMP) ages in the Taoudenni basin area
Figure 6. Late Hercynian metamorphic ages of the Mauritanides
Figure 7. Histogram of metamorphic ages of the Southern and Northern Mauritanides
Figure 8. Histogram of crystalline basement ages in the region encompassing the Al Kufra, Illizi, Sirte and Murzuk basins.
Figure 9. Sample locations for crystalline basement ages in the region encompassing the Al Kufra, Illizi, Sirte and Murzuk basins.
Figure 10. Southeastern section of the Al Kufra basin (Sudan)
Figure 11. Cenozoic volcanics in the Al Kufra, Illizi, Sirte and Murzuk basin area.

TABLES

None

APPENDIX

Electronic supplement; TAPgeochronARC.accdb
(Microsoft Access Database; single table)
1. **INTRODUCTION**

The database of isotope geochronological data described here consists of two parts: (1) Cenozoic volcanic and magmatic activity on the entire African plate as well as on part of the adjacent Antarctic plate, and (2) data available for the region encompassing the following Northern African basins: Taoudenni, Al Kufra, Murzuk, Illizi and Sirte.

The database of Cenozoic volcanic – magmatic activity includes virtually all sites on the African plate as well as on part of the adjacent Antarctic plate for which volcanic and / or magmatic activity during the last 65 Ma has been reported. The primary reason to include also data from part of the adjacent Antarctic plate is that the Plume Generation Zone (PGZ; Burke et al. 2008a) extends below the Antarctic plate. One of the goals of the TAP project was to investigate a possible link between Cenozoic African volcanic activity and the PGZ, similar to the link found between the large igneous provinces of the last 300 Ma and the PGZ. We make no a-priori selection based on characteristics such as 'hotspot' related volcanism, rift-related activity, anorogenic magmatism, etc. This Cenozoic part of our database includes over 2500 reported ages. These ages have been determined by the 40Ar/39Ar method (N = ~500), the K/Ar method (N = ~1900) or other methods such as U/Pb, Rb/Sr, etc (N = ~100 all together). For a number of areas a large amount of age determinations is available, such as for example for the Canary Islands, Cape Verde and the East African Rift Valley in Kenya and Ethiopia. For several other known volcanic centres far fewer ages are available, such as for example those located in Chad and Sudan.

The 2nd part of the database covers geochronological data available for the region encompassing the Taoudenni, Al Kufra, Murzuk, Illizi and Sirte basins. However, the vast majority of published data are from surface outcrops in areas immediately adjacent to these basins, rather than from the basins themselves. Published data (~900 ages) included in this database are obtained from the following geo-chronological methods: Ar/Ar, K/Ar, Re/Os, Rb/Sr, Sm/Nd, Lu/Hf, FT, U/Pb, Pb/Pb and U-Th/Pb.

A lot of data were first published from the 1960s to 1980s. References to age data in many more recent publications turned out not to be pointing towards these original sources, but to overview papers, geological reviews, etc. The references in the current database are almost exclusively taken from the original sources. It is inevitable, however, that a number of relevant data and references are missing, especially those reported in grey (not peer reviewed) literature.

The quality of the reported ages in both parts of the database is variable, both in terms of analytical precision as well as in, for example, details on sample locations, rock descriptions, etc. Ideally all age determinations would be by modern methodology such as 40Ar/39Ar or U/Pb. K/Ar dating, unlike its follow-up 40Ar/39Ar dating, lacks the capability to easily reveal post-eruption isotopic disturbances. However, the K/Ar ages included here are mostly for Cenozoic volcanics and these rocks typically have relatively simple cooling histories (without, for example, metamorphic thermal overprint). There is no obvious reason to expect systematic isotopic disturbances across large areas represented in the database. Also, for most known Cenozoic volcanic – magmatic occurrences multiple age determinations are available, so cross-checking these results provides a first level of quality control.

Because of the scale – both geographical and temporal – of our analysis (focussed on the entire African plate) shortcomings in the compilation, such as the lack of GPS coordinates for many datapoints or the use of now-outdated decay-constants, is considered non-critical. When
coordinates were lacking in the original publications, they were estimated based on geological maps included in the publications or for example by using published location maps together with Google Earth.

Descriptions of sample lithology in the references included in the database is often limited to simply a rock name. Nevertheless, this allows us to distinguish alkaline rocks (Sørensen 1974) and carbonatites (ARCs) from other rock types. We use two different definitions here to separate ARC from non ARC: a broad definition by Woolley (2001), which includes nepheline syenites, basanites, peralkaline syenite, quartz syenite, comendite, pantellerite, etc., and a more narrow definition by Kevin C. Burke, which strictly includes nephelinite, nepheline syenite, phonolite and sövite.
2. **FIELD NAMES IN THE MICROSOFT ACCESS DATABASE**

The electronic supplement to this report is a Microsoft Access database that can be easily linked (dynamically) to ArcGis. It includes the following field names, that will show up when using the 'identify' tool in ArcGis:

General datafields
- **Sample**
 Sample name taken from publication, or location name when no sample name was given in the reference
- **Input_order**
 Refers to order the data were entered into the database, internal use only
- **PlateID**
 Refers to EarthByte PlateIDs (101, North American Craton; 201, South American Craton; 301, Northern European Craton and Eurasia; 501, Indian Craton; 503, Arabia; 701, African Craton; 709, Somalia Plate; 802, Antarctica and East Antarctica; 820, Drake passage South, Scotia Sea)
- **Time0**
 Column of zeroes, included for internal use in Gplates reconstruction software only
- **Location**
 Location name as given in the reference
- **Lithology**
 Lithological name given in the reference
- **ARC_Woolley**
 'Yes' if site is included in Woolley (2001)
- **ARC_Burke_Ashwal**
 'Yes' if lithology is nephelinite, nepheline syenite, phonolite orsövite
- **Mineral**
 Specifies mineral phase dated, or whole rock where appropriate
- **Stratigraphic age**
 Stratigraphic age of sedimentary rock, as specified in original publication
- **Elevation**
 Elevation in meters above sea level
- **Lat**
 Latitude in decimal degrees
- **Long**
 Longitude in decimal degrees
- **Coordinates**
 'Reported' when latitude and longitude were reported in the reference; 'Approximate' when latitude and longitude were found using location maps, geological maps, Google Earth, etc.
- **Method**
 Isotope geochronological method used in age determination
- **Age_on_map**
 Age in Ma to be used for plotting in ArcGis; copied over from the appropriate isotope age
- **1s_error_on_map**
 1\(\sigma\) error in Ma to be used for plotting in ArcGis; copied over from the appropriate isotope age error
- **Classification**
 Classification of reported age as metamorphic age, emplacement age, cooling age, retrogression age, etc; based on data description and interpretation in publication
<table>
<thead>
<tr>
<th>Isotope System</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>U/Pb, Pb/Pb, U-Th-Pb age data</td>
<td></td>
</tr>
<tr>
<td>U/Pb, Pb/Pb, U-Th-Pb age</td>
<td>Reported age in Ma based on U/Pb, Pb/Pb or U-Th-Pb isotope system</td>
</tr>
<tr>
<td>U/Pb, Pb/Pb, U-Th-Pb 1s</td>
<td>Reported 1σ error in Ma based on U/Pb, Pb/Pb or U-Th-Pb isotope system</td>
</tr>
<tr>
<td>U/Pb, Pb/Pb, U-Th-Pb mswd</td>
<td>Mean square weighted deviation on isochron</td>
</tr>
<tr>
<td>Lu/Hf age data</td>
<td></td>
</tr>
<tr>
<td>Lu/Hf age</td>
<td>Reported age in Ma based on Lu/Hf isotope system</td>
</tr>
<tr>
<td>Lu/Hf age 1s</td>
<td>Reported 1σ error in Ma based on Lu/Hf isotope system</td>
</tr>
<tr>
<td>176Hf/177Hf</td>
<td>Initial 176Hf/177Hf ratio</td>
</tr>
<tr>
<td>176Hf/177Hf 1s</td>
<td>1σ error on initial 176Hf/177Hf ratio</td>
</tr>
<tr>
<td>Lu/Hf mswd</td>
<td>Mean square weighted deviation on isochron</td>
</tr>
<tr>
<td>Re/Os age data</td>
<td></td>
</tr>
<tr>
<td>187Os/188Os initial</td>
<td>Initial 187Os/188Os ratio</td>
</tr>
<tr>
<td>187Os/188Os initial 1s</td>
<td>1σ error on 187Os/188Os ratio</td>
</tr>
<tr>
<td>Re-Os age</td>
<td>Re-Os age in Ma</td>
</tr>
<tr>
<td>Re-Os error</td>
<td>1σ error on Re-Os age in Ma</td>
</tr>
<tr>
<td>Re-Os MSWD</td>
<td>Mean square weighted deviation on isochron</td>
</tr>
<tr>
<td>Rb/Sr age data</td>
<td></td>
</tr>
<tr>
<td>87Sr/86Sr0 (Rb/Sr)</td>
<td>Initial 87Sr/86Sr ratio</td>
</tr>
<tr>
<td>87Sr/86Sr0 1s (Rb/Sr)</td>
<td>1σ error on initial 87Sr/86Sr</td>
</tr>
<tr>
<td>MSWD Rb/Sr</td>
<td>Mean square weighted deviation on isochron</td>
</tr>
<tr>
<td>Isochron age, Rb/Sr</td>
<td></td>
</tr>
<tr>
<td>Rb/Sr age in Ma</td>
<td></td>
</tr>
<tr>
<td>Error 1s, Rb/Sr</td>
<td>1σ error on Rb/Sr age in Ma</td>
</tr>
<tr>
<td>Sm/Nd age data</td>
<td></td>
</tr>
<tr>
<td>Sm/Nd age</td>
<td>Reported Sm/Nd age in Ma</td>
</tr>
<tr>
<td>Sm/Nd 1s error</td>
<td>1σ error in Ma on Sm/Nd age</td>
</tr>
<tr>
<td>143Nd/144Nd</td>
<td>Initial 143Nd/144Nd ratio</td>
</tr>
</tbody>
</table>
$^{143}\text{Nd}/^{144}\text{Nd}$ is 1σ error on initial $^{143}\text{Nd}/^{144}\text{Nd}$ ratio
Sm/Nd MSWD
Mean square weighted deviation on isochron

K/Ar age data
^{40}Ar radiogenic (scc/g)
Standard cm3 of ^{40}Ar per gram of sample material
^{40}Ar radiogenic/^{40}Ar total (%)
Radiogenic $^{40}\text{Ar} / ^{40}\text{Ar}$ total ratio in %
K2O%
Weighted percent of K$_2$O in sample material
Apparent age
Reported apparent K/Ar age in Ma
error
1σ error on reported K/Ar age in Ma

$^{40}\text{Ar}/^{39}\text{Ar}$ age data
Age
Reported $^{40}\text{Ar}/^{39}\text{Ar}$ age in Ma
Error 1s
1σ error on reported $^{40}\text{Ar}/^{39}\text{Ar}$ age in Ma
$^{40}\text{Ar}^{39}\text{Ar}_\text{preferred_age_calculation_method}$
Specifies whether the reported $^{40}\text{Ar}/^{39}\text{Ar}$ age is a plateau age, weighted mean age or inverse isochron age
$^{40}\text{Ar}^{39}\text{Ar}_\text{age_from_other_calculation_method}$
Specifies type of alternative calculation method, in case one was reported
$^{40}\text{Ar}^{39}\text{Ar}_\text{age_error_1s}$
1σ error on $^{40}\text{Ar}/^{39}\text{Ar}$ age in Ma from alternative calculation method, in case one was reported
$\text{Percent}^{39}\text{Ar}_\text{spectrum_age}$
Percentage of cumulative ^{39}Ar included in the preferred age calculation
$^{40}\text{Ar}^{36}\text{Ar}_\text{inverse_isochron_intercept}$
$^{40}\text{Ar}^{36}\text{Ar}$ ratio for the intercept in the inverse isochron diagram
$^{40}\text{Ar}^{36}\text{Ar}_\text{inverse_isochron_intercept_1s_error}$
1σ error on the $^{40}\text{Ar}/^{36}\text{Ar}$ ratio for the intercept in the inverse isochron diagram
MSWD$_{\text{ArAr}}$
Mean square weighted deviation on inverse isochron

Fission track age data
$\rho D x 10^6/cm^2$
Track density in millions per square centimeter in the mica covering the dosimeter glass
ND
Number of tracks counted in the mica covering the dosimeter glass
$\rho S x 10^6/cm^2$
Spontaneous track density in millions per square centimeter in the etched sample
NS
Number of spontaneous tracks counted in the etched sample
$\rho I x 10^6/cm^2$
Induced track density in the mica covering the etched sample
Number of induced tracks counted in the mica covering the etched sample

Degree of variability in a probability distribution, in %

Chi-squared probability of the fission track sample age

Pooled fission track age in millions of years

1σ error on the pooled fission track age in millions of years

Central fission track age in millions of years

1σ error on the central fission track age in millions of years

Number of grains in which spontaneous tracks were counted

Mean track length of spontaneous fission tracks in microns

1σ error on the mean track length of spontaneous fission tracks in microns

Standard deviation of the track length distribution of spontaneous fission tracks

Number of tracks for which track length was measured

Diameter of etch pit measured parallel to the crystallographic c-axis

Standard deviation on the distribution of etch pit size measured parallel to the crystallographic c-axis

Interpretation of the reported age in the referenced paper, including comment (where applicable)

Details of the reference in which data were originally reported

Details of references that include citations papers not individually verified
3. GEOCHRONOLOGICAL DATABASE FOR CENOZOIC VOLCANIC & MAGMATIC EVENTS

This compilation includes all reported geochronological data on Cenozoic volcanic and magmatic events on the African plate and part of the adjacent Antarctic plate. Most of these data were obtained with the K/Ar method. Many of these datapoints are from the so-called volcanic swells (Burke et al. 2008a) on the African and Antarctic plates. When the locations of these volcanics are compared to the location of the so-called Plume Generation Zone (the 1% slow shear wave velocity boundary at the Core-Mantle Boundary, or Large Low Shear Velocity Provinces – LLSVP), it is apparent that there is a relationship between the two (Fig. 1). This relationship has previously been established for Large Igneous Provinces of the last 300 Ma (Burke et al. 2008b). Volcanic rocks related to opening of for example the Red Sea and the East African Rift Zone do not fit this pattern.

Figure 1. Volcanic rocks younger than 30 Ma on the African plate and part of the adjacent Antarctic plate. Red line representing the 1% slow shear wave velocity boundary at the Core-Mantle Boundary
To select Cenozoic volcanic and magmatic events from the MS Access database file the following query can be used in ARCGIS:

\[\text{Age_on_map} \leq 65 \ \text{AND} \ \text{Classification} = \text{'Emplacement age'} \]

To select alkaline rocks from this database (Woolley definition) the following query can be used:

\[\text{Age_on_map} \leq 65 \ \text{AND} \ \text{Classification} = \text{'Emplacement age'} \ \text{AND} \ \text{ARC_Woolley} = \text{'ARC'} \]

To select alkaline rocks from this database (Burke's narrow definition) the following query can be used:

\[\text{Age_on_map} \leq 65 \ \text{AND} \ \text{Classification} = \text{'Emplacement age'} \ \text{AND} \ \text{ARC_Burke_Ashwal} = \text{'ARC'} \]
4. GEOCHRONOLOGICAL DATABASE FOR SELECTED NORTHERN AFRICAN BASINS

Figure 2. Northern African basins selected for inclusion in the geochronology database
4.1 TAOUDENNI BASIN

Crystalline basement ages for the Taoudenni basin area mostly reflect 4 geological episodes. Archaean ages are found in the west, in Mauritania. Palaeoproterozoic Birimian ages are found all around the Taoudenni basin area, and ages indicating Eburnian rejuvenation at ~1.8 – 2.0 Ga are found everywhere where Birimian ages are found. Pan-African ages are found almost exclusively east of the Taoudenni basin area, in the Trans-Saharan belt.
Figure 5. Central Atlantic Magmatic Province (CAMP) ages in the Taoudenni basin area

CAMP ages (intrusive at ~198 – 200 Ma) are reported for the northwestern part of Mali, along the border with Algeria. Basaltic lavas and sills assumed to be of CAMP age are also present in the northwestern part of the Taoudenni basin area, but no actual age constraints have yet been found.

Late Hercynian metamorphic ages are found along the western boundary of the Taoudenni basin area, in the Northern and Southern Mauritanide orogen (Fig. 6 and 7). The available ages here appear to represent two populations (330-300 Ma and 280-260 Ma). However, the number of ages are too few to conclude that these reflect two separate geological events, rather than a single, protracted metamorphic episode.

No Cenozoic volcanic rocks are found in the Taoudenni basin area.
Figure 6. Late Hercynian metamorphic ages of the Mauritanides

Figure 7. Histogram of metamorphic ages of the Southern and Northern Mauritanides
4.2 Al Kufra, Murzuk, Illizi and Sirte Basins

Crystalline basement ages in the area encompassing the Al Kufra, Murzuk, Illizi and Sirte basins reflect the same Paleoproterozoic episodes found in the Taoudenni basin area (Fig. 8). In addition, a significant number of Late Proterozoic ages are found in the Ahaggar region, Tibesti area and the Bayuda desert (0.8 Ga – 1.1 Ga). Pan-African ages are reported towards the west and southwest of the Illizi and Murzuk basins, in the Trans-Saharan belt (Fig. 9).

Figure 8. Histogram of crystalline basement ages in the region encompassing the Al Kufra, Illizi, Sirte and Murzuk basins.

Figure 9. Sample locations for crystalline basement ages in the region encompassing the Al Kufra, Illizi, Sirte and Murzuk basins.
Post Pan-African ages in this region are mostly Cenozoic volcanic rocks. In addition, K-Ar ages from ring complexes and fault systems along the southeastern end of the Al Kufra basin are mostly Triassic, with some Jurassic ages nearby and some Permian ages further away (Fig. 10).

![Figure 10. Southeastern section of the Al Kufra basin (Sudan)](image)

Cenozoic volcanic rocks are found all around Al Kufra, Sirte, Illizi and Murzuk. The following ranges of ages have been reported (mostly K-Ar), see Fig. 10:

- **Garian**: 2.1 – 6.1 Ma
- **Jebel Soda**: 10.5 – 12.3 Ma
- **Al Haruj**: 3.4 -10.2 Ma
- **Ahaggar**: 24.4 – 44.0 Ma
- **Aïr**: 0.8 – 1.8 Ma
- **Tibesti**: 1.3 – 2.4 Ma
- **Uweinat**: 37.9 – 54.0 Ma
- **Darfur**: 0.6 – 35.8 Ma (and everything in between, generally increasing from NE-SW)
- **Laqia Arbain and Laqia**: 19.6 – 26.2 Ma
Figure 11. Cenozoic volcanics in the Al Kufra, Illizi, Sirte and Murzuk basin area.

The Cenozoic volcanic rocks (mostly 30 Ma and younger) found in Northern Africa are part of a much larger pattern of young volcanic rocks on the African plate, and even the Antarctic plate.
5. REFERENCES

Abdel-Monem, A.a., Fernandez, L.A. & Boone, G.M., K-Ar ages from the eastern Azores group (Santa Maria, Sao Miguel and the Formigas Islands, Lithos, V8, 247-254, 1975

Bellon, H. & Perthuisot, V., Ages radiometriques (K/Ar) de feldspaths potassiques et de micas neoformes dans le Trias de Tunisie septentrionale, Bull. Soc. Geol. France, t19, No5, 1179-1184, 1977

Bossiere, G. & Peucat, J.-J., Structural evidence and Rb/Sr, 39Ar-40Ar mica ages relationships for the existence of an Hercynian deep crustal shear zone in Grande Kabylie (Algeria) and its Alpine reworking, Tectonophysics, V121, 277-294, 1986

Bruguier, I., et al., Miocene incorporation of peridotite into the Hercynian basement of the Maghrebides (Edough massif, NE Algeria): Implications for the geodynamic evolution of the Western Mediterranean, Chemical Geology, V26, 172-184, 2009

Brunnschweiler, R.O., New K-Ar age determinations from the West African Shield in the Niger Republic, Geology, V2, 17-20, 1974

Burke, K. & Gunnell, Y., The African erosion surface: A continental-scale synthesis of geomorphology, tectonics, and environmental change over the past 180 million years, Geological Society of America Memoir 201, Boulder, Colorado, 2008b

Carpena, J., et al., Evidence of the contrasted fission-track clock behavior of the apatites from In Ouzzal carbonatites (northwest Hoggar): The low-temperature thermal history of an Archean basement, Geological Society of America Bulletin, V100, 1237-1243, 1988

Chernet, T., Hart, W.K., Aronson, J.L. & Walter, R.C., New age constraints on the timing of volcanism and tectonism in the northern Main Ethiopian Rift-southern Afar transition zone (Ethiopia), J. Volcanology and Geothermal Research, V80, 267-280, 1998

Clauer, N., Utilisation de la methode Rb-Sr pour la datation de niveaux sedimentaires du Precambrien superieur de l'Adrar mauritanien (Sahara occidental) et la mise en evidence de transformations precoces des mineraux argileux, GCA, V37, 2243-2255, 1973

Feraud, G., et al., New K-Ar ages, chemical analyses and magnetic data of rocks from the islands of Santa Maria (Azores), Porto Santo and Madeira (Madeira archipelago) and Gran Canaria (Canary Islands), Bull. Volc., V44, No3, 359-375, 1981

Ferkous, K. & Monie, P., Neoproterozoic shearing and auriferous hydrothermalism along the lithospheric N-S East In Ouzzal shear zone (Western Hoggar, Algeria, North Africa), Journal of African Earth Sciences, V35, 399-415, 2002

Ferrara, G. & Gravelle, M., Radiometric ages from western Ahaggar (Sahara) suggesting an eastern limit for the West African Craton, Earth and Planetary Science letters, V1, 319-324, 1966

Fiechtner, L., Friedrichsen, H. & Hammerschmidt, K., Geochemistry and geochronology of Early Mesozoic tholeiites from Central Morocco, Geologische Rundschau, V81, No1, 45-62, 1992

Geldmacher, J., Bogaard, P.v.d., Hoernle, K. & Schmincke, H.-U., The 40Ar/39Ar age dating of the Madeira Archipelago and hotspot track (eastern North Atlantic), Geochemistry, Geophysics, Geosystems, V1, No1, 2000

Geldmacher, J., Hoernle, K., Klugel, A., Bogaard, P. van den and Duggen, S., A geochemical transect across a heterogeneous mantle upwelling: Implications for the evolution of the Madeira hotspot in space and time, Lithos, V90, 131-144, 2006

George, R., Rogers, N. & Kelley, S., Earliest magmatism in Ethiopia: evidence for two mantle plumes in one flood basalt province, Geology, V26, 923-926, 1998

Hammor, D., Bosch, D., Caby, R. & Bruguier, O., A two-stage exhumation of the Variscan crust: U-Pb LA-ICP-MS and Rb-Sr ages from Greater Kabylie, Maghrebides, Terra Nova, V18, 299-307, 2006

Harris, C., Bell, J.D. & Atkins, F.B., Isotopic composition of lead and strontium in lavas and coarse-grained blocks from Ascension island, South Atlantic, Earth and Planetary Science Letters, V60, 79-85, 1982

Henry, B., et al., Repeated granitoid intrusions during the Neoproterozoic along the western boundary of the Saharan metacraton, Eastern Hoggar, Tuareg Shield, Algeria: An AMS and U-Pb zircon age study, Tectonophysics, V474, 417-434, 2009

Herrero-Bervera, E., Ubangoh, R., Aka, F.T. & Valet, J.-P., Paleomagnetic and paleosecular variation study of the Mt. Cameroon volcanics (0.0-0.25 Ma), Cameroon, West Africa, Physics of the Earth and Planetary Interiors, V147, 171-182, 2004

Hirdes, W., Davis, D.W., Lutdko, G. & Konan, G., Two generations of Birimian (Paleoproterozoic) volcanic belts in northeastern Cote d'Ivoire (West Africa): consequences for the 'Birimian controversy', Precambrian Research, V80, 173-191, 1996

Jung, S., Kröner, A. & Kröner, S., A ~700 Ma Sm-Nd garnet-whole rock age from the granulite facies Central Kaoko Zone (Namibia): Evidence for a cryptic high-grade polymetamorphic history?, Lithos, V97, 247-270, 2007

Kamgang, P., Chazot, G., Njonfang, E. & Tchoua, F., Geochemistry and geochronology of mafic rocks from Bamenda mountains (Cameroon): source composition and crystal contamination along the Cameroon Volcanic Line, C.R. Geoscience, V340, 850-857, 2008

Kamgang, P., Njonfang, E., Chazot, G. & Tchoua, F., Geochemistry and geochronology of the felsic lavas of the Bamenda Mountains (Cameroon Volcanic line), C.R. Geoscience, V339, 659-666, 2007

Kouamelan, A.N., Delor, C. & Peucat, J.-J., Geochronological evidence for reworking of Archean terrains during the Early Proterozoic (2.1 Ga) in the western Cote d'Ivoire (Man Rise-West African Craton), Precambrian Research, V86, 177-199,1997

Lancelot, J.R., Boulier, A.M., Maluski, H. & Ducrot, J., Deformation and related radiochronology in a Late Pan-African Mylonitic Shear Zone, Adrar des Iforas (Mali), Contributions to Mineralogy and Petrology, 1983, V82, 312 - 326

Lucassen et al., Nd, Pb, and Sr isotope composition of Late Mesozoic to Quaternary intra-plate magmatism in NE-Africa (Sudan, Egypt): high-µ, signatures from the mantle lithosphere, Contributions to Mineralogy and Petrology,, V156, No6, 765-784, 2008

McDougall, I. & Ollier, C.D., Potassium-argon ages from Tristan da Cunha, South Atlantic, Geological Magazine, V119, No1, 87-93, 1982

Miller, J.A. & Mudie, J.D., Potassium-argon age determinations on granite from the island of Mahe in the Seychelles archipelago, Nature, V192, 1174-1175, 1961

Montigny, R., Ngounouno, I. & Deruelle, B., K-Ar ages of magmatic rocks from the Garoua rift: their place in the frame of the Cameroun line, C.R. Geoscience, V336, 1463-1471, 2004

Plesner, S., Holm, P.M. & Wilson, J.R., 40Ar/39Ar geochronology of Santo Antao, Cape Verde Islands, Journal of Volcanology and Geothermal Research, V120, 103-121, 2002

Prestvik, T. & Winsnes, T.S., Geology of Bouvetøya, South Atlantic, Norsk Polarinstitutt Skrifter, V175, 41-69, 1981

Quidelleur, X., Holt, J.W., Salvany, T. & Bouquerel, H., New K-Ar ages from La Montagne massif, Reunion island (Indian ocean), supporting two geomagnetic events in the time period 2.2-2.0 Ma, Geophys. J. Int., V182, 699-710, 2010

Richards, J.P., et al., Pb isotope constraints on the age of sulfide ore deposition and U-Pb age of late uraninite veining at the Musoshi stratiform copper deposit, Central African Copper Belt, Zaire, Economic Geology, V83, 724-741, 1988

Richards, J.P., Krogh, T.E. & Spooner, E.T.C., Fluid inclusion characteristics and U-Pb rutile age of late hydrothermal alteration and veining at the Musoshi Stratiform copper deposit, Central African Copper Belt, Zaire, Economic Geology, V83, 118-139, 1988
Ries, A.C., Shackleton, R.M. & Dawoud, A.S., Geochronology, geochemistry and tectonics of the NE Bayuda desert, N Sudan: implications for the western margin of the late Proterozoic fold belt of NE Africa, Precambrian Research, V30, 43-62, 1985

Schneider, J., Melcher, F. & Brauns, M., Concordant ages for the giant Kipushi base metal deposit (DR Congo) from direct Rb-Sr and Re-Os dating of sulfides, Mineralium Deposita, V42, 791 - 797, 2007

Suayah, I.B. & Rogers, J.J.W., Geochemistry, chronology and petrogenesis of the Wadi Yebigue pluton, Central Tibisti Massif, Libya, Journal of African Earth Sciences, 1986, V5, No 4, 413-422

Sørensen, H., The Alkaline Rocks, John Wiley & Sons, 1974

Weis, D., et al., Trace of the Kerguelen mantle plume: evidence from seamounts between the Kerguelen archipelagoe and Heard Island, Indian ocean, Gcubed, V3, No6, 2002

Williams, F.M., Williams, M.A.J. & Aumento, F., Tensional fissures and crustal extension rates in the northern part of the Main Ethiopian Rift, Journal of African Earth Sciences, V38, 183-197, 2004

