

GEOLOGI FOR SAMFUNNET *GEOLOGY FOR SOCIETY*

Norges geologiske undersøkelse Postboks 6315 Sluppen 7491 TRONDHEIM Tlf. 73 90 40 00 Telefaks 73 92 16 20

RAPPORT

Rapport nr.: 2012.042		ISSN 0800-3	3416	Gradering: Åpen					
Tittel: Forurensningsbelast	ning i humuspr	øver fra østlig	ige og indre Finnmark: tungmetaller, radioaktive						
elementer, arsen, og PAH	16 og variasjone	2011.							
Forfatter:			Oppdi	agsgiver:					
Henning K. B. Jensen ¹ , Tor J	Erik Finne ¹ , Just	in Gwynn ² og	Frams	enteret, Flaggskip miljø	ogifter				
Louise Kiel Jensen ²	Star Carl Street Street								
Fylke:			Kommune:						
Finnmark			Sør-Varanger, Karasjok, Kautokeino						
Kartblad (M=1:250.000)			Kartbladnr. og -navn (M=1:50.000)						
			-						
Forekomstens navn og koordina	ater:		Sideta	ll: 43 Pris	: NOK 175				
			Kartbi	lag:					
Feltarbeid utført:	Rapportdato:		Prosje	ktnr.:	Ansvarlig: Belinda Hem				
August – september 2011	31.12.2012		34	3400	Belinda Flem				
Sammendrag:									

Prosjektet inngår i Framsenterets miljøgift flaggskip program under temaet human helse. Øst-Finnmark har flere utfordringer: Utslipp av metallene nikkel og kobber samt svoveldioksid fra smelteverket i Nikel og malmoppredningen i Zapoljarnyj nær den norske grensen, med økte nivåer i jord også i de norske tilgrensende

Nivåene for tungmetaller og PAH₁₆ i Sør-Varanger sammenlignes med nivåene for de samme stoffene i bakgrunnsområdene Karasjok og Kautokeino.

Humus

områder som resultat.

Nikkel og kobber har høye konsentrasjoner i humus (0 - 3 cm) i Pasvik og Jarfjord områdene. Både nikkel og kobber har økende medianverdier for de to områdene i perioden fra 1995 – 2011. Begge tungmetallene er tydelig påvirket av utslipp fra smelteverket i Nikel.

Høye konsentrasjoner av bly og kvikksølv på lokaliteter nær Kirkenes tyder på at det finnes kilder for disse tungmetallene lokalt i Kirkenes.

Generelt har der vært en reduksjon av cesium-137 i humus mellom 1986 og 2011 på grunn av radioaktivt henfall av isotopen over tid og en vertikal transport av cesium-137 nedover i jordkolonnen. Det var et godt samsvar mellom målt isotopforhold for plutonium isotoper og amercium-241 på alle humusprøvene og estimerte isotopforhold. De observerte nivåene av disse menneskeskapte radionuklider utgjør således ingen risiko for humanhelse.

¹ Norges Geologiske Undersøkelse

² Statens Strålevern, Framsenteret, Tromsø

Emneord: Humus	Forurensing	Tungmetaller
Arsen	Radionuklider	PAH ₁₆

INNHOLD

1. IN	INLEDNING	7
2 Ti	lførsel av metaller, arsen, PAH og radionuklider	
2.1	Tungmetall, arsen og PAH	
2.2	Radionuklider	
3 M	ETODER	
3.1	Feltarbeid og prøvepreparering	
3.2	Tungmetall, arsen og PAH ₁₆ analyser	
3.3	Radionuklid analyser	
4. RI	ESULTATER	
4.1	Humus	
4.2	Tungmetaller, arsen og PAH ₁₆	
4.3	Radionuklider	
5. O	ppsummering	
6. RI	EFERANSER	

side

FIGURER

- Figur 1 Lokalitetenes plasseringer 1995, 2000, 2005 og 2011.
- Figur 2 Avsetning med nedbør av kobber, nikkel og arsen i sommerhalvårene 1989 2010 og vinterhalvårene fra 1988/89 til 2010/11 og halvårsmiddelkonsentrasjonene av SO₂ i luft.
- Figur 3 Lokalitetene fra humusprøvetakingen 2011.
- Figur 4 Prøvetaking med "topsoiler".
- Figur 5 To sett med humusprøver fra lokalitet 2034, sør for Kautokeino.
- Figur 6 Prosent glødetap i 2011 humus prøvene.
- Figur 7 Prosent glødetap boksplott i humusprøver fra Pasvik, Jarfjord, Karasjok og Kautokeino 1995, 2000, 2005 og 2011.
- Figur 8 Arsen i 2011 humusprøver.
- Figur 9 Arsen boksplott. Humusprøver fra Pasvik, Jarfjord, Karasjok og Kautokeino 1995, 2000, 2005 og 2011.
- Figur 10 Bly i 2011 humusprøver.
- Figur 11 Bly boksplott. Humusprøver fra Pasvik, Jarfjord, Karasjok og Kautokeino 1995, 2000, 2005 og 2011.
- Figur 12 Kadmium i 2011 humusprøver.
- Figur 13 Kadmium boksplott. Humusprøver fra Pasvik, Jarfjord, Karasjok og Kautokeino 1995, 2000, 2005 og 2011.
- Figur 14 Kobber i 2011 humusprøver.
- Figur 15 Kobber boksplott. Humusprøver fra Pasvik, Jarfjord, Karasjok og Kautokeino 1995, 2000, 2005 og 2011.
- Figur 16 Kvikksølv i 2011 humusprøver.
- Figur 17 Kvikksølv boksplott. Humusprøver fra Pasvik, Jarfjord, Karasjok og Kautokeino 1995, 2000, 2005 og 2011.
- Figur 18 Nikkel i 2011 humusprøver.
- Figur 19 Nikkel boksplott. Humusprøver fra Pasvik, Jarfjord, Karasjok og Kautokeino 1995, 2000, 2005 og 2011.
- Figur 20 Sink i 2011 humusprøver.
- Figur 21 Sink boksplott. Humusprøver fra Pasvik, Jarfjord, Karasjok og Kautokeino 1995, 2000, 2005 og 2011.
- Figur 22 Svovel i 2011 humusprøvene.
- Figur 23 PAH₁₆ konsentrasjoner i 2011 humusprøvene (mg/kg).
- Figur 24 Innhold av cesium-137 (Bq/m^2) i 2011 humusprøver.
- Figur 25 Variasjon i innhold av cesium-137 (Bq/m^2) i individuelle humusprøver.
- Figur 26 Cesium-137 i øverste del av jordkolonner (Bq/m^2) fra prøvetaking i 1986.
- Figur 27 Innhold av kalium-40 (Bq/kg) i 2011 humusprøver.

TABELLER

- Tabell 1. Analyserte tungmetaller, organiske forbindelser og radioaktive elementer.
- Tabell 2. Lokalitetene med geografiske koordinater.
- Tabell 3. Oversikt over undersøkelser av tungmetaller, arsen, PAH₁₆, samt radioaktive stoffer.
- Tabell 4. Glødetap. Statistiske parametre og resultat av Mann Whitney test.
- Tabell 5. Arsen. Statistiske parametre og resultat av Mann Whitney test.
- Tabell 6. Bly. Statistiske parametre og resultat av Mann Whitney test.
- Tabell 7. Kadmium. Statistiske parametre og resultat av Mann Whitney test.
- Tabell 8. Kobber. Statistiske parametre og resultat av Mann Whitney test.
- Tabell 9. Kvikksølv. Statistiske parametre og resultat av Mann Whitney test.
- Tabell 10. Nikkel. Statistiske parametre og resultat av Mann Whitney test.
- Tabell 11. Sink. Statistiske parametre og resultat av Mann Whitney test.
- Tabell 12. Svovel i humus statistiske data.
- Tabell 13. PAH₁₆ i humus statistiske data.
- Tabell 14. Cesium-137. Statistiske parametre og resultat av Mann Whitney test.
- Tabell 15. Forekomst av plutoniumisotoper og americium-241 (Bq/m2) i 2011 humusprøver.
- Tabell 16. Isotopforhold for radionuklider i 2011 humusprøver.
- Tabell 17. Kalium-40. Statistiske parametre og resultat av Mann Whitney test.

VEDLEGG

Vedlegg 1. Prøveliste og analyseresultater for prøver fra 42 lokaliteter og standarder, NGU Lab analyserapport nr. 2012.072. Glødetap, Leco (total S, total C og organisk C), HNO₃ekstrahert og analysert med AAS (Hg, As, Cd, Pb, Se, Sn) og ICP-AES (30 elementer). PAH₁₆ data. Analyserapport fra Alcontrol AB.

Vedlegg 2. Resultatene av ekstra innvekt fra 10 av 2011-humusprøvene er vist som XYdiagrammer i Vedlegg 2 sammen med resultatene av 2005-analysene og 2011-analysene av 5 prøver fra 2005.

Vedlegg 3. Radionuklide analyseresultater (Cesium-137, plutoniumisotoper, americium-241 og kalium-40).

1. INNLEDNING

Det er tatt humusprøver fra til sammen 42 lokaliteter i Øst-Finnmark (Sør-Varanger kommune) og på Finnmarksvidda (Karasjok og Kautokeino kommuner) i august – september 2011. Det er tatt prøver i disse områdene tidligere, og Figur 1 viser lokalitetene for prøvetaking i 1995, 2000, 2005 og 2011. Formålet har vært å vurdere status for en rekke metaller, arsen, PAH₁₆ og radionuklider i disse områdene over lengre tid. Første rapportering av tidsserien inkluderte prøvetakingene 1995, 2000 og 2005 (Jensen og Finne, 2006).

Figur 1. Lokalitetenes plasseringer 1995, 2000, 2005 og 2011 vist med forskjellige symboler i kartet. Bakgrunnskartet viser berggrunn i indre og østlige Finnmark.

Element	Naturlige kilder	Antropogene skapte kilder				
Arsen (As)	Grønnsteinsberggrunn, som en del av sulfidene hvor Cu og Ni også forekommer.	Impregnert trevirke (CCA)				
Bly (Pb)	Ingen kjente økonomisk interessante forekomster, og lave nivåer i bergrunn og løsmasse	Blyholdig bensin Blyholdig maling, ammunisjon.				
Kadmium (Cd)	Zn – Cd forekomster, Zn-Cd-Pb- Ba-F forekomster (Mississippi avsetninger).	Avfallsforbrenning, kull forbrenning smelteverk (Zn og Cu), gjødsel, jern- og stålverk, trafikk (dekk slitasje), spillvann.				
Kobber (Cu)	Grønnsteinsberggrunn. Biprodukt fra Ni-dagbruddet i Zapoljarny	Utslipp fra Ni – Cu smelteverk i Nikel Impregnert trevirke (CCA)				
Krom (Cr)	Grønnsteinsberggrunn	Impregnert trevirke (CCA)				
Kvikksølv (Hg)	Utslipp fra vulkanisme, kull,	Kullfyring, kremeringsanlegg				
Nikkel (Ni)	Grønnsteinsberggrunn. Utvinnes i dagbrudd i Zapoljarny.	Utslipp fra Ni - Cu smelteverk, inngår i metall legeringer				
Sink (Zn)	Sulfid forekomster, kopperholdig skifer, vulkanske avsetninger, Zn- Cd-Pb-Ba-F forekomster (Mississippi avsetninger)	Sink smelteverk, trafikk (dekk slitasje), spillvann.				
PAH ₁₆	Skogbranner, erosjon og forvitring av hydrokarbonholdige bergarter.	Vedfyring, eksos fra trafikk (forbrenningsmotorer), forbrenning av fossile energikilder (olje, kull, koks) tjæreprodukter i diverse bruksmaterialer, branner.				
Cesium-137	Ingen kjente naturlige kilder	Globalt nedfall fra atmosfæriske prøvesprengninger av atomvåpen på 1950- og 1960-tallet og nedfall fra Tsjernobyl- ulykken i 1986				
Plutoniumisotoper	Ingen kjente naturlige kilder	Globalt nedfall fra atmosfæriske prøvesprengninger av atomvåpen på 1950- og 1960-tallet, globalt nedfall fra styrten av SNAP-9A satellitten i 1964 og nedfall fra Tsjernobyl-ulykken i 1986				
Americium-241	Ingen kjente naturlige kilder	Globalt nedfall fra atmosfæriske prøvesprengninger av atomvåpen på 1950- og 1960-tallet og nedfall fra Tsjernobyl- ulykken i 1986				
Kalium-40	Naturlig forekommende, varierer med mineralogi og mengden organisk materiale					

Tabell 1. Analyserte tungmetaller, organiske forbindelser og radionuklider.

2 Tilførsel av metaller, arsen, PAH og radionuklider

2.1 Tungmetall, arsen og PAH

Avsetning av tungmetaller med nedbør i store deler av Sør-Varanger omfatter kobber, nikkel og arsen. SO₂ er målt i luft i Svanvik i Pasvik siden 1989. Avsetningene for sommer og vinterhalvårene er rapportert av Berglen m. fl. (2011). Figur 2 viser avsetning fra luft på NILUs stasjon i Svanvik i Pasvik. Avsetningen av kobber, nikkel og arsen er viktig informasjon når nivåene av de samme metallene i humus registreres ca. hvert 5. år i perioden 1995 – 2011.

Humussjiktet får bidrag av metaller fra luft gjennom nedbør og tørravsetning, og fra berggrunnen (hovedsakelig) gjennom plantenes næringsopptak fra løsmassene og senere omvandlig av dødt

plantemateriale til humus. Den dominerende type jordbunnsprofil i området, podsoljord, består av et organisk lag (humussjiktet) over det mineralske, som på grunn av naturlige forvitringsprosesser og drenering av nedbør gjennom profilet er endret fra det opprinnelige mineralske materialet i varierende tykkelse ovenfra. Den uendrede delen av jordbunnsprofilet kalles C-horisonten og kan ha øvre grense alt fra få cm til flere titalls cm under humussjiktet, avhengig av hvor rask jordbunnsutviklingen har vært siden istiden for ca. 9000 år siden. Derfor er det i tabellene under også gitt konsentrasjoner for de analyserte tungmetaller for C-horisont fra de undersøkte områdene Pasvik, Karpdalen/Jarfjord, Karasjok og Kautokeino for å gi et inntrykk av hva den geologiske bakgrunn kan bidra med. En del av tungmetallene og arsen i humussjiktet må antas å stamme fra naturlig forekommende jordbunnsdannende minerogent materiale.

Figur 2. Avsetning med nedbør av kobber, nikkel og arsen (mg/m²/år) i sommerhalvårene fra 1989 til 2010 og i vinterhalvårene fra 1988/89 til 2010/11. Halvårsmiddel konsentrasjonene av SO² i luft er også vist (µg/m³) (Berglen m. fl., 2011).

2.2 Radionuklider

Det terrestre miljøet i Finnmark har blitt tilført menneskeskapte radionuklider via globalt nedfall fra atmosfæriske prøvesprengninger av atomvåpen på 1950- og 1960-tallet, globalt nedfall fra styrten av SNAP-9A satellitten i 1964 og nedfall fra Tsjernobyl-ulykken i 1986. Etter Tsjernobyl-ulykken tok Statens Institutt for Strålehygiene jordprøver i hver kommune i Norge for å dokumentere den totale deponeringen av den gammaemitterende radionukliden cesium-137 (Cs-137: halveringstid 30 år). I hver kommune ble det samlet inn fire prøver med 4 cm dybde fra forskjellige steder i kommunen. Den totale deponeringen av Cs-137 i jord fra Sør-Varanger, Karasjok og Kautokeino var i mai 1986 på 1,97, 1,91 og 0,66 kBq/m², der ¹³⁷Cs fra Tsjernobyl bidrar med henholdsvis 46 %, 40 % og 19 % (Backe m. fl., 1986).

For å ytterligere dokumentere forekomsten av Cs-137, ble det også gjennomført humusprøvetaking i 1995 og 2005 over hele Norge av Norges teknisk-naturvitenskapelige universitet (NTNU) og Statens strålevern (NRPA). Det ble tatt humusprøver av de øvre tre cm fra de samme åtte områdene i Sør-Varanger og de fire områdene i Karasjok og Kautokeino som i 1986 (Steinnes & Gjelsvik, 2008).

Nedfall av alfaemitterende plutonium isotoper fra det globale nedfallet (fra atomprøvesprengningene og SNAP-9A satellitten) mellom 60 °N og 70 °N er estimert basert på jordprøver samlet inn i 1970 og 1971 (Hardy m. fl., 1973). Korrigert for radioaktivt henfall, anslås deponering av plutonium-239,240 (Pu-239: halveringstid 24110 år; Pu-240: halveringstid 6563 år) å være 59,2 ± 37 Bq/m² og 1,73 ±0,99 Bq/m² for plutonium-238 (²³⁸Pu: halveringstid 88 år). Isotopforholdet Pu-238/Pu-239,240, basert på de ovennevnte estimater, vil være 0,029. Alfaemitteren americium-241 (Am-241: halveringstid 432 år) kommer fra radioaktivt henfall av plutonium-241 (Pu-241: halveringstid 14 år) fra globalt nedfall fra atmosfæriske prøvesprengninger av atomvåpen på 1950- og 1960-tallet og nedfall fra Tsjernobyl-ulykken i 1986. Basert på anslagene fra Hardy m. fl. (1973) og et isotopforhold på 15 for Pu-241/Pu-239,240 (Hirose m. fl., 2001), er den estimerte forekomsten av Am-241 i 2011 på 24 Bq/m² mellom 60 °N og 70 °N, med et isotopforhold for Am-241/Pu-239,240 på 0,41. Disse estimatene er beheftet med store usikkerheter.

I tillegg til menneskeskapte radionuklider, finnes det også naturlige radionuklider i miljøet og i alle levende organismer. Den naturlige gammaemitterende radionukliden kalium-40 (K-40: halveringstid 1,25 milliarder år) finnes vanligvis i jorda, og mengden vil variere med mineralogi og mengden organisk materiale. Vanlig aktivitetskonsentrasjon for K-40 i jordsmonnet i Norge er på mellom 300 og 1000 Bq/kg (UNSCEAR, 2008).

3 METODER

3.1 Feltarbeid og prøvepreparering

Feltarbeidet ble gjennomført i august – september 2011 med prøvetaking på i alt 42 lokaliteter i kommunene Sør-Varanger, Karasjok og Kautokeino (Figur 3). Det ble tatt humusprøver med en prøvetaker, "topsoiler", som tar en jordprøve med 10 cm diameter (Figur 4). Figur 5 viser et eksempel på de 5 underprøvene fra en enkelt lokalitet. Tabell 2 gir oversikten over lokalitetene med dato for prøvetaking, geografiske koordinater og UTM-sone.

Figur 3. Lokalitetene fra humusprøvetakingen i 2011. 1: Pasvik: lokalitetene 2001 – 2005, 2: Karpdal/Jarfjord: 2006 – 2010, 3: Karasjok: 2014 – 2031 og 2042, 4: Kautokeino: 2032 – 2041. 5: Kirkenes: 2011 – 2013. Lokalitetene i Kirkenes inngår ikke tidsserien for humusprøver 1995 – 2011. Lokalitetene 2009-2010 inngår heller ikke i tidsserien, da tilsvarende lokaliteter ikke ble prøvetatt i 2000, og humuskjemien her avviker klart fra naboprøvene i 2.

		Øst	Nord					
	Felt	desimal-	desimal-	UTM-				
Lokalitet	Dato	grad	grad	sone	m Øst	m Nord	moh	Lab_ID
2001	28.08.11	29,46250	69,36332	35	596836	7696822	83	68651
2002	28.08.11	29,66034	69,43932	35	604243	7705616	89	68652
2003	28.08.11	29,72556	69,46635	35	606663	7708740	63	68653
2004	28.08.11	29,79345	69,47836	35	609258	7710197	76	68654
2005	28.08.11	30,10143	69,52843	36	386898	7715967	64	68656
2006	29.08.11	30,29463	69,65799	36	395072	7730057	14	68657
2007	29.08.11	30,51008	69,65095	36	403392	7728917	111	68658
2008	29.08.11	30,57935	69,73069	36	406430	7737695	127	68659
2009	29.08.11	30,78314	69,70355	36	414195	7734371	190	68661
2010	29.08.11	30,90542	69,69587	36	418897	7733349	93	68662
2011	29.08.11	30,04352	69,71467	36	385645	7736822	72	68664
2012	29.08.11	30,04617	69,68619	36	385593	7733645	116	68665
2013	29.08.11	29,97159	69,63558	35	615368	7728040	102	68667
2014	05.09.11	25,34156	69,58013	35	435430	7719927	288	68668
2015	05.09.11	25,43783	69,53641	35	439053	7714954	0,1	68669
2016	05.09.11	25,51634	69,49004	35	441990	7709709	206	68670
2017	05.09.11	25,83937	69,49109	35	454621	7709553	148	68672
2018	05.09.11	25,91102	69,57410	35	457587	7718757	0,1	68673
2019	05.09.11	26,01575	69,72660	35	461939	7735691	149	68674
2020	06.09.11	25,65215	68,93477	35	445938	7647683	219	68675
2021	06.09.11	25,69520	68,96970	35	447747	7651539	208	68677
2022	06.09.11	25,75386	69,02316	35	450217	7657450	195	68678
2023	06.09.11	25,71809	69,10690	35	448983	7666815	188	68679
2024	06.09.11	25,70763	69,17332	35	448723	7674229	196	68680
2025	06.09.11	25,73207	69,29755	35	449979	7688059	152	68682
2026	06.09.11	25,79606	69,35962	35	452640	7694928	167	68683
2027	06.09.11	25,72534	69,42975	35	450021	7702803	196	68684
2028	06.09.11	25,59243	69,44764	35	444856	7704912	161	68685
2029	06.09.11	25,08667	69,34320	35	424683	7693808	176	68687
2030	06.09.11	25,12921	69,39799	35	426544	7699864	182	68688
2031	06.09.11	25,41955	69,44549	35	438078	7704838	161	68689
2032	07.09.11	23,19020	68,93624	34	587833	7648820	358	68690
2033	07.09.11	23,32068	68,75126	34	593843	7628399	374	68691
2034	07.09.11	23,18838	68,81028	34	588261	7634779	362	68692
2035	07.09.11	23,33348	68,79005	34	594196	7632740	389	68693
2036	07.09.11	22,90251	68,92592	34	576335	7647285	320	68694
2037	07.09.11	22,93030	68,94859	34	577370	7649846	320	68695
2038	07.09.11	23,03767	68,98586	34	581535	7654139	315	68696
2039	08.09.11	23,76915	69,46201	34	608390	7708334	421	68697
2040	08.09.11	23,54385	69,59209	34	598973	7722445	411	68698
2041	08.09.11	23,66300	69,45562	34	604269	7707437	343	68699
2042	08.09.11	24,74207	69,42170	35	411445	7703019	216	68700

Tabell 2. Lokalitetene med geografiske koordinater.

Det er gjennomført prøvetaking tidligere av både NRPA og NGU i østlige og indre del av Finnmark. Kartet i figur 1 viser prøvetakingslokaliteter til både NGU og NRPA. Tabell 3 viser når det ble tatt prøver og hva det ble analysert for. Resultatene fra disse undersøkelsene inngår i denne rapporten.

Årstall	NGU analyser	NRPA analyser
1995	Tungmetaller, arsen, PAH ₁₆	Cs-137, K-40
2000	Tungmetaller, arsen, PAH ₁₆	Cs-137, K-40
2005	Tungmetaller, arsen, PAH ₁₆ ,	Cs-137, K-40
2011	Tungmetaller, arsen, PAH ₁₆ ,	Cs-137, K-40 Pu-238, Pu-239,40 og Am-
		241 på 9 lokaliteter

Tabell 3.	Oversikt over	undersøkelser a	v tungmetaller, arsei	n og PAH ₁₆	. samt radionuklider.
	0.010110.0101			10	,

Det ble tatt parallelle prøver til NRPA sine analyser og til NGU sine analyser fra hver lokalitet. NRPA sine 5 underprøver fra hver lokalitet ble emballert hver for seg i "lynlåslukkede" PE poser, merke "Grippie", slik at det kunne gjøres analyser på disse for utvalgte lokaliteter. De radioaktive elementene blir omhandlet i avsnitt 4.3.

3.2 Tungmetall, arsen og PAH₁₆ analyser

NGU-prøvene ble blandet av 5 underprøver ute i felt og emballert i Rilsan® poser eller i aluminiumfolie. Opparbeiding i laboratoriet omfattet fjerning av gjenværende røtter og andre større vegetasjonsrester før deling av prøver for forsendelse av ca. 130g fuktig prøve til PAH₁₆ analyse ved Alcontrol AB i Sverige og til lufttørking av resterende ca. 350g prøve ved <40 °C på NGU. Fra tørt prøvemateriale ble det analysert for tungmetaller og arsen, glødetap, total svovel og karbon, pH og ledningsevne etter vannoppslemming ved NGU-Lab.

3.3 Radionuklid analyser

Alle humusprøvene som var mottatt fra NGU var frosset ned inntil de ble analysert. Alle humusprøvene ble tørket ved 105 °C til konstant vekt, før hele prøven ble siktet gjennom en 2 mm sil slik at store stener og planterøtter ble fjernet.

Alle prøvene ble deretter homogenisert i en stålblender og preparert i egnet geometri. I noen tilfeller ble individuelle humusprøver fra hvert prøvetakingssted analysert separat før de ble slått sammen og analysert igjen. I alle andre tilfeller ble de fem humusprøvene fra hvert prøvetakingssted slått sammen før de ble tørket og behandlet som én prøve.

Gammaspektroskopi

Alle prøvene ble talt på et elektrisk kjølt høyoppløselig gammaspektometer (HPGe). Telletiden var mellom 24 og 48 timer, og cesium-137 (Cs-137) ble kvantifisert utfra den karakteristiske gammalinjen på 661 kiloelektronvolt (keV) og kalium-40 (K-40) utfra gammalinjen på 1460 keV. Uttrykt feilmargin (ved 95% konfidensnivå) inkluderer akkumulerte usikkerheter for radiometriske analyser.

Detektorene var kalibrert med internasjonale sporbare standarder og de blir regelmessig kontrollert gjennom deltakelse i internasjonale sammenliknende laboratorietester. Alle resultater er rapportert i tørrvekt og korrigert for henfall tilbake til prøvetakingsdato

Alfaspektroskopi

•

Pu-238, Pu-239,240 og Am-241 ble analysert i 9 utvalgte humusprøver basert på metoden til Chen m. fl. (2001). 10 g av hver prøve ble forasket og oppløst i syre før rensing ved hjelp av ionebytting og løsemiddelekstraksjon. Alle prøvene ble elektro-deponerte og talt på silisium PIPS alfadetektorer i en uke. Kjemisk utbytte ble bestemt ved bruk av Pu-242 og Am-243 som tracere.

Figur 4. Prøvetaking med "topsoiler". Humussjiktet er det mørke sjiktet rett under vegetasjonen. Rett under humussjiktet ses et lyst utvaskningssjikt (E horisont) etterfulgt av et utfellingssjikt (B horisont). Til venstre på topsoileren ses centimeter skala.

Figur 5. To sett med 5 humus underprøver fra lokalitet 2034, sør for Kautokeino. Det ene settet med 5 underprøver er til Statens Strålevern, og det andre settet med 5 underprøver er til NGU sine analyser.

Med et lite antall lokaliteter som i denne undersøkelsen vil det relativt sett være svært kostnadsdrivende å utføre kvalitetskontroll ved å inkludere innsamling av et tilstrekkelig antall feltdubletter for å kunne oppnå robuste estimat av presisjon for hele prosessen fra prøvetaking, gjennom preparering og til analyse. Under liknende klimatiske og vegetasjonsmessige forhold er det tidligere gjort en studie (Bjerke m. fl., 2006) som kan indikere presisjonen som må kunne antas å være gyldig også for denne undersøkelsen. På innvektnivå ble det på NGU tatt ut duplikat innvekter fra ti prøver for å gi mulighet til å vurdere homogenitet i prøvematerialet. Denne vurderingen ble gjort med enkle xy-plott av ordinær vs. duplikat innvekt, supplert med regresjonslikning og beregnet r². Kryssplottene er presentert i Vedlegg 2. For å kunne kontrollere nivå på sporelementanalysene i denne analyseserien sammenliknet med den fra 2005, der materiale fra 1995, 2000 og 2005 ble analysert, ble en standard veid inn tre ganger og analysert, og fem av prøvene innsamlet og analysert i 2005 ble også veid inn og analysert 2011.

Resultatene for standarden H3 (Steinnes, 1997) og de fem gjenanalyserte prøvene ble benyttet for å verifisere hvorvidt analyseserien for 2011 lå på samme nivå som i 2005.

Resultatene fra analysene av standard fra 2005 og 2011 er vist i boksplot diagrammene for hvert element i kapittel 5 og kapittel 6, for å vise stabilitet for enkeltanalysene og nivå mellom analyseseriene i henholdsvis 2005 og 2011. Disse er merket med STD05 og STD11 og presentert henholdsvis til ytterst til venstre og høyre i boksplott diagrammene, se figur 8 (As) som eksempel.

4. **RESULTATER**

Resultatene av ekstra innvekt fra 10 av 2011-humusprøvene er vist som XY-diagrammer i Vedlegg 2 sammen med resultatene av 2005-analysene og 2011-analysene av 5 prøver fra 2005.

I det etterfølgende vises nivåene i 2011 for de enkelte elementene i kart sammen med boksplott for ulike områder og ulike årstall. I medfølgende tabell er det presentert verdier for antall, minimum, 25 prosentil, median, 75 prosentil, maksimum og aritmetisk gjennomsnitt, samt resultat av Mann-Whitney U-test. Mann-Whitney U-testen forutsetter ikke at data som inngår i testen er normalfordelte, og er den best egnede metode for å vurdere om én serie målinger på en parameter er forskjellig fra en annen serie (Statsoft 2006). Geografiske forskjeller kan være med på å identifisere mulige kilder for de enkelte elementene. Det vil også være mulig å vurdere spredningsmekanismer og omfang, mens tidstrender kan gi informasjon om endring i tilførsel og om omsetningshastigheter. I tabellene er signifikante forskjeller mellom analyseresultater fra de ulike årene for prøvetaking markert med røde, fete typer for verdiene for Z og p (konfidensnivå p <0,050).

4.1 Humus

4.1.1 Glødetap (LOI)

Glødetap er et uttrykk for andelen organisk materiale i humusprøvene (Figur 6). Høyt glødetap (> 90 %) opptrer primært i kystnære lokaliteter i Jarfjordområdet (forholdsvis nedbørrike områder), og enkelte lokaliteter i både Karasjok og Kautokeino (på steder med høyere markfuktighet pga topografi). Lokaliteter med lave glødetap er primært i nedbørfattige områder i indre Finnmark i Kautokeino og Karasjok. Statistiske data inkl. minimum, medianverdi og maksimum for de enkelte områdene er presentert i tabell 4.

Figur 6. Prosent glødetap i 2011 humus prøvene.

% LOI	KAU 05	KAU 11	KAR 95	KAR 05	KAR 11	JAR 95	JAR 00	JAR 05	JAR 11	PAS 95	PAS 00	PAS 05	PAS 11
Ν	11	10	15	21	20	3	3	3	3	6	8	5	5
MIN	65,9	47,843	73,3	58,4	34,144	76	68,542	90,4	87,28	88,3	85	80,8	57,864
25%il	74	68,427	83,5	76,7	68,453	76	68,542	90,4	87,28	91,8	90,612	90,6	80,657
MEDIAN	80,5	77,541	88,8	87,5	77,559	94	78,96	93	91,04	93,9	92,885	91,1	82,049
75%il	86,9	83,937	93,1	90,4	87,441	94,4	92,289	93,8	94,72	94,7	94,501	93,1	92,298
MAX	98,6	98,603	95,5	93,4	94,87	94,4	92,289	93,8	94,72	94,9	97,599	93,8	93,283
SNITT	81,636	74,763	86,547	82,086	75,472	88,133	79,93	92,4	91,01	92,917	92,324	89,88	81,23
C-hor		-		-				-		-			
Mann-Whit	tney U-test												
1995 Z				1,01075	2,60000		1,09109	0,65465	-1,09109		0,51640	1,55188	2,00832
Р				0,312135	0,009323		0,275234	0,512691	0,275234		0,605577	0,120692	0,044611
2000 Z								-1,52753	-1,52753			0,73193	1,75662
Р								0,126631	0,126631			0,464215	0,078984
2005 Z		0,70418			1,53884				-1,09109				0,94002
р		0,481322			0,123844				0,275234				0,347208

Tabell 4. Glødetap. Statistiske parametre og resultat av Mann-Whitney U-test.

Boxplottet i figur 7 viser glødetap for de 4 områdene Kautokeino, Karasjok, Jarfjord og Pasvik. Glødetap i 2011 er lavere enn tidligere år for alle områdene med unntak av Jarfjord. I Karasjok og Pasvik er glødetapet signifikant forskjellig fra resultatene i 1995. Det tyder på en redusert andel humus i det organiske sjiktet i Pasvik i perioden 1995 – 2011.

Figur 7. Prosent glødetap boksplott. Humusprøver fra Pasvik, Jarfjord, Karasjok og Kautokeino1995, 2000, 2005 og 2011.

4.2 Tungmetaller, arsen og PAH₁₆

4.2.1 <u>Arsen</u>

Arsen er et av flere elementer som er registrert som utslipp fra smelteverket i Nikel (Berglen m. fl., 2011). Kartet for arsen i humus 2011 (Figur 8) viser nivåer som i grove trekk gjenspeiler verdiene for As i C-horisonten; nemlig klart lavest i grønnsteinsbeltene i Kautokeino og Karasjok, med unntak av de to nordligste (fuktigste) lokalitetene i Karasjok, og noe høyere i Sør-Varanger, der man kan ane innflytelse av nedfall fra smelteverket i Nikel.

Figur 8. Arsen i 2011 humusprøver.

Tabell 6 viser minimum, 25 persentil, medianverdi, 75 persentil og maksimumverdier for de 4 områdene og de årene humusprøver er blitt prøvetatt.

		· · · ·	/		1	c	,			•			
ppm As	KAU 05	KAU 11	KAR 95	KAR 05	KAR 11	JAR 95	JAR 00	JAR 05	JAR 11	PAS 95	PAS 00	PAS 05	PAS 11
N	11	10	15	21	20	3	3	3	3	6	8	5	5
MIN	0,5	0,5	0,5	0,5	0,5	1,8	0,5	1,9	2,38	1,4	1,7	1,9	2,32
25%il	0,5	0,5	0,5	0,5	0,5	1,8	0,5	1,9	2,38	2,3	1,8	2	2,35
MEDIAN	0,5	0,5	1,2	0,5	0,5	2,7	2,5	2,2	3,14	3,3	2,05	2,4	2,85
75%il	0,5	0,5	1,6	0,5	0,5	2,9	4	2,3	3,27	4,4	2,55	3,2	2,95
MAX	2,3	1,1	2	1,5	3,58	2,9	4	2,3	3,27	11	5,7	3,3	5,36
SNITT	0,718	0,56	1,207	0,61	0,84	2,467	2,333	2,133	2,93	4,283	2,525	2,56	3,166
C-hor	0,	56		1,0				1,4		2,8			
Mann-Whi	itney U-test	:											
1995 Z				3,16061	2,60000		0,21822	0,65465	-1,96396		1,29099	0,91287	0,36515
Р				0,001575	0,009323		0,827259	0,512691	0,049535		0,196707	0,361311	0,715001
2000 Z								0,65465	-0,65465			-0,87831	-1,61024
Р								0,512691	0,512691			0,379776	0,107347
2005 Z		0,35209			-0,13041				-1,96396				-0,52223
р		0,724771			0,896242				0,049535				0,601509

Figur 9 viser boksplottet for de 4 områdene Kautokeino, Karasjok, Jarfjord og Pasvik. Analysene av standardprøve i 2005 og 2011 viser at en av de tre analysene i 2005 var klart høyere enn de to andre, men dette ansees ikke å ha hatt betydning for sammenlikning av resultatene fra Kautokeino eller Karasjok. Resultatene i Jarfjord 2011 har god samling om en medianverdi som ligger klart høyere enn andre år, slik at det er signifikant forskjell mellom tallene både fra 1995- og 2005-prøvene og 2011.

Figur 9. Arsen boksplott. Humusprøver fra Pasvik, Jarfjord, Karasjok og Kautokeino1995, 2000, 2005 og 2011.

4.2.2. <u>Bly</u>

Kartet for Pb i 2011-prøvene (Figur 10) viser at det i hovedtrekk er liten variasjon i blyverdiene med unntak av to lokaliteter i Sør-Varanger, tatt i nærheten av Kirkenes. For de fire delområdene er forholdet mellom blykonsentrasjon i humus (median) og C-horisont (gjennomsnitt) i størrelsesorden 3 til 5 (Tabell 6).

Figur 10. Bly i 2011 humusprøvene.

Tabell 6 viser minimum, 25 persentil, medianverdi, 75 persentil og maksimumverdier for de 4 områdene og de årene humusprøver er blitt prøvetatt.

ppm Pb	KAU 05	KAU 11	KAR 95	KAR 05	KAR 11	JAR 95	JAR 00	JAR 05	JAR 11	PAS 95	PAS 00	PAS 05	PAS 11
Ν	11	10	15	21	20	3	3	3	3	6	8	5	5
MIN	7,8	9	12,9	5,9	6,1	14,6	14,3	11	17	11,9	9,7	11,3	11,4
25%il	9,9	11,4	14,6	10,5	9,25	14,6	14,3	11	17	12,1	10,95	14,7	15,6
MEDIAN	13,4	14,8	16,2	12,2	12,6	15,6	25,2	14,7	23,5	13,35	12,8	14,9	16,6
75%il	14,3	16,4	18,3	12,9	15,7	17,3	26,9	18,7	105	21,4	15,45	17,6	18,4
MAX	17,6	19,2	22,9	19,6	19,7	17,3	26,9	18,7	105	180	16,7	28,5	21,1
SNITT	12,555	14,03	16,94	11,767	12,7	15,833	22,133	14,8	48,5	42,017	13,1	17,4	16,62
C-hor	2	,9		3,9				8,1		5,9			
Mann-Whi	tney U-test												
1995 Z				4,02697	2,95000		-0,65465	0,21822	-0,65465		0,96825	-0,36515	-0,18257
Р				0,000057	0,003178		0,512691	0,827259	0,512691		0,332922	0,715001	0,855132
2000 Z								1,09109	0,65465			-1,31747	-1,82981
Р								0,275234	0,512691			0,187684	0,067279
2005 Z		-1,19710			-0,82158				-1,09109				-0,52223
р		0,231267			0,411314				0,275234				0,601509

Tabell 6. Bly. Statistiske parametre og resultat av Mann-Whitney U-test.

Boksplottene i Figur 11 viser svært stabile forhold for bly langs tidsaksen i alle områder, med unntak av i Karasjok, der en signifikant nedgang ble målt mellom 1995 og 2005. Det lavere nivået var opprettholdt i 2011-resultatene. Hovedtrekket for blykonsentrasjonene innen hvert av områdene er at det er liten variasjon, med unntak av Jarfjord/Karpdalområdet. Dette området har bare 3 lokaliteter, og har i tillegg en variasjon i vegetasjon og klima som kan gi stor variasjon i lokale betingelser for humuskvalitet.

Figur 11. Bly boksplott. Humusprøver fra Pasvik, Jarfjord, Karasjok og Kautokeino1995, 2000, 2005 og 2011.

4.2.3. <u>Kadmium</u>

Kadmiumkartet i Figur 12 viser at det er klart lavest verdier i Kautokeinoområdet, etterfulgt av Karasjok, der de fuktigste lokalitetene igjen viser svakt høyere konsentrasjoner enn i resten av området. I Pasvik er det lave, jevne nivåer for Cd, mens det mot kysten i Karpdalen/Jarfjord, og videre østover mot Grense Jakobselv er noe høyere verdier og større variasjon enn for de øvrige nevnte områdene. Kadmium er anriket i humus sammenliknet med nivåene i C-horisont; mellom 2 og 7 ganger. Jarfjordområdet har de høyeste verdiene i C-horisonten, men også det høyeste forholdstallet for Cd i humus og i C-horisont.

Figur 12. Kadmium i 2011 humusprøvene.

Tabell 7 viser minimum, 25 persentil, medianverdi, 75 persentil og maksimumverdier for de 4 områdene og de årene humusprøver er blitt prøvetatt.

ppm Ca	KAU 05	KAU 11	KAR 95	KAR 05	KAR 11	JAR 95	JAR 00	JAR 05	JAR 11	PAS 95	PAS 00	PAS 05	PAS 11
Ν	11	10	15	21	20	3	3	3	3	6	8	5	5
MIN	0,091	0,01	0,18	0,15	0,071	0,35	0,44	0,44	0,565	0,34	0,31	0,31	0,198
25%il	0,13	0,023	0,22	0,18	0,146	0,35	0,44	0,44	0,504	0,35	0,35	0,34	0,203
MEDIAN	0,17	0,065	0,25	0,22	0,175	0,48	0,51	0,45	0,447	0,355	0,53	0,35	0,235
75%il	0,27	0,157	0,3	0,37	0,23	0,52	0,67	0,74	0,744	0,72	0,755	0,36	0,28
MAX	0,31	0,159	0,45	0,74	0,56	0,52	0,67	0,74	0,447	0,83	0,79	0,42	0,403
SNITT	0,197	0,079	0,268	0,284	0,217	0,45	0,54	0,543	0,744	0,492	0,546	0,356	0,264
C-hor	0,0)10		0,05				0,06		0,04			
Mann-Whi	itney U-test												
1995 Z				0,89845	2,78333		-0,65465	-0,21822	-0,21822		-0,38730	0,91287	2,00832
Р				0,368948	0,005381		0,512691	0,827259	0,827259		0,698536	0,361311	0,044611
2000 Z								0,00000	0,65465			1,46385	2,48855
Р								1,000000	0,512691			0,143236	0,012827
2005 Z		3,16880			1,73445				0,65465				1,77559
		0.001531			0.002020				0 512601				0.075901

Tabell 7. Kadmium. Statistiske parametre og resultat av Mann-Whitney U-test.

Figur 13 viser boksplottet for Cd i de 4 områdene. Pasvik-medianene har en klar nedadgående trend fra 2000 til 2011; endringene fra 1995 til 2011 og fra 2000 til 2011 er begge signifikante. I Karasjok og Kautokeino, som begge har klart lavere konsentrasjoner enn i Sør-Varanger, er det en signifikant nedgang i 2011 i forhold til henholdsvis 1995 og 2005.

Figur 13. Kadmium boksplott. Humusprøver fra Pasvik, Jarfjord, Karasjok og Kautokeino1995, 2000, 2005 og 2011.

4.2.4. <u>Kobber (Cu)</u>

Figur 14 viser kobber nivåene i 2011 humus prøvene. De høyeste konsentrasjonene er i den nordlige delen av Pasvik og sørlige delen av Jarfjord området. Det er generelt lave konsentrasjoner i Karasjok og Kautokeino, der nivå i C-horisont er 3-4 ganger høyere enn i humus. I Jarfjord er forholdet mellom humus og C-horisont etter hvert kommet opp i ca 1:1, mens det i Pasvik er kommet opp i 2:1. Kobber i Pasvik og Jarfjord områdene er klart påvirket av utslippene fra smelteverket i Nikel.

Figur 14. Kobber i 2011 humusprøvene.

Tabell 8 viser de statistiske data for analysene fra 1995, 2000, 2005 og 2011.

ppm Cu	KAU 05	KAU 11	KAR 95	KAR 05	KAR 11	JAR 95	JAR 00	JAR 05	JAR 11	PAS 95	PAS 00	PAS 05	PAS 11
N	11	10	15	21	20	3	3	3	3	6	8	5	5
MIN	4,67	3,7	5,45	5,48	4,7	26	52,5	43,5	65,1	29,5	33,4	38,1	50,6
25%il	5,63	5,7	6,42	7,65	8,75	26	52,5	43,5	65,1	37,3	44,95	65,7	59,6
MEDIAN	6,35	6,35	7,84	8,55	9,7	41,2	61,6	74,3	74,2	53,1	81,25	78,1	97,2
75%il	7,74	8,1	9,76	12,3	12,4	54,2	119	88,1	132,0	83,4	105,4	83	101
MAX	9,76	11,1	15,2	19,4	45,9	54,2	119	88,1	132,0	368	227	98,1	171
SNITT	6,715	7,02	8,562	10,216	12,435	40,467	77,7	68,633	90,43	104,067	90,45	72,6	95,88
C-hor	17	7,7		38,7				75,5			43,	,5	
Mann-Whi	itney U-test	I											
1995 Z				-1,55624	-2,00000		-1,52753	-1,52753	-1,96396		-0,77460	-0,73030	-1,09545
Р				0,119652	0,045501		0,126631	0,126631	0,049535		0,438579	0,465209	0,273323
2000 Z								0,21822	-0,65465			0,29277	-0,58554
Р								0,827259	0,512691			0,769698	0,558185
2005 Z		-0,31688			-0,83462				0,65465				-0,73113
р		0,751335			0,403930				0,512691				0,464703

Tabell 8. Kobber. Statistiske parametre og resultat av Mann-Whitney U-test.

Boksplottet i Figur 15 viser at det er klart økende trender for kobber i Pasvik og Jarfjord, når man betrakter medianverdiene. Økningen i Jarfjord fra 1995 til 2011 er signifikant, mens den store spredningen i verdier i Pasvik ikke er det. I Kautokeino er det ingen trend i tiden fra 2005 til 2011, mens økningen i Karasjok fra 1995 til 2011 er statistisk signifikant.

Figur 15. Kobber boksplott. Humusprøver fra Pasvik, Jarfjord, Karasjok og Kautokeino1995, 2000, 2005 og 2011.

4.2.5. <u>Kvikksølv (Hg)</u>

Figur 16 viser kvikksølv i 2011 humusprøvene. Verdiene er gjennomgående lave, og viser med ett unntak liten variasjon. En lokalitet i nærheten av Kirkenes har klart høyere konsentrasjon enn de øvrige prøvene i Sør-Varanger. Den høye konsentrasjonen kan sannsynligvis tilskrives en lokal kilde. Det er litt høyere konsentrasjoner i Pasvik og Jarfjord sammenlignet med Karasjok og Kautokeino. Forholdstallet mellom humus og C-horisont er ca. 10 og stabilt gjennom hele området fra nedbørfattige Finnmarksvidda til de kystnære lokalitetene i Sør-Varanger.

Figur 16. Kvikksølv i 2011 humusprøvene.

Tabell 9 viser de statistiske data for prøveserien for områdene Pasvik, Jarfjord, Karasjok og Kautokeino 1995, 2000, 2005 og 2011.

Tabell 9. Kvikksølv.	Statistiske r	parametre og	resultat av	Mann-Whitney	U-test.
	building p		, i countat av	mann winning	

ppm Hg	KAU 05	KAU 11	KAR 95	KAR 05	KAR 11	JAR 95	JAR 00	JAR 05	JAR 11	PAS 95	PAS 00	PAS 05	PAS 11
Ν	11	10	15	21	20	3	3	3	3	6	8	5	5
MIN	0,112	0,1	0,1275	0,083	0,05	0,129	0,157	0,115	0,17	0,145	0,155	0,106	0,11
25%il	0,122	0,13	0,137	0,112	0,13	0,129	0,157	0,115	0,17	0,147	0,184	0,112	0,16
MEDIAN	0,125	0,14	0,165	0,135	0,15	0,136	0,176	0,118	0,18	0,158	0,199	0,175	0,19
75%il	0,17	0,18	0,176	0,142	0,165	0,152	0,188	0,156	0,21	0,2	0,22	0,178	0,19
MAX	0,217	0,19	0,21	0,2	0,19	0,152	0,188	0,156	0,21	0,259	0,234	0,215	0,21
SNITT	0,145	0,149	0,161	0,132	0,141	0,139	0,173	0,129	0,187	0,177	0,199	0,157	0,172
C-hor	0,0	010		0,015				0,012			0,0)14	
Mann-Whit	ney U-test												
1995 Z				2,88787	1,50000		-1,96396	0,65465	-1,96396		-1,42009	0,36515	-0,18257
Р				0,003879	0,133615		0,049535	0,512691	0,049535		0,155581	0,715001	0,855132
2000 Z								1,96396	-0,65465			1,75662	0,87831
Р								0,049535	0,512691			0,078984	0,379776
2005 Z		-0,56334			-1,69533				-1,96396				-0,52223
р		0,573202			0,090013				0,049535				0,601509

Boksplottet i figur 17 viser at det er stor relativ spredning i kvikksølvkonsentrasjonene. Medianverdiene viser at det ikke er noen klare trender over lengre tid i de enkelte områdene, selv om det er flere signifikante endringer for Hg enn noen av de andre elementene som er vurdert med Mann-Whitney U (Tabell 9). Medianverdiene viser at det er generelt litt høyere konsentrasjoner i Pasvik sammenlignet Karasjok og Kautokeino. Sammenlignet med Hg-konsentrasjonene i Chorisont prøvene i de 3 områdene er det betydelig høyere konsentrasjoner i humusprøvene. Det kan tyde på en anrikning, muligvis gjennom lufttransportert avsetning.

Figur 17. Kvikksølv boksplott. Humusprøver fra Pasvik, Jarfjord, Karasjok og Kautokeino1995, 2000, 2005 og 2011.

4.2.6. <u>Nikkel (Ni)</u>

Figur 18 viser nikkel i 2011 humusprøvene. Nikkelkonsentrasjonene er klart høyest i Jarfjord og Pasvik; humusprøvene i Pasvik og Jarfjord er tydelig påvirket av utslipp fra smelteverket i Nikel.. Den geografiske fordelingen for nikkel samsvarer i stor grad den for kobber. I bakgrunnsområdene Kautokeino og Karasjok er forholdet mellom C-horisont og humus hhv ca 4 og 6, mens det i Pasvik og Jarfjord er langt høyere verdier i humus enn i C-horisont. Forholdet mellom humus og Chorisont er ca 5 og 3 i de to sistnevnte områdene, d.v.s. at i de mest forurensningsbelastede områdene er forholdet mellom humus og C-horisont fra 12 til 30 ganger høyere enn i bakgrunnsområdene.

Figur 18. Nikkel i 2011 humusprøvene.

Tabell 10 sammenfatter beskrivende statistikk og sammenlikning over tid i de ulike områdene.

ppm Ni	KAU 05	KAU 11	KAR 95	KAR 05	KAR 11	JAR 95	JAR 00	JAR 05	JAR 11	PAS 95	PAS 00	PAS 05	PAS 11
Ν	11	10	15	21	20	3	3	3	3	6	8	5	5
MIN	1	1	3,7	3,2	3,5	38,2	63,9	55,6	103	33,2	32,2	45,7	73,5
25%il	2,5	3,1	4,8	5,5	6,15	38,2	63,9	55,6	103	44,9	57,4	95,1	80,2
MEDIAN	3,2	3,35	6,5	7,9	8,4	61,3	64,9	89,4	106	76,25	92,45	98	131
75%il	4,1	3,9	7,1	10,3	10,7	68,5	128	126	192	127	121	103	154
MAX	5,1	5,5	8,3	17,9	22,4	68,5	128	126	192	330	252	121	264
SNITT	3,218	3,4	6,167	8,886	9,095	56	85,6	90,333	133,7	114,6	103,238	92,56	140,54
C-hor	15	5,8		49,6			34	4,3			25	5,6	
Mann-Whi	itney U-test												
1995 Z				-1,81294	-2,30000		-1,09109	-1,09109	-1,96396		-0,25820	-0,18257	-1,09545
Р				0,069842	0,021449		0,275234	0,275234	0,049535		0,796254	0,855132	0,273323
2000 Z								0,21822	-1,09109			0,07319	-1,02470
Р								0,827259	0,275234			0,941653	0,305508
2005 Z		-0,38730			-0,32603				-1,09109				-0,94002
р		0,698536			0,744405				0,275234				0,347208

Tabell 10. Nikkel.	Statistiske parametro	e og resultat av Man	n-Whitney U-test.
	Statististic parametri	c og i coultur ut ittuin	i villiney e testi

Figur 19 viser boksplottet for nikkel i humus. Medianverdiene for Pasvik og Jarfjord prøvene viser at det er økende nivåer i hele perioden 1995 - 2011 for begge områder. I Pasvik er økningen ikke signifikant for noen av sammenlikningene, mens endringen fra 1995 til 2011 i Jarfjord er det. For samme tidsperiode er det også en signifikant økning av nikkelnivåene i Karasjok.

Figur 19. Nikkel boksplott med logaritmiske konsentrasjonsskala langs y-aksen. Humusprøver fra Pasvik, Jarfjord, Karasjok og Kautokeino1995, 2000, 2005 og 2011.

4.2.7. <u>Sink (Zn)</u>

Figur 20 viser sink i 2011 humusprøvene. Det er varierende sinkkonsentrasjoner i området, mest uttalt i Karasjok og Kautokeino der de to lokalitetene med de høyeste konsentrasjonene finnes. Det skyldes sannsynligvis naturlige variasjoner, men lokale forurensingskilder kan ikke utelukkes. I Pasvik og Jarfjord er det ikke noen tydelig geografiske trender utover litt høyere konsentrasjoner på enkelte lokaliteter i Pasvik. Forholdstallet mellom medianverdi i humus og gjennomsnitt i Chorisont er om lag 1,5 i alle områdene unntatt Kautokeino, der løsmassene har klart lavere sinkkonsentrasjon enn de øvrige områdene. Forholdstallet i Kautokeino er ca 3,6.

Figur 20. Sink i 2011 humusprøvene.

Tabell 11 viser de statistiske data for prøveseriene fra de ulike geografiske områdene.

ppm Zn	KAU 05	KAU 11	KAR 95	KAR 05	KAR 11	JAR 95	JAR 00	JAR 05	JAR 11	PAS 95	PAS 00	PAS 05	PAS 11
N	11	10	15	21	20	3	3	3	3	6	8	5	5
MIN	22,9	19	18,7	23	20,9	29,7	23,1	25,3	32,2	22,8	24,8	26,4	39,7
25%il	30	24,8	23	38,2	43,95	29,7	23,1	25,3	32,2	29,5	36,8	32,4	46,3
MEDIAN	34,2	28,5	33,3	42,1	49,6	37,2	54,1	45,9	53,9	36,55	44,8	53,7	48
75%il	46	50,4	44,7	51,7	57,85	64,5	93,4	50,9	56,5	38,3	52	56	63,1
MAX	56,1	76,9	80,5	69,1	115	64,5	93,4	50,9	56,5	39,9	62,9	56,9	76,6
SNITT	37,36	37,6	35,21	46,37	51,3	43,8	56,87	40,7	47,53	33,93	44,36	45,08	54,74
C-hor	7	,8		31,2			42	2,5			40),0	
Mann-W	hitney U-te	st											
1995 Z				-2,34238	-2,93333		-0,21822	0,21822	-0,43644		-1,80739	-1,09545	-2,55604
Р				0,019162	0,003354		0,827259	0,827259	0,662521		0,070702	0,273323	0,010588
2000 Z								0,65465	-0,21822			-0,43916	-1,02470
Р								0,512691	0,827259			0,660550	0,305508
2005 Z		0,70418			-1,06936				-1,09109				-0,73113
р		0,481322			0,284907				0,275234				0,464703

Tabell 11. Sink. Statistiske	parametre og resultat av	Mann-Whitney U-test.
------------------------------	--------------------------	----------------------

Figur 21 viser boksplottet for prøveseriene 1995 – 2011. Medianverdiene viser en økende trend i Pasvik gjennom perioden fra 1995 til 2005 før den synker noe i 2011, mens det er økningen fra 1995 til 2011 for hele Pasvik-kolleksjonen som er signifikant. I Jarfjord er det en viss økning fra 2005 til 2011, men samlet for perioden 1995 – 2011 er det ikke noen klare endringer. I Karasjok er det en klar økning gjennom hele perioden 1995 til 2011, både 1995 – 2005 og 1995 – 2011 er signifikante. I Kautokeino er medianverdien noe lavere i 2011 enn i 2005.

Figur 21. Sink boksplott. Humusprøver fra Pasvik, Jarfjord, Karasjok og Kautokeino1995, 2000, 2005 og 2011.

4.2.8. <u>Svovel (S)</u>

Svovel i 2011 humusprøvene i Figur 22 viser at det er høyeste konsentrasjoner i Jarfjord, og heretter Pasvik prøvene. Jarfjord området er påvirket av et marint bidrag av sulfat (Reimann m. fl., 1998), mens lokalitetene i Pasvik er påvirket utslipp av svovel fra smelteverket i Nikel. Måling av avsetningen av svovel i Svanvik i Pasvik (Berglen m. fl., 2011), viser at svovel har økt markant i de senere årene. Nivåene i Karasjok og Kautokeino er generelt lavere enn i Jarfjord og Pasvik.

Figur 22. Svovel i 2011 humusprøvene.

Tabell 12 viser de statistiske data for prøvene fra Pasvik, Jarfjord, Karasjok og Kautokeino.

% S	KAU 11	KAR 11	JAR 11	PAS 11
Ν	10	20	3	5
MIN	0,085	0,072	0,179	0,092
25%il	0,093	0,109	0,179	0,136
MEDIAN	0,138	0,121	0,211	0,162
75%il	0,153	0,135	0,267	0,164
MAX	0,170	0,140	0,267	0,183
SNITT	0,128	0,120	0,219	0,148

Tabell	12.	Svovel	i	humus	statistiske	data.
Labour				nunus	Statististic	uuuu

4.2.9. <u>PAH₁₆</u>

Polysykliske aromatiske hydrokarboner fra 2011 humus prøvene er vist i figur 23. Nivåene er generelt lave. Lokalitetene rundt tettere befolkede områder som Karasjok, Kautokeino og Kirkenes er relativt høye sammenlignet med områdene rundt. Høyere konsentrasjoner rundt tettstedene tilskrives mer trafikk, vedfyring og lokal industri som sannsynlige kilder. Enkelte lokaliteter i Pasvik og Jarfjord har også relativt høye konsentrasjoner, uten at det kan angis noen spesifikk kilde. Det er lave PAH₁₆ konsentrasjoner i områder lengst sør i Karasjok området. Her var det på 1970-tallet skogsbranner ifølge lokale kilder. Det var tydelige rester av forbrente treer fremdeles i området i 2011, uten at det er mulig å se ut fra analyseresultatene. Årsaken til at det er målt lave konsentrasjoner på de 5 sørligste lokalitetene i Karasjok-området kan være at PAH- forbindelsene brytes ned over tid.

Figur 23. PAH₁₆ konsentrasjoner i 2011 humusprøvene (mg/kg).

Tabell 13 viser de statistiske data for PAH16 i 2011 humusprøvene.

mg/kg	KAU 11	KAR 11	JAR 11	PAS 11
Ν	10	19	5	5
MIN	0,16	0,16	0,16	0,17
25%il	0,16	0,16	0,19	0,18
MEDIAN	0,16	0,17	0,20	0,19
75%il	0,19	0,23	0,23	0,21
MAX	0,35	0,91	0,31	0,28
SNITT	0,14	0,30	0,23	0,21

Tabell 13. PAH₁₆ i humus statistiske data.

4.3 Radionuklider

Cesium-137 (Cs-137)

Innholdet av Cs-137 på hvert prøvetakingssted i 2011 er vist i figur 24. Statistiske parametre for Cs-137 i humusprøver samlet i Kautokeino, Karasjok og Sør-Varanger i 2011 er presentert i tabell 14, sammen med data fra tidligere humusprøver i disse kommunene i 1995 og 2005 (Steinnes & Gjelsvik, 2008). De individuelle humusprøvene ble analysert separat, variasjon i innholdet av Cs-137 i fem paralleller av humusprøvene varierte fra 7 % til 103 % (figur 25). Statistiske sammenligninger bør tolkes med forsiktighet på grunn av forskjeller i antall prøver, prøvetakingssted og humusdybde for de forskjellige årene prøvene ble tatt.

Imidlertid viser den observerte trenden en generell reduksjon av Cs-137 i humuslagene mellom 1986 og 2011 (figur 26) på grunn av radioaktivt henfall av isotopen over tid og en vertikal transport av Cs-137 nedover i humuskolonnen. Når det gjelder prøvene fra 2011, er det mulig at en del av deponert Cs-137 kan ha blitt transportert dypere i jordprofilen enn prøvetakingsdybden. I 2011 var det ingen signifikant forskjell i innholdet av Cs-137 i humusprøver fra Kautokeino, Karasjok og Sør-Varanger (Mann-Whitney U-test, p > 0,271).

Til tross for reduserte nivåer av radioaktivt cesium i øverste del av jordprofilene, kan noen sopparter likevel inneholde konsentrasjoner over grenseverdien på 600 Bq/kg som gjelder for omsetting av matvarer. Selv for personer med høyt inntak av sopp, vil dette neppe bli et problem.

Figur 24. Innhold av cesium-137 (Bq/m^2) i 2011 humusprøver.

				Kautokeino)		Karasjok		S	ør-Varange	er	
			1995	2005	2011	1995	2005	2011	1995	2005	2011	
Ν			4	4	10	4	4	19	8	8	13	
MI	Ν		257,59	165,96	141,48	412,11	212,90	146,34	361,46	127,07	112,42	
25%	%ile		397,94	198,85	209,35	662,21	245,76	164,69	468,67	232,37	170,35	
ME	ED		487,63	240,36	253,18	771,81	282,54	198,58	494,53	273,24	277,41	
75%	%ile		530,55	305,97	292,13	806,20	394,08	300,44	706,69	362,62	350,39	
Ma	х		530,57	411,17	546,29	830,68	651,24	435,60	1138,17	610,05	382,06	
		Р	1995	0,08	33	1995	0,04	3	1995	0,02	27	
ney		Ζ	vs. 2005	1,73	32	vs. 2005	2,02	21	vs. 2005	2,20)5	
Vhit	est	Р	2005	0,57	2	2005	0,33	80	2005	0,69	03	
Ŋ-U	U-t	Ζ	vs. 2011	0,56	56	vs. 2011	0,97	'3	vs. 2011	0,43	35	
Aan		Р	1995	0,01	6	1995	0,00)4	1995	0,00	004	
4		Ζ	vs. 2011	2,40)4	vs. 2011	2,92	20	vs. 2011	3,54	9	

Tabell 14. Cesium-137. Statistiske parametre og resultat av Mann – Whitney test.

Data for 1995 og 2005 fra Steinnes & Gjelsvik (2008)

Figur 25. Variasjon i innhold av cesium-137 (Bq/m^2) i individuelle humusprøver.

Figur 26. Cesium-137 i øverste del av jordkolonner (Bq/m^2) fra prøvetaking i 1986 (Backe m. fl., 1986), 1995 og 2005 (Steinnes & Gjelsvik, 2008) sammenlignet med 2011.

Plutoniumisotoper (Pu-238 og Pu-239,240) og americium-241 (Am-241)

Innholdet av Pu-238, Pu-239,240 og Am-241 i utvalgte humusprøver er gitt i tabell 15 og utregnet isotopforhold er gitt i tabell 16. Målt innhold av Pu-238 og Pu-239,240 var i alle humusprøvene noe lavere enn med beregnet innhold mellom 60 °N og 70 °N fra Hardy m. fl. (1973). Det er likevel godt samsvar mellom målt isotopforhold for disse plutoniumisotoper på alle humusprøvene og det estimerte isotopforholdet på 0,029 fra globalt nedfall og SNAP-9A satellitten (Hardy m. fl., 1973). Målt innhold av Am-241 var i alle humusprøvene noe lavere enn med beregnet innhold mellom 60 °N og 70 °N fra Hardy m. fl. (1973) og Hirose m. fl. (2001). Det er likevel godt samsvar mellom målt isotopforhold for Am-241 og Pu-239,240 på alle humusprøvene og det estimerte isotopforholdet på 0,41 fra globalt nedfall (Hardy m. fl., 1973; Hirose m.fl., 2001). Isotopforholdet mellom Pu-239,240 og Cs-137 i utvalgte humusprøver (tabell 16) varierte noe sammenlignet med en estimert verdi på 0,041 mellom 60 °N og 70 °N (korrigert for radioaktivt henfall) basert på data fra Hardy m. fl. (1973) og UNSCEAR (2000). Sistnevnte isotopforhold tar imidlertid ikke hensyn til bidrag av ¹³⁷Cs fra Tsjernobylulykken, noe som ville gitt et lavere isotopforhold. Avvik fra forventet isotopforhold kan også forklares med ulik kjemisk oppførsel av de to radionuklidene i jordsmonnet. Plutoniumisotoper og Am-241 blir i svært liten grad tatt opp i næringskjedene, og utgjør således ingen risiko for humanhelse.

Tabell 15. Forekomst av plutoniumisotoper og americium-241 (Bq/m ²) i 2011 humusprøver.									
	Pu-238 (Bq/m ²)	Pu-239,240 (Bq/m ²)	Am-241 (Bq/m ²)						
Kautokeino									
2033	0,25	10,40	4,92						
2040	0,74	23,66	10,22						
Karasjok									
2019	0,36	12,38	5,25						
2020	0,60	21,17	9,15						
2026	0,18	5,98	3,46						
2042	0,36	9,12	3,66						
Sør-Varanger									
2004	0,35	10,78	5,69						
2010	0,82	30,87	11,48						
2011	0,32	9,90	5,09						

. . $241 (D_{\pi}/m^2) : 2011 k$ T 1 11 1 7 T .

Tabell 16. Isotopforhold for radionuklider i 2011 humusprøver.

	Pu-238/Pu-239,240	Am-241/Pu-239,240	Pu-239,240/Cs-137
Kautokeino			
2033	0,024	0,47	0,057
2040	0,031	0,43	0,125
Karasjok			
2019	0,029	0,42	0,047
2020	0,028	0,43	0,066
2026	0,029	0,58	0,017
2042	0,040	0,40	0,035
Sør-Varanger			
2004	0,032	0,53	0,066
2010	0,027	0,37	0,098
2011	0,033	0,51	0,026

Kalium-40 (K-40)

Innholdet av K-40 på hvert prøvetakingsområde i 2011 er vist i figur 27. Statistiske parametre for K-40 i humusprøver samlet i Kautokeino, Karasjok og Sør-Varanger i 2011 er presentert i tabell 17. Lave observerte verdier for K-40 i humusprøver fra Kautokeino, Karasjok og Sør-Varanger sammenlignet med typiske verdier for jord i Norge (UNSCEAR, 2008), skyldes det lave mineralinnholdet i humuslagene. Innholdet av K-40 var lavere i humusprøver fra Sør-Varanger enn fra Kautokeino og Karasjok.

Figur 27. Innhold av kalium-40 (Bq/kg) i 2011 humusprøver.

raden 17. Raham 10. Statistiche parametre og resultar av istanne visitning test.				
	Kautokeino	Karasjok	Sør-Varanger	
Ν	10	19	13	
MIN	37,04	25,63	20,10	
25%ile	68,72	92,32	57,37	
MED	91,24	141,53	67,23	
75%ile	137,72	219,76	82,98	
Max	418,05	259,68	147,69	
Mann-Whitney	Kautokeino v	Kautokeino v Sør-Varanger	Karasjok v Sør-Varanger	
U-Test	Karasjok	P=0,047	P=0,053	
	P=0,324	Z=1,985	Z=1,938	
	Z=1,009			

Tabell 17. Kalium-40. Statistiske	parametre og resultat	av Mann – Whitney tes
-----------------------------------	-----------------------	-----------------------

5. Oppsummering

Det er høyest kopper og nikkel konsentrasjoner i humus i Sør-Varanger, på lokaliteter nærmest smelteverket i Nikel og oppredningsanlegget i Zapoljarnyj. Det er tendens til økte konsentrasjoner av både Ni og Cu i både Jarfjord og Pasvik, de to delområdene i Sør-Varanger i perioden 1995 – 2011.

Arsen har signifikant høyere konsentrasjoner i Sør-Varanger sammenlignet med bakgrunnsområdene Karasjok og Kautokeino. Det er ikke skjedd noen signifikant endring i nivåene på As i humus i perioden 1995 – 2011.

Metallene bly, kadmium, krom, kvikksølv og sink har lave konsentrasjoner i Sør-Varanger, Karasjok og Kautokeino, slik at det ikke er åpenbare forskjeller mellom de tre områdene.

Generelt har der vært en reduksjon av cesium-137 i humus mellom 1986 og 2011 på grunn av radioaktivt henfall av isotopen over tid og en vertikal transport av cesium-137 nedover i jordkolonnen. Det var et godt samsvar mellom målt isotopforhold for plutonium isotoper og amercium-241 på alle humusprøvene og estimerte isotopforhold. De observerte nivåene av disse menneskeskapte radionuklider utgjør således ingen risiko for humanhelse.

6. **REFERANSER**

- AMAP, 1997. Arctic pollution issues: A state of the arctic environment report. Arctic monitoring and assessment programme. 188 pages.
- Backe S., Bjerke H., Rudjord A. L. og Ugletveit F., 1986. Nedfall av cesium i Norge etter Tsjernobyl ulyyken. 1986:5, Statens Instittut for Strålehygiene, Østerås.
- Berglen T. F., Arnesen K., Rode A. og Tønnesen P., 2011. Grenseområdene Norge Russland luft og nedbørskvalitet, april 2010 mars 2011. Statlig program for forurensningsovervåking. NILU rapport nr. 1106/2011.
- Bjerke J. W., Tømmervik H., Finne T. E., Jensen H. K. B., Lukina N. and Bakkestuen V., 2006. Epiphytic lichen distribution and plant leaf heavy metal concentrations in Russian – Norwegian boreal forests influenced by air pollution from nickel-copper smelters. Boreal Env. Research, vol. 11, pp. 441 – 450.

Chen, Q., Aarkrog, A., Nielsen, S., Dahlgaard, H., Lind, B., Kolstad, A. K. og Yu, Y., 2001. Procedures for determination of 239,240Pu, 241Am, 237Np, 234, 238U, 228, 230, 232Th, 99Tc and 210Pb-210Po in environmental materials. Report Risø-R-1263(EN), Risø, Roskilde.

- Hagen L. O., Sivertsen B. Og Arnesen K., 2004. Grenseområdene i Norge og Russland. Luft og nedbørskvalitet, april 2003 mars 2004. NILU rapport, OR 61/2004. 71 sider.
- Hardy E. P., Krey P. W. og Volchock H.L., 1973. Global inventory and distribution of fallout plutonium. Nature, 24, 444–445.
- Hirose K., Igarashi I., Aoyama M. og Miyao T., 2001. Long-term trends of plutonium fallout observed in Japan, in: A. Kudo (Ed.), Plutonium in the environment, Elsevier Science, Amsterdam, pp. 251–266.
- Jensen H. K. B. og Finne T. E., 2006. Temporal variations 1995 2005 for heavy metals, arsenic and PAH in the humus layer in Pasvik and Jarfjord, Finnmark County, Norway. NGU-rapport nr. 2006.017 (på engelsk), 22 sider.
- Reimann C., Äyräs M., Chekushin V., Bogatyrev I., Boyd R., Caritat P. de, Dutter R., Finne T. E., Halleraker J. H., Jæger Ø., Kashulina G., Lehto O., Niskavaara H., Pavlov V., Räisänen M. L., Strand T. and Volden T. (1998). Environmental geochemical atlas of the Central Barents Region. NGU – GTK – CKE special publication. 745 pages.
- StatSoft, Inc. (2006). Electronic Statistics Textbook. Tulsa, OK: StatSoft. WEB: <u>http://www.statsoft.com/textbook/stathome.html</u>.
- Steinnes E. og Gjelsvik R., 2008. Geographical trends in 137Cs fallout from the Chernobyl accident and leaching from natural surface soil in Norway. Proc. Int. Conf. Radioecology & Environmental Radioactivity, Part 1, pp. 214-217. Bergen, Norway 2008.
- Eiliv Steinnes, E., Rühling, Å., Lippo, H., Mäkinen, A. 1997. Reference materials for large-scale metal deposition surveys. Accred Qual Assur (1997) 2: 243–249.

Tukey J. W. (1977). Exploratory data analysis. Addison-Wesley, Reading, 506 pp.

- UNSCEAR 2000. Sources and effects of ionising radiation. Report of the General Assembly with Scientific Annexes, Volume 1. United Nations, New York.
- UNSCEAR, 2008. Sources and effects of ionizing radiation. Report of the General Assembly with Scientific Annexes, Volume 1. United Nations, New York.
- Yoccoz N., Tømmervik H., Bakkestuen V., Nikonov V. V., Lukina N., Jensen H. K. B., Finne T. E. and Henttonen H., 2001. Environmental and pollution impact research and competence build-up in Northern Norway through integrated ecological and geological and remote sensing studies. Interreg IIA status report, 22 pages.

http://siteresources.worldbank.org/INTURBANTRANSPORT/Resources/b09phasing.pdf 2012.10.25

http://www.unep.org/transport/pcfv/PDF/Maps_Matrices/CEE/matrix/CEE_combined_March2012. pdf

Norges geologiske undersøkelse Postboks 6315, Sluppen 7491 Trondheim, Norge

Besøksadresse Leiv Eirikssons vei 39, 7040 Trondheim

Telefon	73 90 40 00
Telefax	73 92 16 20
E-post	ngu@ngu.no
Nettside	www.ngu.no

Geological Survey of Norway PO Box 6315, Sluppen 7491 Trondheim, Norway

Tel Fax

Web

Visitor address Leiv Eirikssons vei 39, 7040 Trondheim

(+ 47) 73 90 40 00 (+ 47) 73 92 16 20 E-mail ngu@ngu.no www.ngu.no/en-gb/