NGU Norges geologiske undersøkelse

Geolological Survey of Norway

Bulletin 444

UPPER PALAEOZOIC LITHOSTRATIGRAPHY OF THE SOUTHERN PART OF THE NORWEGIAN BARENTS SEA

Trondheim 2005

Preface

The Norwegian Petroleum Directorate (NPD), through the senior author of this contribution, initiated in 1994 a study to define a formal lithostratigraphy of the Upper Palaeozoic rocks of the Norwegian Barents Shelf. The work was sponsored and supported by the Norwegian Project on Exploration Cooperation, led by NPD. The committee's recommendations were integrated with the revision of the post-Caledonian lithostratigraphy of Svalbard led by Winfried K. Dallmann (Dallmann et al. 1999). names have been approved by Norsk språkråd (Marit Hovdenak).

A provisional version of this new lithostratigraphical framework was first presented at the Norwegian Geological Society's (NGF) 16th Congress in Stavanger in January 1999, and a full electronic version was made available by NPD in 2002. This NGU Bulletin is a condensed and slightly modified version of the "Upper Palaeozoic lithostratigraphy of the Southern Norwegian Barents Sea" (www.npd.no), which is the official version and should be consulted for formal definitions. The printed version has a more limited number of figures but is supplemented with a section on Arctic correlation and overall depositional evolution. The lithostratigraphic definitions are identical in the two versions, but during the editorial process it has become evident that minor changes were needed in the text and figures to more correctly express our view. The most important of these is the shift of the position of the upper boundary of the Falk Formation in reference well 7128/4-1 from 1952 m down to 2000 m.

After this paper had been accepted and prepared for printing, one more well, 7220/6-1, has been drilled to penetrate the upper part of the Upper Palaeozoic succession at the Loppa High.

Upper Palaeozoic lithostratigraphy of the southern part of the Norwegian Barents Sea

GEIR B. LARSSEN, GEIR ELVEBAKK, LEIF B. HENRIKSEN, STEIN-E. KRISTENSEN, INGER NILSSON, TOMMY J. SAMUELSBERG, TORE A. SVÅNÅ, LARS STEMMERIK & DAVID WORSLEY

Larssen, G. B., Elvebakk, G., Henriksen, L. B., Kristensen, S.-E., Nilsson, I., Samuelsberg, T. J., Svånå, T. A., Stemmerik, L. & Worsley, D. 2005: Upper Palaeozoic lithostratigraphy of the southern part of the Norwegian Barents Sea. *Norges geologiske undersøkelse Bulletin 444, 3-45.*

The Norwegian sector of the southern Barents Sea has been the target for hydrocarbon exploration for over 20 years and to date approximately 60 exploration wells have been drilled in this still under-explored province. Only a quarter of these wells have penetrated the Upper Palaeozoic succession, often only because of a TD criterion set by the authorities – although some wells have targeted varied play types within the Upper Palaeozoic. Accumulated knowledge from this exploration programme has gradually led to the present-day situation, where exploration of these Upper Palaeozoic plays may well represent the next major development in the area.

A formal lithostratigraphical framework for these Upper Palaeozoic strata was first presented in an electronic version at <u>www.npd.no</u>. Although similar in gross terms to the onland exposures of the Svalbard archipelago the Upper Palaeozoic succession of the southwestern Barents Shelf also displays significant differences, clearly contrasting the generally stable platform aspect of the Svalbard exposures and the more labile platforms and significant basinal developments offshore.

This work was therefore commissioned by the Norwegian Petroleum Directorate in recognition of the need for a formal lithostratigraphical framework for a succession that may well prove to be of great commercial interest in coming years. Reviews of all seismic and well data from the area have led to our recognition and acceptance of the long-established usage of the Billefjorden, Gipsdalen and Tempelfjorden groups from onshore Svalbard, but we define 8 new formations and assign them to these groups to reflect the offshore development of the Upper Palaeozoic succession. In addition, we define 3 formations that together represent the Bjarmeland Group – a Mid Permian carbonate development only poorly represented – and, as yet, poorly defined in highly condensed sequences onshore Svalbard, but present in wells in the Barents Sea.

Geir B. Larssen, Statoil Nord-Norge, Post Box 40, N-9481 Harstad, Norway.

Geir Elvebakk, Norsk Hydro, N-9480 Harstad, present address: Statoil Nord-Norge, Post Box 40, N-9481 Harstad, Norway. Leif B. Henriksen, Statoil Nord-Norge, Post Box 40, N-9481 Harstad, Norway.

Stein-E. Kristensen, Norsk Hydro, N-5020 Bergen, Norway.

Inger Nilsson, Norsk Hydro, N-4065 Stavanger, present address: Statoil, N-4035 Stavanger, Norway.

Tommy J. Samuelsberg, Norsk Hydro, N-9480 Harstad, present address: Norsk Hydro, N-0246 Sandvika, Norway.

Tore A. Svånå, Statoil, N-4035 Stavanger, Norway.

Lars Stemmerik, Geological Survey of Denmark and Greenland, Øster Voldgade 10, DK-1350 København K, Denmark. David Worsley, Norsk Hydro EPI, N-0246 Sandvika, present address: Færgestadveien 11, N-3475 Sætre, Norway.

Introduction

The Barents Sea covers a vast shelf area that extends from Novaya Zemlya in the east to the continental slope of the Norwegian-Greenland Sea in the west, and from Svalbard and Franz Josef Land in the north to the coasts of Norway and Russia in the south. The dividing line between Russia and Norway has not yet been resolved; Norwegian authorities suggest a midline division between the various Norwegian and Russian land areas and islands while the Russians favour a sector-based division generally extending from the mainland Russian/Norwegian border towards the North Pole (Fig. 1). The Barents Sea between the Norwegian coast and Svalbard comprises a continuous shelf area, mainly covered by thick Upper Palaeozoic to Tertiary sequences. Caledonian and earlier basement is only exposed along the Norwegian coast, on the island of Bjørnøya on the Stappen High and on and around the

islands of Spitsbergen and Nordaustlandet on the northern Barents Shelf (Worsley et al. 1986, Harland 1997). At present, most of the southern part of the Norwegian sector is open for commercial exploration; this comprises an area of about 240 000 km², delimited to the north by the 74°30' northern latitude, to the south by 69°30'N, with the baseline marking the limit of the Norwegian north coast; to the west, 16° eastern longitude marks the limit from 72°N to 74°30'N. Because of availability of data, this present study concentrates on the southern sector of the Norwegian Barents Sea, in itself almost double the size of the Norwegian North Sea. However, we will also make comparisons to time-equivalent sequences in the northern Barents Shelf, onshore Svalbard, northern Greenland and arctic Canada.

Geological exploration of the Norwegian Barents Shelf started with seismic surveys in the 1970s, resulting in the first differentiation of the province into a series of major sub-

Fig. 1. Map of the southern Norwegian Barents Sea showing main structural elements and location of wells and shallow cores penetrating the Upper Palaeozoic succession. Position of seismic lines in Fig. 5 is shown.

provinces with a complex structural and sedimentological development (Rønnevik et al. 1982, Rønnevik & Jacobsen 1984, Faleide et al. 1984). Hydrocarbon exploration drilling started in 1980 and this ongoing exploration activity has resulted in a series of papers integrating regional well information with the steadily expanding seismic grid and pointing out the regional similarities of the geological development of Svalbard and both the Norwegian and Russian sectors of the Barents Shelf (e.g., Johansen et al. 1993, Nøttvedt et al. 1993). A total of 63 exploration wells have been drilled in the Norwegian Barents Sea, with more than half of these located in a relatively small area either in, or in close proximity to the Hammerfest Basin (Fig. 1). The remaining wells are spread across the shelf and have tested a variety of plays -14 wells have drilled in *in-situ* Upper Palaeozoic strata (Fig. 2), but only 6 of these had the Upper Palaeozoic succession as a primary or additional target. In most cases the coring programme was limited, an important exception being 7128/6-1 on the Finnmark Platform, which cored almost half of the 900 m-thick Upper Palaeozoic section (Ehrenberg et al. 1998a). In addition, the oil industry has financed IKU Petroleum Research (now SINTEF Petroleum Research) to drill over 50 shallow stratigraphic boreholes (normally penetrating up to 200 metres into bedrock and giving a total of 3700 m of core) during the latter half of the 1980s. Eleven of these reached the Upper Palaeozoic succession (Fig. 2, see also Bugge et al. 1995). In addition to the well and core data, almost 400 000 kilometres of 2D seismic and 10 000 km² of 3D seismic have been acquired in the southern Norwegian Barents Sea; these data, integrated with relevant wells and shallow cores, have permitted increasingly more sophisticated analyses and syntheses of the Late Palaeozoic development of the area (Nilsen et al. 1993, Cecchi 1993, Gudlaugsson et al. 1998, Ehrenberg et al. 1998a, b, 2000, 2001, 2002, Elvebakk et al. 2002, Samuelsberg et al. 2003).

Two wells drilled in 1984/5 as a result of the 5th Concession Round were aimed at the Upper Palaeozoic succession of the Finnmark Platform margins, although this round's main thrust was to explore the Mesozoic potential of the Hammerfest Basin. More emphasis was placed on the Upper Palaeozoic succession in the 9th Concession Round and this resulted in three wells on the southern margins of the Loppa High, drilled in 1985 and 1986. One of these (7120/2-1) had a significant oil column, although there has

GEIR B. LARSSEN, GEIR ELVEBAKK, LEIF B. HENRIKSEN, STEIN-E. KRISTENSEN, INGER NILSSON, TOMMY J. SAMUELSBERG, TORE A. SVÅNÅ, LARS STEMMERIK & DAVID WORSLEY

Group	Well No.	7321/8-1 Hydro	7120/12-4 Hydro	7120/12-2 Hydro	7120/9-2 Hydro	7120/1-1 Hydro	7120/2-1 Hydro	7121/1-1 Esso	7124/3-1 Saga	7226/11-1 Statoil	7228/9-1S Hydro	7229/11-1 Shell	7128/6-1 Conoco	7128/4-1 Statoil
	m RKB-msl	23	23	25	23	25	23	26.8	22.5	24	23.5	24	23.5	24
Tempel- fjorden	Ørret Fm	-	1366-1469 1502-1648 1688-1700 1728-2003	3657-3920 3974.5-4030.5 4076-4485		2403-2430 2458-2604	-	-	3475-3670	3877-3966	3884-3966	3879-3901	-	-
	Røye Fm	3398-3484 TD	1469-1502 1648-1688 1700-1728 2003-2118	3920-3974.5 4030.5-4076 4485-4558	4956-5050 5072.6 (TD)	2430-2458 2604-2997	-	2993-3502	3670-3900	3966-4103	3966-4065	3901-3970	1623.5-1745.4	1569-1704
Bjarme- land	Isbjørn Fm		-	-		-	-	3502-3586 3625-3700	3952-4000	-	4065-4150	3970-4046	1745.4-1834.7	1704-1820
	Ulv Fm		-	-		2997-3220	-	3586-3625	3900-3952	4103-4182	4150-4361	-	-	-
	Polarrev Fm		-	-			-	3700-3990	4000-4271	4182-4334.7		4046-4282	-	-
Gipsdalen	Ørn Fm		-	-		3220-3947	1945-2024	3990-5000 (TD)	4271-4734.5 (TD)	4334.7-5137	4361-4607 (TD)	4282-4640 (TD)	1834.7-2050	1820-2000
	Falk Fm		-	-			2024-2221						2050-2150	2000-2058
	Ugle Fm		2118-2202 (TD)	4558-4664			2221-2624						-	-
Bille- fjorden	Blærerot Fm						Undiff Billefjorden Group 2624-3471						2150-2202	-
	Tettegras Fm												2202-2358	2058-2350.5
	Soldogg Fm												2358-2533.5	2350.5-2503

Group	Shallow drilling No.	7127/10-U-02 IKU	7127/10-U-03	7128/12-U-01 IKU	7029/03-U-01 IKU	7029/03-U-02 IKU	7129/10-U-01 IKU	7129/10-U-02 IKU	7030/03-U-01 IKU	7323/07-U-11 IKU	7323/11-U-01 IKU	7323/07-U-10 IKU	7323/10-U-01 IKU
	Water depth	279m	264m	409m	366m	308m	382m	336m	308m	418m	380m	366m	368m
Tempel- fjorden	Ørret Fm												
	Røye Fm			525.3-557.5			447.6-464			516.5-516.8	384.5-406		
Bjarme- land	Isbjørn Fm			557.5-569.2			464.0-475.3						
	Ulv Fm												
	Polarrev Fm												
Gipsdalen	Ørn Fm					319.9-393		366.3-455.9	334.3-463.0			367.7-382	376.4-376.6
	Falk Fm					393-498.6			463.0-481.7				
	Ugle Fm					498.6-509							
Bille- fjorden	Blærerot Fm				437.2-501.8								
	Tettegras Fm	348.0-479.2	338.9-417.0										
	Soldogg Fm				501.8-515.5								

Fig. 2. Wells and shallow cores penetrating the Upper Palaeozoic succession in the southern Norwegian Barents Sea. The intervals of the stratigraphic units are given as depths RKB in the wells and depths relative to MSL in the shallow cores.

 Red:
 Well Type section

 Green:
 Well Reference section

 Depth:
 Wells: m RKB (loggers depth) Shallow cores: m MSL

been much discussion as to whether unsuccessful testing suggested this was biodegraded 'dead oil' (Knutsen et al. 2000) or that the carbonate reservoir was apparently tight and testing inadequate. Other wells drilled as a result of the drilling campaigns of the 5th to 12th concession rounds encountered or had TD in the Upper Palaeozoic, giving partial information on the upper parts of this succession. From the 11th Round in 1987 onwards the exploration area was extended to the entire southern sector of the Barents Sea, and especially in the 13th and 14th concession rounds in 1991 and 1993, play models with the Upper Palaeozoic succession as reservoir target were among the most important to be tested. A small gas and oil discovery was made in Upper Permian rocks in well 7128/4-1 drilled on the Finnmark Platform in 1993 and 7128/6-1 in the same area had oil shows in Upper Carboniferous carbonates. These finds, together with promising reservoir properties in older wells on the Finnmark Platform and the Loppa High, led the authorities to increase their expectations to the amount of undiscovered resources in the succession (NPD 1996). The Finnmark Platform and the Loppa High were therefore key exploration areas for the Upper Palaeozoic in the 'Barents

Sea Project', a cooperative effort between the authorities and the oil industry, which resulted in 1997 in the awards of several large 'seismic option areas', where it was hoped that further work by the licensees would result in the future allocation of licences to drill exploration wells. Well 7228/7-1 (13th Round) drilled in the Nordkapp Basin in 2000 encountered hydrocarbons in Triassic sandstones, apparently confirming the side-sealing capacity of Upper Palaeozoic salt diapirs in the Nordkapp Basin (see also below).

Procedure

In the present work, use of the formal group names of the correlative Upper Palaeozoic succession of Svalbard has been extended to the southern Barents Sea because of the overall regional continuity and lithological similarities to the onshore succession. In addition, one new group has been introduced to include a thick succession of Permian coolwater carbonates in the offshore areas that are represented by the apparently condensed development of the Hambergfjellet Formation on Bjørnøya. All the offshore formations are new and are formally defined; well logs illustrate

Fig. 3. Legend to well logs and core descriptions.

the type and reference sections and, where possible, sedimentological logs of cored intervals are also presented. Photos of cored intervals and more detailed electrical logs can be found in Larssen et al. (2002). In accordance with the recommendations of the Norwegian Stratigraphic Committee (Nystuen 1986), wells with adequately cored intervals have been given precedence as type sections if these cored intervals are otherwise typical for the particular formation when compared to uncored reference sections with only electrical logs.

Because of the limited number of wells penetrating the Upper Palaeozoic succession, the new lithostratigraphic units are defined in relatively general terms in this paper and our proposals are open to further refinement when more wells are drilled. This is particularly the case for the basinal evaporite-dominated succession of the Gipsdalen Group. Unpublished descriptions of cores through the Upper Palaeozoic succession of Hopen drilled by Fina in the late 1960s and early 1970s and recent work in the northern sector of the Norwegian Barents Sea (Grogan et al. 1999) suggest that the same group divisions will also be applicable in those northern areas, but neither formational assignations nor definitions of new formational units are yet feasible there.

Exploration well logs are presented with depths cited as

metres relative to KB. Data from IKU shallow cores are referred to with depths below mean sea level (in contrast to Bugge et al. 1995, where depths refer to sea-bottom). The well logs display interpreted lithology together with gamma ray, density, neutron and sonic logs (lithological symbols are defined in Fig. 3). Text descriptions of unit boundaries are presented stratigraphically, i.e. with upward variation in log response across a boundary. For each group, a correlation scheme is presented giving a broad lithological overview of the formations. Core descriptions of type sections are also presented.

Ages referred to in the text are generally at stage level, and more precise ranges are only presented when this is possible. Age designations for the different units are based on unpublished consultant and in-house reports and on data published by Nilsson (1993), Mangerud (1994), Bugge et al. (1995), Stemmerik et al. (1995, 1998), Ehrenberg et al. (1998a, 2000, 2001) and Lindström (2003). The published material is given preference. Age designations are based mainly on palynomorphs in the Lower Carboniferous and Upper Permian part of the succession and on fusulinids in the Upper Carboniferous and Lower Permian. Nomenclature in general corresponds to the time scale of Gradstein & Ogg (1996), including a twofold division of the Permian (Fig. 4).

Fig. 4. Correlation of the Upper Palaeozoic lithostratigraphic units in the offshore areas of the southern Norwegian Barents Sea. The geographical distribution of lithostratigraphic units is based on a combination of well and seismic data. The background for age assignments are discussed in the text.

Geological setting

The present Barents Sea, including the Svalbard archipelago, is a continental shelf area bounded by two passive margins: in the west by the Norwegian-Greenland Sea and in the north by the Eurasian Basin. Towards the east, the shelf is delimited by the extension of the Ural mountain chain through Novaja Zemlya and in the south by the Baltic Shield. The principal structural elements of the Norwegian sector of the southern Barents Sea were defined by Gabrielsen et al. (1990) and augmented by Gudlaugsson et al. (1998). Since these publications, the Norwegian Petroleum Directorate has extended its mapping in the region, particularly in the Northern Barents Sea, and new names have been introduced to establish a complete description of the structural elements in the region (NPD 1996, Grogan et al. 1999). The region exhibits a more or less continuous sedimentary succession from the Carboniferous to Quaternary; many structural elements reflect Jurassic and later tectonism: not least a Tertiary phase of differential uplift had a profound effect on the final sculpting of the province (Nyland et al. 1992).

The most important Upper Palaeozoic tectonic provinces are described below: we should note that the region had a totally different setting in the Upper Palaeozoic, when it formed part of a vast shelf extending from the developing Uralides westwards through northern Greenland and the Arctic Canada Sverdrup Basin to Alaska (Worsley et al. 1986, Beauchamp et al. 1989, Stemmerik & Worsley 1989, 1995, Doré 1991). The northern limits of that Late Palaeozoic shelf are still a matter of debate - some authors have presented reconstructions invoking the existence of land areas to the north - slivers of northern Alaska and northeastern Siberia (Harland et al. 1984, Embry 1989, 1993) - to explain the provenance of siliciclastic sediments from that direction. This vast province was characterised by a series of intrashelf basins, some - e.g., the Nordkapp and especially the Sverdrup Basin – of huge dimensions.

Hammerfest Basin

The Hammerfest Basin is bounded by the Finnmark Platform in the south and by the Loppa High and the Bjarmeland Platform in the north (Fig. 1). The basin is fault-controlled, extending E-W and was probably established in the Late Carboniferous (Gabrielsen et al. 1990), although main subsidence occurred in the Triassic and the Early Cretaceous. Basinal development largely culminated in the Mid Cretaceous, but highly condensed Upper Cretaceous and thin Lower Tertiary shales are also preserved in the basin, in spite of extensive Late Tertiary uplift. There is no evidence of extensive Late Palaeozoic evaporite deposition or of diapirism in the basin, in contrast to the Tromsø Basin to the west and the Nordkapp Basin to the east. The basin's internal structure is characterised by a central dome located along the basin axis and by a complex pattern of dominantly E-Wand WNW-ESE-trending faults; all of these features predominantly reflect Late Jurassic tectonism. A total of 30 exploration wells have been drilled in the Hammerfest Basin but only two have penetrated the Upper Palaeozoic succession

(7120/9-2 in the basin itself had TD about 117 m below the top Permian, while 7120/12-2 on the southern margin penetrated a 1000 m thick Upper Permian sequence resting on Lower Permian dolomites and then red beds and basement).

Finnmark Platform

The Finnmark Platform is bounded by the Norwegian mainland to the south, by the southernmost extension of the Ringvassøy-Loppa Fault Complex to the west, and by the Hammerfest and Nordkapp basins to the north (Fig. 1). The eastern part of the Finnmark Platform in the Norwegian sector is characterised by an underlying rift topography with fault blocks containing siliciclastic sediments of Early Carboniferous age; these were onlapped in the Mid Carboniferous and the overlying sequence is carbonatedominated, with minor evaporites in certain intervals (Fig. 5B). This development continues eastwards, paralleling the Kola Peninsula and on to the Timan-Pechora Basin, which shows a generally similar development (Johansen et al. 1993). During the course of the Permian the more stable platform area (west of approximately 25°) was transgressed, resultant sequences being characterised by siliciclastic and carbonate deposits. Late Jurassic movements along preexisting faults later modified the platform, and Late Tertiary differential uplift resulted in the present, gentle northward tilt of the platform. Five exploration wells have been drilled on the Finnmark Platform, all reaching the Upper Palaeozoic (7120/12-4 on the western platform and 7229/11-1, 7128/4-1, 7128/6-1 and 7228/9-1 in the east). In addition, eight shallow cores have penetrated various parts of the Upper Palaeozoic succession, providing important stratigraphic and sedimentological information (Bugge et al. 1995, Stemmerik et al. 1995).

Loppa High

The Loppa High is a marked structural feature, sharply separated by the E–W-trending Asterias Fault Complex from the Hammerfest Basin to the south and by the Ringvassøy– Loppa and the Bjørnøyrenna fault complexes from the Tromsø and Bjørnøya basins to the west (Fig. 1; Gabrielsen et al. 1990). Eastwards, it grades gently downwards into the Bjarmeland Platform. The area has undergone a complex geological history characterised by several phases of uplift/subsidence and subsequent tilting and erosion. The Loppa High exhibits a Mid Carboniferous rift topography that was filled and draped successively by Upper Palaeozoic siliciclastic deposits, evaporites and carbonates (Fig. 5A). Tectonic tilting during the Late Permian and Early Triassic

Fig. 5. (Page 9). Seismic images of the Upper Palaeozoic succession on the Loppa High and the Finnmark Platform. The Loppa High line (A) illustrates fault control on sedimentation and buildups in both the Gipsdalen and the Bjarmeland groups. The Finnmark Platform line (B) shows half-graben formation affecting the development of the Billefjorden Group and marked thickening of the entire succession northwards. The locations of the lines are shown in Fig. 1. was followed by gradual onlap during the Early and Mid Triassic before rapid subsidence and the deposition of an unusually thick Upper Triassic succession, which now subcrops the Quaternary. Three exploration wells have been drilled on the Loppa High, all penetrating the Upper Palaeozoic succession (7120/1-1,7120/2-1 and 7121/1-1).

Bjarmeland Platform

The Bjarmeland Platform includes the extensive platform areas east of the Loppa High and north of the Nordkapp Basin (Fig. 1). Towards the south and west, the platform is divided into minor highs and sub-basins, thick evaporites and diapirism characterising one of these (the Svalis Dome, site of extensive shallow coring by IKU). The platform was established in the Permian, but subsequent uplift and erosion tilted the Palaeozoic and Mesozoic sequences towards the south so that unconsolidated Quaternary sediments overlie successively older rocks towards the north. Five exploration wells have been drilled on the Bjarmeland Platform, two of them in the transitional area between the platform and the Nordkapp and Hammerfest basins - both of these wells reached the Upper Palaeozoic (7226/11-1 and 7124/3-1), the former demonstrating Mid Carboniferous onlap of basement.

Nordkapp Basin

The Nordkapp Basin is a fault-controlled basin located along the NE-SW-trending Palaeozoic rift that extends eastwards from the Hammerfest Basin (Gabrielsen et al. 1990). The basin is bounded by the Bjarmeland Platform to the north and the Finnmark Platform to the south (Fig. 1) and is divided into a southwestern and a northeastern segment. During the Late Palaeozoic this was a site of extensive halite deposition and the basin is characterised by pronounced salt diapirism. The movement of Palaeozoic salt began in the Early Triassic, and the diapirs have undergone several phases of development. The basin is apparently dominated by a thick, Mesozoic, mainly Triassic, succession, but poor seismic resolution makes determination of Palaeozoic thicknesses uncertain - although in contrast to the Hammerfest Basin, they were surely significant. One exploration well (7228/9-1S) drilled on the margin of the Nordkapp Basin penetrated the Upper Palaeozoic succession; it bottomed in mobilised halite of the Gipsdalen Group. A second well (7228/7-1) drilled recently in the basin itself penetrated Triassic sandstones abutting a Late Palaeozoic diapir; this well also encountered an apparently allochthonous block of Permian carbonates, apparently moved out of place as a result of the diapirism.

Ringvassøy-Loppa and Bjørnøyrenna fault complexes

The boundary between the older platform areas and highs in the east and the deep, younger basins along the western margin of the Barents Sea is defined by a series of fault complexes in the area south of 74°30'N. The heavily faulted and tilted zone along the western margins of the Finnmark Platform passes northwards into the NNE-SSW-trending Ringvassøy–Loppa Fault Complex, which separates the Hammerfest Basin from the deep Tromsø Basin and the Loppa High, before forming the southwestern margins of the Loppa High (Fig. 1; Gabrielsen et al. 1990). Towards the north, this abuts the NNE-SSW-trending Bjørnøyrenna Fault Complex, which defines the junction between the northern Loppa High and the Bjørnøya Basin. The main faults within this province are of Palaeozoic and older origin and were reactivated several times during the Mesozoic and Tertiary. Several exploration wells have been drilled in the area; one of them, 7119/7-1 in the downfaulted Tromsø Basin, was terminated in a diapir mobilising salt of probable Late Palaeozoic age.

Bjørnøya Basin

The Bjørnøya Basin trends NE–SW between the Loppa and Stappen highs. It is separated by the Leirdjupet Fault Complex into a deeper western and shallower eastern part (the Fingerdjupet Subbasin). Although predominantly a Mesozoic feature, with an extremely thick Cretaceous section, rifting may have started already in the Late Palaeozoic to form a precursor to the major Mesozoic subsidence event. Three exploration wells have been drilled in the Fingerdjupet Subbasin, one of them, 7321/8-1 penetrated 86 m of Upper Permian rocks.

Barents Sea western margin

The Barents Sea margin consists of deep basins of Late Mesozoic and Tertiary age, including the Harstad Basin, the Tromsø Basin, the Sørvestsnaget Basin and the Vestbakken volcanic province (Fig. 1). The Mesozoic Senja Ridge and the Veslemøy High define the southeastern margins of the Sørvestsnaget Basin. Seismic observations suggest the presence of salt or mud diapirs in the Sørvestsnaget Basin, in the former case possibly suggesting a Late Palaeozoic age for the basin. None of the exploration wells drilled so far on the Barents Sea margin has reached the Upper Palaeozoic.

Stappen High/Bjørnøya

The Stappen High trends N–S from 73°30'N to at least 75°30'N at 18 to 19°E (Gabrielsen et al. 1990). Bjørnøya forms its highest point lying at the boundary between the Barents Sea marginal basins and the Palaeozoic and Mesozoic platform areas in the east. The Stappen High, like the Loppa High, underwent a complex Late Palaeozoic development involving several phases of uplift, faulting and tilting, all of which have resulted in a condensed and highly variable Upper Palaeozoic and Triassic sedimentary succession (Worsley et al. 2001). Thermal indicators suggest rapid subsidence through the rest of the Mesozoic (Sættem et al. 1994), before the area again became a positive element at some stage in the Tertiary.

Lithostratigraphy

The lithostratigraphic nomenclature for the Upper Palaeozoic succession in the southern Norwegian Barents Sea is based on studies of 13 exploration wells and 12 IKU shallow cores, combined with relatively good seismic coverage (Figs. 1, 5). Recently, important stratigraphic and sedimentological information based on data from the wells have been presented in a series of papers (Bugge et al. 1995, Stemmerik et al. 1995, 1999, Blendinger et al. 1997, Groves & Wahlman 1997, Ehrenberg et al. 1998a, 1998b, 2000, 2001, Lindström 2003), and a formal lithostratigraphic framework for the offshore areas is needed to avoid nomenclatorial confusion in future publications. So far, different authors have often assigned units and sequences to chronostratigraphic epochs with or without the additional use of varying numerical or alphanumerical schemes (see e.g., Bruce & Toomey 1993, Cecchi 1993, Nilsen et al. 1993, Bugge et al. 1995, Ehrenberg et al. 1998a).

The offshore succession comprises 4 major depositional units, viz. the Billefjorden Group, the Gipsdalen Group, the Bjarmeland Group and the Tempelfjorden Group. Only three groups were originally defined by Cutbill & Challinor (1965) in the time-equivalent onshore successions of Spitsbergen and Bjørnøya, but Dallmann et al. (1999) recognised the presence of Bjarmeland Group representatives on Bjørnøya viz. the Hambergfjellet Formation. The Billefjorden, Gipsdalen and Tempelfjorden groups represent significantly different major lithostratigraphical units that are easy to recognise both onshore and offshore as their boundaries reflect major shifts in depositional conditions caused by changes in palaeoclimate, basin configuration, drainage patterns, relative sea level and tectonic setting. We believe that the Bjarmeland Group is represented by a major hiatus in most onshore areas of Svalbard - apart, as noted above, from Bjørnøya (Fig. 6).

The distinctive regional character of these groups in the southern Norwegian Barents Sea includes the extensive development of large-scale carbonate buildups in the Gipsdalen and the Bjarmeland groups and the development of salt pillows within the Gipsdalen Group of the Nordkapp Basin (see Fig. 5).

Billefjorden Group (Billefjordgruppa)

Name

Cutbill & Challinor (1965) introduced the term 'Billefjorden Group' for a suite of non-marine sediments now recognised to be of Late Devonian to Early Carboniferous age. The type area is in the environs of Billefjorden in central Spitsbergen. The Billefjorden Group is a well-established lithostratigraphic unit and its overall facies development and depositional evolution is well known (e.g., Gjelberg 1981, Steel & Worsley 1984). Lower Carboniferous units in the southern Norwegian Barents Sea are herein also assigned to the group. The offshore development of the group resembles that described from onshore with one major exception: the upper part of the group includes some shallow-marine deposits in the southeastern Finnmark Platform. As yet, enigmatic red-bed sequences on the Loppa High are also tentatively assigned to the group, but need further investigation (see below).

Offshore reference areas

The Barents Sea subsurface reference area is located on the eastern Finnmark Platform (Figs. 1, 6), where the Billefjorden Group has been penetrated in its entirety in wells 7128/4-1 from 2503 m to 2058 m and 7128/6-1 from 2533.5 m to 2150 m. Southwards, towards the Norwegian mainland, the Upper Palaeozoic succession subcrops against the Pliocene/Pleistocene unconformity and the IKU shallow cores 7127/10-U-02, 7127/10-U-03 and 7029/03-U-01 penetrated different intervals of the group (Bugge et al. 1995). Present seismic coverage and quality provides reasonable control on the seismic-scale lateral development of the group on the Finnmark Platform (e.g., Samuelsberg et al. 2003).

Thickness

Thicknesses of 445 m and 384 m in wells 7128/4-1 and 7128/6-1, respectively, should be compared to cumulative thicknesses of up to 2500 m in the type area of Billefjorden and of 590 m on Bjørnøya (Dallmann et al. 1999, Worsley et al. 2001). As elsewhere, the group's sediments were deposited in the early phase of a period with active rifting, and both wells are located over the crests of structural highs in the southern part of the Finnmark Platform; seismic data indicate that the group is more than 600 m thick in the adjacent half-grabens. Well 7120/2-1 on the Loppa High penetrated an 847 m-thick succession of sediments tentatively assigned herein to the Billefjorden Group; the succession was encountered from 2624 m to 3471 m, before the well was terminated in a possible dolerite (Fig. 7; see also discussion in next section).

Lithology

On the Finnmark Platform, medium- to coarse-grained, in places conglomeratic, sandstones and minor siltstones and coals dominate the basal part of the succession represented by the Soldogg Formation. These are overlain by a succession of stacked, metre-scale, fining-upward cycles of sandstone, siltstone, claystone and coal assigned to the Tettegras Formation. The upper part of the group, represented by the Blærerot Formation, is characterised by a basal unit of fossiliferous limestones, overlain by marine shales and fine- to medium-grained, fluvial and shallow-marine sandstones.

Sediments tentatively assigned to the group are very differently developed on the Loppa High where well 7120/2-1 penetrated 847 m of varicoloured arkosic breccias, conglomerates, ignimbrites and other types of volcanoclastic deposits (Fig. 7). The basal 115 m are dominated by brownish siltstone and mudstone. The red nature of these sediments, together with their high content of volcanoclastics, makes them anomalous representatives of the Billefjorden Group in this area, although palynomorphs indicate an Early Carboniferous age (Viséan PU to VF Miospore zones from

Fig. 6. Correlation of the Billefjorden Group on the Finnmark Platform. The position of cored sections illustrated by sedimentological logs in Figs 8–10 is indicated by black bars. For explanation of symbols, see Fig. 3.

Fig. 7.

Well logs of the succession assigned to the Billefjorden Group in well 7120/2-1 from the Loppa High. For position, see Fig. 1.

3467 to 2682 m and Early Serpukhovian TK Zone from 2645 to 2630 m) (Lindström 2003). The only other arctic areas where Lower Carboniferous red beds have been found are in the northern part of eastern Greenland (Stemmerik et al. 1993), but even there the change to red beds appears to have occurred in the late Tournaisian - i.e., older than the earliest datings on the Loppa High. The overall lithology and tectonic setting seems rather to suggest closer affinities to the lowermost siliciclastics of the overlying Mid Carboniferous Gipsdalen Group. More work is clearly needed on this problem, especially in view of this representing the only occurrence of volcanoclastics in the Upper Palaeozoic of the Barents Shelf. We note that dolerite dykes of probable Mid to Late Carboniferous age have been reported by Lippard & Prestvik (1997) on Magerøya in Finnmark and Mid Carboniferous volcanic rocks have also been identified on the adjacent Kola Peninsula in northern Russia (Ulmishek 1982).

In view of these uncertainties, this sequence has not yet been described in terms of formational units (Fig. 4).

Lateral extent and variation

The group is generally difficult to map outside the Finnmark Platform and little is known about its regional distribution and variation, although the overall impression is that the Billefjorden Group represents thick siliciclastic-dominated wedges that fill Carboniferous half-grabens in the southwestern Barents Sea. On the Finnmark Platform itself, seismic mapping of the group suggests pronounced lateral variations in thickness due to infill of local half-grabens resulting from Viséan-Serpukhovian rifting (Samuelsberg et al. 2003). Most of the thickening and probably most of the lateral facies changes are in the uppermost part of the group. The rift event appears to be less pronounced east of approximately 29°30'E on the Finnmark Platform where the base of the group is poorly defined seismically. A possibly pre-Viséan sedimentary succession is present locally in this eastern part of the platform. The group's representatives also seem to infill local half-grabens on the Loppa High and the Norsel High (central Bjarmeland Platform), and deeply buried half-graben systems appear to be present also farther to the east on the Bjarmeland Platform. Thick wedgeshaped units corresponding to the Billefjorden Group are observed on seismic lines along the margins of the Nordkapp Basin, suggesting that the basin already formed a major depocentre at that time.

Sediments assigned to the Billefjorden Group are generally separated from the underlying strata by an angular unconformity, as seen in wells 7128/6-1, 7128/4-1 and core 7029/03-U-01. In 7128/6-1, the group rests on Precambrian metasandstones (Røe & Roberts 1992) at 2533.5 mRKB, with a 45 m-thick transitional zone of conglomeratic sandstones interpreted as weathered and reworked basement rocks. These sediments are included in the Billefjorden Group (see definition of Soldogg Formation). Upwards, they pass into more mature sandstones with rare siltstone and coal beds defined by a sharp upward decrease in bulk density and sonic velocity at 2488.5 m.

Age

The Billefjorden Group has been assigned to the Famennian to Viséan in the onshore areas of Bjørnøya and Spitsbergen (Dallmann et al. 1999, Worsley et al. 2001). The offshore development has been dated to the Viséan to Early Serpukhovian. On the Finnmark Platform, palynomorphs suggest that the basal part of the group is of Middle to Late Viséan age (Bugge et al. 1995), i.e., significantly younger than the Famennian to Tournaisian age recorded for the basal sediments onshore. The upper part of the group is apparently of Late Viséan to Early Serpukhovian age (Simon-Robertson 1992, Geochem Group 1994, Bugge et al. 1995, Lindström 2003).

Depositional environments

The Billefjorden Group is characterised by an overall transition from continental fluvially dominated deposits of the Soldogg and Tettegras formations into transitional continental to marginal marine deposits of the Blærerot Formation on the eastern Finnmark Platform. The presence of coal indicates deposition in overall humid climatic conditions – in contrast to the overlying Gipsdalen Group that is characterised by sediments deposited in more arid climates.

Shallow core data from 7029/03-U-01 suggest that the lower parts of the Soldogg Formation represent basement wash and braided river deposits. These pass upwards into delta/coastal plain sandstones, siltstones, claystones and coals of the Tettegras Formation, and are overlain by marine and transitional continental to marginal marine deposits of the Blærerot Formation in well 7128/6-1. The transitional nature of this upper part is demonstrated by rare coal beds in the lowermost part of the formation in well 7128/6-1. The Blærerot Formation appears to be missing in 7128/4-1 either as the result of local uplift and erosion or because the marine transgression never reached the high on which the well was drilled. This depositional area was separated by a major fault southwest of well 7128/4-1 from the provenance areas of basement rocks and metasediments towards the Finnmark coast (Gabrielsen et al. 1990). Shallow cores 7127/10-U-02 and 7127/10-U-03 were taken in a proximal position, 2-3 km away from this main fault, and record a thick development of Viséan syn-rift fluvial deposits (Bugge et al. 1995).

The succession on the Loppa High apparently represents deposition in alluvial fans and proximal braided river systems in a rapidly subsiding sub-basin. Local volcanic activity is suggested on the basis of the large amount of volcanoclastic material in well 7120/2-1.

The depositional environments recorded from the Finnmark Platform generally resemble those recognised in the onshore areas of Spitsbergen and Bjørnøya. The most important difference is the evidence of marine flooding of the eastern Finnmark Platform, perhaps suggesting more prevalent marine conditions in the contemporaneous Nordkapp Basin, with transgression from the east. The lithofacies and depositional environments of the Billefjorden Group on Spitsbergen and Bjørnøya are summarised by Gjelberg (1981), Steel & Worsley (1984) and Harland (1997), all emphasising the considerable facies variations related to local variations in tectonic regime. The reservoir potential of the group's sandstones has been noted by several authors (Grønlie et al. 1980, Steel & Worsley 1984, Worsley et al. 2001).

Formations assigned to the group

The Billefjorden Group is represented by three formations on the Finnmark Platform and these are formally defined and described herein. Formational names are selected from land plants found in northern Norway that utilise nourishment from insects that stick to their leaves. The succession in well 7120/2-1 on the Loppa High is not yet given any formal formational status.

Soldogg Formation (Soldoggformasjonen) Name

From the Norwegian name for the plant Sundew (*Drósera* spp.).

Definition

The type section is defined as the interval from 2503.0 m to 2350.5 m in well 7128/4-1 on the Finnmark Platform (Figs. 2, 6; Larssen et al. 2002, fig. 8), approximating to the base of the 'Viséan sandstone unit' of Ehrenberg et al. (1998a). One core, 27.47 m long, was taken from the upper part of the formation (Fig. 8) in this well. The transition from the underlying basement metasediments into the basal beds of the Soldogg Formation is defined by lower GR readings.

Reference sections

Reference sections are defined as the interval from 2533.5 m to 2358 m in well 7128/6-1 and from 515.5 m to 501.8 m in IKU shallow core 7029/03-U-01 (Figs. 2, 6). Both reference sections are located on the Finnmark Platform. It appears that Ehrenberg et al. (1998a, fig. 4) placed the base of their 'Viséan sandstone unit' in 7128/6-1 at the transition from basement wash conglomeratic sandstones to cleaner interbedded sandstones, siltstones and interbedded fines at 2488.5 m. In 7128/6-1 and 7029/03-U-1, the transition from basement to the basal Soldogg Formation conglomerates is represented by a marked erosional unconformity.

Thickness

The formation is 152.5 m thick in the type well, 175.5 m in well 7128/6-1 and approximately the lowermost 13 m are represented by shallow core 7029/03-U-01 (Fig.6).

Lithology

Sandstones and conglomeratic sandstones with thin beds and laminae of carbonaceous siltstones, shales and coal dominate the formation. The cored interval in well 7128/4-1 (core 4) consists of cross-bedded and laminated sandstones and siltstones with three coal beds, each less than 1 m thick

Fia.8.

Sedimentological log of the upper Soldogg Formation, well 7128/4-1 showing coal-capped, fluvial, fining-upward cycles. The stratigraphic position of the cored interval is shown in Fig. 6. For explanation of symbols, see Fig. 3. (Fig. 8; Larssen et al. 2002, fig. 13). Coal beds occur most abundantly in the upper part of the formation in this well, but are not as abundant as in the overlying Tettegras Formation. Petrographic examination of sidewall cores and cuttings from well 7128/6-1 shows a dominance of mediumto coarse-grained quartzose sandstones similar to those observed in well 7128/4-1.

Shallow core 7029/03-U-01 is dominated by finingupward units of conglomerates and laminated and trough cross-bedded sandstones (Fig. 9; Larssen et al. 2002, fig. 15). Siltstones are rare in this core.

Lateral extent and variation

The Soldogg Formation is only known from the type- and reference wells in the eastern Finnmark Platform. Seismic mapping around the well locations indicates a thickness range of 100–200 m, reflecting deposition prior to or in the early stages of main rifting (cf. Steel & Worsley 1984, Ehrenberg et al. 1998a). The Soldogg Formation becomes difficult to identify seismically eastward and westward on the Finnmark Platform and northward toward the margins of the Nordkapp Basin. It thins, possibly due to erosional truncation, south and southeast of the type well. In 7029/03-U-01 it is capped by an almost 1 m-thick calcrete horizon, implying prolonged subaerial exposure and non-deposition in this area during deposition of the Tettegras Formation.

Age

Based on palynological data, the basal Soldogg Formation is no older than the middle Viséan TC Miospore Zone in well 7128/4-1 (Geochem Group 1994). The rest of the formation in this well is assigned to the NM Miospore Zone in terms of the NW European Miospore zonation of Clayton et al. (1977). Simon-Robertson (1992) assigned the interval herein to the Soldogg Formation in well 7128/6-1 to the upper part of the TC and the NM Miospore zones, and a similar age range is given for the formation in 7029/03-U-01 (Bugge et al. 1995).

Depositional environments

The sandstones encountered in well 7029/03-U-01 are interpreted as braided river deposits (Bugge et al. 1995). The sediments in core 4 from well 7128/4-1 are interpreted as representing various facies within a floodplain-dominated environment, including bar units, channel floor and crevasse splay deposits. They formed four, generally fining-upward rhythms, two of which are characterised by the formation of coal beds at the top. According to log data, the cored sections are very similar to the uncored intervals, and Ehrenberg et al. (1998a) suggested that the entire interval was deposited in an alluvial fan to braided river system, fining up into floodplain-dominated environments.

Correlation

As described above, a general correlation to the Billefjorden Group on Spitsbergen can be made, although no more detailed correlation at the formation level is appropriate.

Fig. 9. Sedimentological log of the Soldogg and Blærerot Formations in core 7029/03-U-01 illustrating the basal marine limestone and mudstone succession of the Blærerot Formation. The stratigraphic position of the cored interval is shown in Fig. 6. For explanation of symbols, see Fig. 3.

Tettegras Formation (Tettegrasformasjonen) Name

From the Norwegian name for the plant Butterwort (*Pinguícula vulgáris*).

Definition

The type section is defined as the interval from 2358 m to 2202 m in well 7128/6-1 (Figs. 2, 6) and corresponds to the 'Viséan coaly/shaly unit' of Ehrenberg et al. (1998a) in this well. One core, 27.4 m long, exists from the upper part of the formation (Fig. 10). The transition from the Soldogg Formation into the basal beds of the Tettegras Formation is defined by higher GR readings and overall a more rapidly changing GR curve, reflecting the transition from sand-stones with rare siltstone and coal beds into rhythmically deposited sandstones, siltstones, claystones and coal.

Reference section

Reference sections are defined as the intervals from 2350.5 m to 2058 m in well 7128/4-1, from 479.2 m to 348 m in IKU core 7127/10-U-02 and 417.0 m to 338.9 m in 7127/10-U-03 (for locations see Fig. 2). The IKU cores penetrated neither the top nor the bottom of the Tettegras Formation, but seismic correlation suggests that the two cored intervals are separated by an approximately 175 m-thick uncored succession (see Bugge et al. 1995).

Thickness

The formation is 156 m thick in the type well and 292.5 m in well 7128/4-1, thickening to 650–700 m in a half-graben where the two IKU wells (7027/10-U-02 and -03) drilled about 210 m of the unit. This thickness is atypical, and reflects onset of active rifting and deposition of thick sequences in active half-grabens, with thinning and even erosion of adjacent highs. This is most marked close to the major fault that separated the area of deposition from southern provenance areas near or on the Baltic Shield.

Lithology

The formation is dominated by alternating beds of finegrained sandstone, siltstone, claystone and coal. The sediments are generally stacked to form less than 5 m-thick, fining-upward units of supposed delta-plain or coastal floodplain origin, separated by thicker units of fluvial sandstone and siltstone. Well logs suggest that the cored intervals are representative of the entire unit in this area.

Lateral extent and variation

The Tettegras Formation is known only from the type and reference wells on the eastern Finnmark Platform. Seismic mapping indicates thickness variations from zero over the crest of structural highs to more than 650 m in the half-graben areas, reflecting infill of half-graben topography related to the initial phase of Mid Carboniferous rifting. The formation becomes difficult to identify seismically toward both the east and the west on the Finnmark Platform, and northwards toward the margins of the Nordkapp Basin. It thins towards the south and southeast, and is missing at core site 7029/03-U-01 in the southeastern part of the platform, probably as a result of erosional truncation.

Fig. 10.

Sedimentological

Tettegras Formation

showing fluvial fin-

ing-upwards cycles,

some of which are

capped by coal. The

stratigraphic position of the cored

interval is shown in

tion of symbols, see

Fig. 6. For explana-

Fig. 3.

log of the upper

in well 7128/6-1

Age

In the type well (7128/6-1), the interval below 2251 m is assigned to the Viséan TC-NM Miospore zones of Clayton et al. (1977) whereas the upper part is dated as belonging to the VF Miospore Zone (Simon-Robertson 1992). Similar ages are reported from well 7128/4-1 (Geochem Group 1994), whereas the formation is dated as belonging entirely to the

TC-NM Miospore zones in the IKU cores 7027/10-U-02 and - 03 (Bugge et al. 1995).

Depositional environments

The rhythmic occurrence of coal-topped, fining-upward cycles is taken as evidence for deposition on a vast flood plain or a delta plain (Bugge et al. 1995, Ehrenberg et al. 1998a). High-amplitude seismic reflectors typical for this coal-bearing unit are observed on seismic data throughout the eastern Finnmark Platform. Although it has not yet been possible to map the detailed transition from fluvial to marine deposits or the position of the possible delta front suggested by Bugge et al. (1995), Ehrenberg et al. (1998a) noted that about 25 km north of the wells studied, seismic data show a strong northward progradational pattern, suggesting transition into a prograding coastline.

Correlation

A general assignation to the Billefjorden Group of Spitsbergen can be made, although no correlation at the formation level seems appropriate.

Blærerot Formation (Blærerotformasjonen) Name

From the Norwegian name for Bladderwort (Utriculária vulgáris).

Definition

The basal stratotype is defined at 501.8 m in IKU core 7029/03-U-01 on the Finnmark Platform (Figs. 2, 6, 9). Increased sonic velocities, imaging the contrast between the underlying porous sandstones and overlying tight carbonates, define the transition from the Tettegras Formation into the basal beds of the Blærerot Formation.

Bedrock is overlain by glacial drift at 437 m in the core so that the formation's upper part and total thickness are unknown in the type section (Fig. 6). Bugge et al. (1995) noted that the upper 15 m of the core, dated by them to the Serpukhovian, appear to show facies characteristic for both the Billefjorden and Gipsdalen groups, "reflecting a probable gradual transition between the two groups" in this area.

Reference section

A reference section is defined in the interval from 2202 m to 2150 m in well 7128/6-1 (Figs. 2, 6). No cores were cut in this well, but logs show the same pattern as in the type section.

Thickness

The preserved thickness is 64.6 m in the type well and the total thickness 52 m in the reference well.

Lithology

The lowermost five metres of the Blærerot Formation consist of intensely bioturbated, grey to yellowish-brown limestone and sandy dolomites in core 7029/03-U-01. Bugge et al. (1995) described these as partially dolomitised mudstones and wackestones containing gastropods, brachiopods, bivalves, trilobites, foraminifers and crinoids. Large, laminated, irregular nodules, interpreted as oncoids, are present in the lower part. The carbonates are overlain by a 23 mthick, coarsening-upward succession of dark grey silty shale with a total organic carbon (TOC) content of 3-4% in the lower part. The shale becomes more bioturbated and less organic-rich upwards. It contains much of the same marine fossils as in the underlying carbonate unit, but in addition abundant terrestrial plant remains are present. There is sharp transition towards the overlying 22 m-thick sandstone-dominated unit, which consists of two coarseningupward cycles with basal dark grey siltstones. The sandstones are fine- to medium-grained and contain low-angle trough cross lamination and wave ripples (Fig. 9). Yellowishbrown silty shales with some coal abruptly overlie the apparently shallow-marine succession of the lower Blærerot Formation (see Larssen et al. 2002, fig. 18), and these are interpreted as coastal plain deposits. Log correlation suggests that the same overall lithologies are present in the reference well 7128/6-1. Cuttings from the basal carbonate bed in this well include a fauna very similar to that described from the type section.

Lateral extent and variation

The formation is known only from 7029/03-U-01 and 7128/6-1. It is thinnest in 7128/6-1, which is located over the crest of a rotated fault block. The formation is missing from 7128/4-1 on the crest of an adjacent uplifted block. Available biostratigraphic data suggest that the Blærerot Formation interfingers laterally with the Tettegras Formation towards the south (see Bugge et al. 1995).

Age

Palynomorphs in the type section indicate a Late Viséan – Early Serpukhovian age in the type section (Bugge et al. 1995). A similar age range is indicated for the formation in well 7128/6-1 (Simon-Robertson 1992).

Depositional environments

The carbonate beds at the base of the formation record the first marine flooding of the Finnmark Platform. Initial deposition of shallow-marine platform carbonates was followed by deposition of shale in lower shoreface environments. The sandstones in the top of the type section are of upper shoreface to possibly fluvial origin (Bugge et al. 1995). The entire formation represents deltaic or shoreface progradation as the depositional response to a rapid marine transgression, and its development resembles that of the classical Yoredale cycles of the UK (see e.g., Elliott 1975).

Correlation

Marine sediments are not known from the Billefjorden Group onshore Spitsbergen and Bjørnøya. Age-equivalent, non-marine sediments are widespread in the region and lacustrine organic-rich shales have been reported from the Sverdrup Basin (Goodarzi et al. 1987, Davies & Nassichuk 1988). However, this unit probably represents the farthest extent of a marine transgression, presumably from the Timan–Pechora Basin to the east (cf. Alsgaard 1993, Johansen et al. 1993) and correlative marine sequences should be expected to be present at depth in the Tiddly and Nordkapp basins.

Gipsdalen Group (Gipsdalsgruppa)

Name

Cutbill & Challinor (1965) introduced the term Gipsdalen Group for a suite of rocks of mid-Carboniferous to Early Permian age. The group is widely exposed on Svalbard, with its type area in central Spitsbergen. The group's overall geological development is well known onshore, both on Spitsbergen itself (e.g., Steel & Worsley 1984, Dallmann et al. 1999) and on Bjørnøya on the Stappen High (Worsley et al. 2001). The Gipsdalen Group is here extended to cover the offshore Mid Carboniferous to Lower Permian succession in the southern Norwegian Barents Sea and is there dominated by red-coloured siliciclastics and warm-water, commonly dolomitised carbonates - also with the significant presence of evaporites and the halite diapirs in the Nordkapp Basin. Wells 7121/1-1 from the margins of the Loppa High and wells 7124/3-1 and 7226/11-1 from the Bjarmeland Platform record deposition in deeper marine settings than seen onshore. The formational scheme proposed herein is relatively broad and reflects three, easily recognised, highly diachronous stages of development starting with red-bed sedimentation in isolated fault-controlled basins, followed by mixed siliciclastic-carbonate deposition and terminated by carbonate-dominated sedimentation on the platforms and carbonates and evaporites in the basins.

Offshore reference areas

In the Norwegian part of the Barents Sea, 12 wells and 4 shallow cores have penetrated strata assigned to the Gipsdalen Group. The subsurface reference area is located on the eastern Finnmark Platform where this succession has been penetrated by wells 7229/11-1 and 7228/9-1S on the northern margin and 7128/6-1 and 7128/4-1 in a more central position on the platform (Fig. 11). Farther toward the south, IKU drilled three cores (7029/03-U-02, 7030/03-U-01 and 7129/10-U-02) close to the Finnmark coast where the group's sediments subcrop against the Pliocene/Pleistocene unconformity (Bugge et al. 1995). Additional information on the group's development comes from well 7120/12-4 on the western Finnmark Platform.

The Loppa High also forms an important reference area with good seismic coverage, including a 3D survey, and three wells, viz. 7120/1-1, 7120/2-1 and 7121/1-1, that penetrate the succession in the southern Loppa High area (Fig. 11; Larssen et al. 2002, fig. 20; Stemmerik et al. 1998, Elvebakk et al. 2002). Farther to the east, the group was encountered in wells 7124/3-1 and 7226/11-1 on the southern margins of the Bjarmeland Platform. A shallow core and several mini-

cores have also been drilled on the Svalis Dome on the Bjarmeland Platform (Nilsson et al. 1996).

Thickness

The Finnmark and Bjarmeland platforms and the Loppa High formed low-angle ramps dipping toward the Nordkapp and eastern Hammerfest basins during deposition of the Gipsdalen Group. The thickest drilled succession is from the southern flanks of the Loppa High, where the group is more than 1000 m thick in well 7121/1-1, and seismic data suggest that a further 500 m is present below TD. This is comparable to the up to 1800 m-thick successions recorded locally in marked half-graben structures such as Inner Hornsund and Billefjorden on Spitsbergen. In contrast, the group's sediments are totally absent on the crest of the Loppa High – as on southern Bjørnøya on the Stappen High – while well 7120/2-1 in a near-crestal position shows a 680 m-thick development, similar to the 595 m- thick development on northern Bjørnøya.

The group thins from approximately 315 m in well 7128/6-1 to 250 m in 7128/4-1 on the Finnmark Platform; IKU cores suggest comparable thicknesses (Bugge et al. 1995). Farther to the west, well 7120/12-4 penetrated the upper 85 m of the group. Wells 7228/9-15 and 7229/11-1 on the northern Finnmark Platform penetrated only the upper (Moscovian-Sakmarian) part of the group: this interval is 211 m and 333 m thick, respectively, in these wells - significantly thicker than the corresponding interval in 7128/4-1 and 7128/6-1 farther to the south. The group thickens even more towards the northwest and seismic data from the Nordkapp Basin indicate thicknesses of several hundred metres. On the Bjarmeland Platform, the group is more than 800 m thick in well 7226/11-1, where Bashkirian carbonates rest directly on basement. A total thickness of 1000 m is suggested by the 465 m penetrated in 7124/3-1 combined with seismic data from the underlying section. The group is 670 m thick in well 7120/1-1 where it rests on garnet-mica schists/gneisses of inferred Caledonian age.

Lithology

The group is composed of metre-thick to rarely tens of metre-thick rhythmic units generally showing shallowingupward trends. Continental red-bed sandstones, siltstones and conglomerates dominate the basal part of the succession. These are overlain by mixed carbonates and siliciclastics where the siliciclastics are grey-coloured marine sandstones, conglomerates and shales and the carbonates include a variety of shallow-marine facies. The upper part of the group is dominated by rhythmically bedded limestones and dolomites with sporadic, small, phylloid algal -Palaeoaplysina buildups, and minor evaporites on the platform areas. The biota is of chlorozoan composition and dominated by algae and foraminifers (cf. Lees & Buller 1972). Seismic data suggest that the shelf carbonates pass into several hundred metre-thick successions of stacked buildups in the deeper ramp areas (Elvebakk et al. 2002). These buildups have not been drilled and their internal composition and

exact stratigraphic position is therefore unknown. However, similar relationships are described from age-equivalent rocks in the Sverdrup Basin where the largest buildups occur on the basin slope (Beauchamp 1993). Evaporites dominate in the basinal areas; anhydrite occurs interbedded with carbonates near platform margins whereas halite dominates in more distal settings.

Lateral extent and variation

The group's sediments are found throughout the Norwegian Barents Sea. Thickest developments are seen in the Nordkapp Basin and other basinal areas where the succession is dominated by evaporites. The thickest carbonatedominated successions are found on the distal parts of the platforms, such as the eastern flanks of the Loppa High and the northern margins of the Finnmark Platform. The group thins towards structural highs and mainland Norway: it shows a clearly onlapping development, so that the lower non-marine parts were deposited in isolated half-grabens, while platforms and highs only became part of the depositional basin later, when relative second order sea-level rise led to marine flooding of the entire circum-Arctic region (cf. onland Spitsbergen, Steel & Worsley 1984). The group's occurrence, resting directly on basement in 7226/11-1 (see above), confirms this general pattern. The considerable variations in lithology, both laterally and vertically, reflect the ongoing sea-level rise and resultant varying timing of drowning of different siliciclastic provenance areas. A larger proportion of shallow- marine siliciclastics is expected updip on the platforms, while carbonate buildups are best developed on basinal margins. The Loppa and Stappen highs experienced several phases of tectonism during deposition of the group, in contrast to the vast bulk of offshore platforms and basins, and onshore exposures on Bjørnøya show interesting analogues for the development expected on the Loppa High (Worsley et al. 2001).

The boundary between the Gipsdalen Group and the underlying Billefjorden Group is only known with certainty from wells 7128/4-1 and 7128/6-1 on the Finnmark Platform and from 7120/2-1 on the Loppa High. On the Finnmark Platform, the sharp contact between Lower Carboniferous, grey, fluvial siliciclastics with coals below and red-bed facies with caliche above marks a boundary represented by a major regional unconformity in the circum-Arctic, and is associated with a significant change in palaeoclimate from warm and humid to warm and arid to semi-arid (Steel & Worsley 1984, Stemmerik & Worsley 1989, Stemmerik 2000).

Age

The basal, non-marine, red-bed succession contains palynomorphs indicating a general Serpukhovian to Bashkirian age. Fusulinids suggest a Late Bashkirian to Sakmarian age for the marine part of the group (Fig. 4; Stemmerik et al. 1998, Ehrenberg et al. 1998a, Larssen et al. 2002, fig. 6). In onshore areas of Svalbard, the group's sediments have been dated to the Late Serpukhovian to Early Artinskian (Dallmann et al. 1999).

Depositional environments

The basal non-marine red-bed succession of the Ugle Formation was deposited during active rifting in the ?Late Serpukhovian to Bashkirian, and cores from 7120/2-1 represent alluvial fan and braided river deposits. The overlying Falk Formation marks the transition into shallow-marine deposition at a time when there still was siliciclastic supply from emergent highs. The Ørn Formation, uppermost in the group, was deposited in a variety of shallow to deeper marine carbonate environments during sea-level highstands. The presence of extensive subaqueous anhydrite and halite deposits in the basins and sabkha evaporites on the platforms clearly suggests that deposition took place in warm semi-arid to arid climates (Steel & Worsley 1984, Stemmerik 2000). The platform succession is characterised by stacked rhythmic shelf deposits often terminated by subaerial exposure surfaces, reflecting deposition during a time period characterised by high-frequency and high-amplitude fluctuations in sea level (e.g., Stemmerik & Worsley 1989, Pickard et al. 1996, Stemmerik et al. 1998, Ehrenberg et al. 1998a, Samuelsberg & Pickard 1999, Worsley et al. 2001).

The depositional environments recorded from the platform areas generally resemble those recognised onshore Spitsbergen and Bjørnøya (Pickard et al. 1996, Stemmerik et al. 1998, Samuelsberg & Pickard 1999, Stemmerik & Worsley 2000). The deeper marine, outer ramp and basinal deposits have no counterparts onshore.

Formations assigned to the group

Three formations are formally described below and these are named after birds of prey common to northern Norway. The still poorly known outer platform and basinal carbonate succession is provisionally included in the uppermost Ørn Formation.

Ugle Formation (Ugleformasjonen) Name

From the Norwegian name for an owl (several species are found in northern Norway – among them the Hawk Owl *Surnia ulula*).

Definition

The formation is defined by the interval from 2624 m to 2221 m (log depth) in well 7120/2-1 on the Loppa High (Figs. 2, 11). The base is characterised by an abrupt log break below a 54 m-thick siltstone-dominated unit and overlies a conglomeratic unit with coal fragments. The boundary is marked by uniformly higher gamma log readings and a decrease in density and interval transit time. The upper part of the formation is cored and the top corresponds to 2225.7 m in the core (Fig. 12).

Reference sections

Reference sections are provided by the intervals from TD at 2202 m to 2118 m in well 7120/12-4 on the western Finnmark Platform's northern margins towards the Hammerfest Basin and from TD at 509 m to 498.6 m in core

7029/03-U-02 on the southeastern Finnmark Platform (Figs. 2, 13). The base of the formation was not penetrated in these wells but seismic data suggest that in the area around 7029/03-U-02 this probably correlates to a regional angular unconformity approximately 50 m below TD (Bugge et al. 1995).

Thickness

The formation is 403 m thick in the type well 7120/2-1, at least 84 m thick in 7120/12-4 and, according to Bugge et al. (1995), approximately 60 m thick in the area around 7029/03-U-02. The formation was not developed in wells

Fig. 12. Sedimentological log of the uppermost Ugle Formation in its type section in well 7120/2-1, Loppa High, illustrating the shift from caliche-capped alluvial conglomerates to marine sandstones and lime-stones. The stratigraphic position of the cored interval is shown in Fig. 11. For explanation of symbols, see Fig. 3.

7226/11-1, 7128/6-1, 7128/4-1 and 7120/1-1, while wells 7124/3-1, 7121/1-1, 7228/9-1S and 7229/11-1 reached TD higher in the Gipsdalen Group (Fig. 11).

Lithology

The formation is characterised by reddish-brown to brown conglomerates, coarse-grained sandstones and minor siltstones. In well 7120/2-1, the formation is dominated by approximately 10 metre thick fining-upward units of reddish-brown coloured conglomerate to siltstone with light grey calcite nodules at the top (Fig. 12). The pebbles are dominated by variously coloured volcanoclastic material with red- and grey-coloured feldspar crystals. The core from 7029/03-U-02 consists of alternating, fining-upward, coarse pebbly sandstones and reddish-brown and greyish-green mottled siltstones (Fig. 13). Sediments are more fine-grained in well 7120/12-4 and they mainly consist of reddish-brown to brown, mottled sandy siltstones with common light grey to greyish-green calcareous nodules.

Lateral extent and variation

The Ugle Formation was deposited in isolated half-grabens which developed during Mid Carboniferous rifting. These features appear to be widespread across the platform areas of the Norwegian Barents Sea (cf. Worsley et al. 2001, fig. 11B) and correlative units to this formation may well be thickly developed in deeper basinal areas. The formation is only locally developed on the Finnmark Platform and was not detected in well 7226/11-1 on the southern margin of the Bjarmeland Platform.

Age

Dating of the formation is difficult because of its lack of fossils. However, a diverse palynomorph assemblage of Late Serpukhovian to Early Bashkirian age (SO-KV Zone) has been reported recently in well 7120/2-1 in the interval around 2420 m (Lindström 2003). The youngest age of the formation is suggested by the basal part of the overlying Falk Formation, dated as Late Bashkirian in well 7120/2-1 (Stemmerik et al. 1998).

Depositional environments

An overall, arid to semi-arid, terrestrial environment of deposition is indicated by the dominance of red-coloured sediments, widespread caliche soils and the absence of marine fossils. Conglomerates were probably deposited in the proximal parts of alluvial fans building out from active faults. In 7120/2-1, massflow deposits rich in volcanoclastic pebbles dominate the conglomerates, indicating volcanic activity on or near the Loppa High during Mid Carboniferous times. These coarse facies interfinger down-stream with more finegrained, flood-plain sandstones and overbank fines; fluvial channel-fill deposits are rare.

Correlation

Alluvial red-bed sediments were deposited in numerous half-grabens throughout the Arctic during the Mid

Fig. 13. Sedimentological log of the Ugle and Falk formations in reference core 7029/03-U-02. The stratigraphic position of the cored interval is shown in Fig. 11. For explanation of symbols, see Fig. 3.

Carboniferous and are assigned to a vast number of lithostratigraphic units spanning over differing segments of Mid Carboniferous time, but all reflecting ongoing syndepositional rifting. The Ugle Formation correlates with red-beds of the Landnørdingsvika Formation on Bjørnøya (Gjelberg 1981, Gjelberg & Steel 1981, 1983, Worsley et al. 2001, Larssen et al. 2002, fig. 6), perhaps to the lowermost Hyrnefjellet Formation in the Inner Hornsund Trough of southern Spitsbergen, the Petrellskaret Formation in Bellsund, the Brøggertinden Formation on Brøggerhalvøya and the Hultberget and Ebbadalen formations in the

Billefjorden Trough (see Holliday & Cutbill 1972, Johannessen & Steel 1992, Dallmann et al. 1999).

Falk Formation (Falkeformasjonen) Name

From the Norwegian name for a falcon (four species, all belonging to the genus *Falco*, are found in northern Norway).

Definition

The type section is defined in the interval from 2221 m to 2024 m (log depth) in well 7120/2-1 on the Loppa High (Figs. 2, 11; Larssen et al. 2002, fig. 20). The base corresponds to 2225.7 m in core depth (Fig. 14). The formational base reflects an abrupt change from non-marine, reddish-brown conglomerates of the Ugle Formation to dark grey, marine shales and marks the first marine transgression in the area; this gives a log response characterised by a change toward overall lower readings on the gamma ray log as a result of the transition into carbonates (Fig. 11; Larssen et al. 2002, fig. 20). The formation otherwise shows a noisy log pattern, reflecting the intercalation of siliciclastics and carbonates.

Reference sections

Reference sections are found from 2150 m to 2050 m in well 7128/6-1 (Fig. 11; Larssen et al. 2002, fig. 25), 2058 m to 2000 m in 7128/4-1 (Fig. 11; Larssen et al. 2002, fig. 26), 498.6 m to 393 m in core 7029/03-U-02 (Figs 11, 13; Larssen et al. 2002, fig. 27) and from TD at 481.7 m to 463 m in 7030/03-U-01 (Fig. 17), all located on the Finnmark Platform. In 7029/03-U-02, the base also represents an abrupt change in both colour and overall lithofacies from non-marine, red and green mottled silty shales to marine, greenish-grey, bioturbated silty shales. In wells 7128/4-1 and 7228/6-1, the formation generally corresponds to the informal units L1 and L2 of Ehrenberg et al. (1998a).

Thickness

The formation is thickest in the type well (201.7 m); it is 105 m thick in 7029/03-U-02 on the southern Finnmark Platform and thins northwards to 58–100 m in well 7128/4-1 and 7128/6-1 (Fig. 11). The formation is missing in 7226/11-1 where carbonates of the overlying Ørn Formation rest directly on basement, while wells 7124/3-1, 7121/1-1, 7228/9-1 and 7229/11-1 reached TD higher in the Gipsdalen Group.

Lithology

The formation consists of a mixture of shallow-marine sandstones, marine siltstones and shallow-marine carbonates. In

Fig. 14. Sedimentological log of the cored part of the Falk Formation in its type section in well 7120/2-1, Loppa High. Reproduced from Stemmerik et al. (1998) with permission from Norsk Petroleumsforening. The stratigraphic position of the cored interval is shown in Fig. 11. For explanation of symbols, see Fig. 3.

7120/2-1, the lower 51 m consists of stacked, less than 5 mthick rhythms of coarse-grained pebbly sandstone with minor shale and dolomite (Fig. 14). Trough cross-bedding and horizontal lamination is common. This lower development is overlain by a 125 m-thick unit of rhythmically interbedded shales, fossiliferous dolomitic mudstones to packstones (locally with anhydrite or chert nodules), and fine- to medium-grained sandstones with a few pebbly sandstone beds. Crinoids, brachiopods, fusulinids, small foraminifers and corals are the most abundant fossils, together with occasional phylloid algae and palaeoaplysinid plates.

In the lower part of core 7029/03-U-02 and in 7030/03-U-01, the Falk Formation consists of 1 to 5 m-thick, fining-upward units of light grey, medium- to coarsegrained, pebbly, trough cross-bedded to planar-laminated sandstones grading upwards into laminated greenish silty shales. Each unit has a sharp and erosive lower boundary. Marine fossils are limited to very rare brachiopods. The upper part of the formation in 7128/6-1 and 7029/03-U-02 consists of cycles of fine- to very fine-grained sandstones, green silty shales and carbonate wackestones to bound-stones (Figs. 11, 13, 15).

Lateral extent and variation

The base of the formation represents a major transgression of the platform areas as seen in 7120/2-1 from the Loppa High and in the Finnmark Platform wells 7128/4-1, 7128/6-1 and 7029/03-U-02, where marine siliciclastics overlie continental deposits or basement. The top of the Falk Formation is likely to be highly diachronous as it reflects the differing times when local siliciclastic source areas were drowned and the mixed siliciclastic-carbonate depositional system was replaced by carbonates. The formation is accordingly expected to be thickest in proximal platform areas and around tectonically active highs; thinnest developments are expected distally on the platforms, and it is either highly condensed or missing in the basins. These prognoses are supported by the gross wedge-shaped geometry of the formation seen on the Finnmark Platform. The formation is missing in areas that have been sheltered from siliciclastic supply, like the local high on the southern Bjarmeland Platform where well 7226/11-1 was drilled: in this location, carbonates of the overlying Ørn Formation rest directly on basement.

Age

Stemmerik et al. (1995, 1998) suggested a Late Bashkirian to Early–Middle Gzelian age based on fusulinid data. The formation is of Late Bashkirian to Early Moscovian age in 7120/2-1, where Lindström (2003) identified an Early Moscovian palynological assemblage in the upper part of the formation (2074.6 to 2035 m), while the lower part of the overlying Ørn Formation is dated as being of Late Moscovian age on the basis of fusulinids (Stemmerik et al. 1998). The top of the formation in 7030/03-U-01 apparently coincides with the Kasimovian–Gzelian boundary whereas

Fig. 15. Sedimentological log of the Falk Formation in reference well 7128/6-1 illustrating the characteristic intebedding of carbonates and marine siliciclastics. The stratigraphic position of the cored interval is shown in Fig. 11. For explanation of symbols, see Fig. 3.

an even younger age is indicated in 7029/03-U-02 where the uppermost part of the formation extends into the Early to Middle Gzelian (Stemmerik et al. 1995, Bugge et al. 1995). In 7128/6-1, the formation is of Late Moscovian to Early Gzelian age (Ehrenberg et al. 1998a).

Depositional environments

The Falk Formation is characterised by sediments deposited as a response to high-frequency and high-amplitude fluctuations in sea level (see e.g., Stemmerik et al. 1998, Stemmerik & Worsley 2000). Deposition also took place during an overall rise in relative sea level in shallow shelf environments ranging from offshore silt-dominated to shoreface sanddominated lithofacies during deposition of the lower part of the formation. Sediments in the upper part of the formation suggest that the relative sea-level rise had by then flooded most platform areas so that lithofacies there are characterised by more fine-grained siliciclastic input, deposited in offshore to lower shoreface environments, and by subtidal carbonates. The presence of caliche indicates periods of subaerial exposure of the carbonates, and during sea-level lowstands the platform areas apparently formed vast lowlands.

Correlation

Mixed siliciclastics and shallow-marine carbonates are common in the lower part of the Gipsdalen Group in the onshore areas of Svalbard. The formation correlates to the Kapp Kåre and Kapp Hanna formations on Bjørnøya (Stemmerik & Worsley 2000, Worsley et al. 2001), perhaps to the uppermost red-bed Hyrnefjellet Formation and lower Treskelodden Formation in Hornsund, the Tårnkanten/Schleteligfjellet and lower Wordiekammen formations of western Spitsbergen, and the Minkinfjellet, Malte Brunfjellet, Hårbardbreen and lowermost Wordiekammen formations of central to eastern Spitsbergen and Nordaustlandet (Dallmann et al. 1999). In contrast to the offshore and most onshore areas, both Bjørnøya and Hornsund were characterised by significant syndepositional tectonism at the time.

Possible members

No formal members are proposed herein, but the work of Ehrenberg et al. (1998a) and seismic mapping on the Finnmark Platform indicates that the formation in this area may comprise two distinctive units ('L-1' and 'L-2') separated by a hiatus spanning the Lower Kasimovian in well 7128/6-1. This corresponds to a period of tectonic activity on Bjørnøya (Worsley et al. 2001). On a seismic scale, however, these two informal units appear to be conformable on the Finnmark Platform.

Ørn Formation (Ørneformasjonen) Name

From the Norwegian name for an eagle (three species, including the Sea Eagle *Haliaetus albicilla*, are found in the northern Norway).

Definition

The type section is defined as the interval from 2050 m to 1834.7 m in well 7128/6-1 on the Finnmark Platform (Figs. 2, 11; Larssen et al. 2002, fig. 30). The upper boundary corresponds to 1836.2 m in core depth (Fig. 16). The base of the formation is defined at a change towards overall lower readings on the gamma ray log and a less noisy gamma ray pattern, reflecting the dominance of carbonates (Fig. 11; Larssen et al. 2002, fig. 30). The formation corresponds to units L-3 to L-7 of Ehrenberg et al. (1998a) in this type well.

Reference sections

Reference sections are provided by the intervals: 2024.0 m to 1945.0 m in 7120/2-1 and from TD at 5000 m to 3990 m in 7121/1-1 (Fig. 11; Larssen et al. 2002, figs. 20, 32), both on the Loppa High; in 7120/2-1 the base is marked by a pronounced drop on the gamma ray curve and the preserved part of the formation is characterised by uniformly low gamma ray values. The interval 5137 m to 4334.7 m in well 7226/11-1 on the Bjarmeland Platform (Figs 2, 11); and the intervals 2000 m to 1820 m in 7128/4-1 (Fig. 11), 463.0 m to 334.3 m in 7030/03-U-01 (Fig. 17), 393 m to 319.9 m in 7029/03-U-02 (Fig. 18), and 455.9 m to 399.6 m in 7129/10-U-02, are all located on the Finnmark Platform (Fig. 2).

Thickness

The Ørn Formation is 215 m thick in 7128/6-1 and 180 m thick in the adjacent 7128/4-1 well; a composite thickness of 150 m to 200 m is recorded in the IKU cores farther south on the Finnmark Platform. The formation thickens northwards to about 246 m in well 7228/9-1S and to 358 m in 7229/11-1 near the northern margins of the platform. It is about 800 m thick in well 7226/11-1 and probably about 1000 m thick in and beneath 7124/3-1 on the southern margins of the Bjarmeland Platform. Farther to the west, on the southern margins of the Loppa High, the formation is over 1000 m thick in well 7121/1-1, while it thins and is progressively eroded up-dip so that only 79 m are preserved in well 7120/2-1 near the crest of the high.

Lithology

The formation is dominated by shallow-marine carbonates on the platform areas and interbedded carbonates and evaporites in the more distal ramp to basinal settings. The carbonates contain a warm-water biota dominated by small foraminifers, fusulinids and calcareous algae and with abundant fragments of *Palaeoaplysina* (see Larssen et al. 2002, figs. 36, 37). Crinoids, bryozoans, brachiopods and corals are also present. Siliciclastics are rare in the Ørn Formation and

Fig. 16. (Right) Sedimentological log of the entire Ørn Formation in its type section in 7128/6-1, Finnmark Platform showing the highly variable facies development of the platform carbonates. The stratigraphic position of the cored interval is shown in Fig. 11. For explanation of symbols, see Fig. 3.

GEIR B. LARSSEN, GEIR ELVEBAKK, LEIF B. HENRIKSEN, STEIN-E. KRISTENSEN, INGER NILSSON, TOMMY J. SAMUELSBERG, TORE A. SVÅNÅ, LARS STEMMERIK & DAVID WORSLEY

Fig. 17. Sedimentological log of the Falk and Ørn formations in reference core 7030/03-U-01 illustrating the facies variations of the completely dolomitised warm-water carbonate succession. The stratigraphic position of the cored interval is shown in Fig. 11. For explanation of symbols, see Fig. 3.

the vast bulk of its rhythmic development is characterised by pure carbonates, or more distally, carbonates and evaporites - in contrast to the mixed siliciclastics and carbonates of the underlying Falk Formation. A temporary return to mixed

Fig. 18. Sedimentological log of the Ørn Formation in reference core 7029/03-U-02. The stratigraphic position of the cored interval is shown in Fig. 11. For explanation of symbols, see Fig. 3.

carbonates and shales near the top of the formation is characterised by a gamma ray peak on the logs.

In well 7128/6-1, the lower part of the formation consists of rhythms of dolomitic mudstones and bryozoan wackestones with minor thin shales (Fig. 16). This is followed by a succession of Palaeoaplysina-dominated buildups interbedded with fusulinid-dominated wackestone, overlain by an interval dominated by dolomitic mudstone with abundant anhydrite nodules. The upper part of the formation in this well consists of a thick unit dominated by foraminifer- and algal-rich packstones and grainstones overlain by cyclic deposited shales and crinoid-dominated silty wackestones that gradually pass up into foraminifer-dominated packstones and grainstones. The same spectrum of shallowmarine carbonate facies is seen in cores from 7120/2-1, 7128/4-1, 7029/03-U-02, 7030/03-U-01, 7129/10-U-01 and 7129/10-U-02, suggesting a fairly uniform development on the platforms. In addition, more than 5 m-thick beds of massive to laminated anhydrite occur in 7029/03-U-02 and 7030/03-U-01 and native sulphur is locally present between 20 m and 35 m in 7029/03-U-02.

In well 7226/11-1, the lower part of the Ørn Formation consists of light grey to medium-dark brownish-grey,

dolomitic mudstones to packstones. These are interbedded with light grey to white massive anhydrite that increases in abundance upward to 4392.5m. Above this level, rhythms of dark greyish-green calcareous shale and light grey fossiliferous limestone with chert nodules dominate. This unit is equivalent to the upper part of 7128/6-1. Log correlation suggests that the development in well 7226/11-1 resembles that of other distally located wells such as 7121/1-1 and 7124/3-1. Well 7228/9-1S cored thin dolomite and anhydrite beds in halite-dominated sediments.

Lateral extent and variations

Well data and seismic data indicate that the formation is thinly developed and carbonate-dominated on the inner platforms (e.g., 7128/6-1 and 7128/4-1). It becomes significantly thicker and anhydrite-rich more distally on the platforms (e.g., 7226/11-1, 7124/3-1 and 7121/1-1), and in the basins the presence of salt diapirs indicates a dominance of halite. Seismic data indicate stacking of carbonate buildups into larger mounds along the platform margins (e.g., Elvebakk et al. 2002).

The base of the Ørn Formation is highly diachronous since it records the final drowning of local siliciclastic provenance areas. As noted previously, the formation's carbonates directly onlap basement in 7226/11-1. The top of the formation is represented by a subaerial exposure surface in the type well 7128/6-1. This is situated a few tens of metres above the top of a high-amplitude seismic reflector mapped as the 'Top Asselian seismic marker' throughout the Barents Sea (see Samuelsberg et al. 2003).

Age

Fusulinid data from the type well 7128/6-1 indicate a Late Gzelian to Early Sakmarian age for the Ørn Formation at this locality (Ehrenberg et al. 1998a). In core 7030/03-U-01, the base of the formation correlates to the Kasimovian–Gzelian boundary and in 7029/03-U-02 the lower part of the formation is of Middle Gzelian age (Stemmerik et al. 1995). The top of the formation is dated as Early Sakmarian in core 7129/10-U-02 (Bugge et al. 1995). The base is somewhat older in 7120/2-1 where fusulinids indicative of a Late Moscovian age occur in the basal part of the formation (Stemmerik et al. 1998).

Depositional environments

The Ørn Formation is characterised by sediments deposited as a response to high-frequency and high-amplitude fluctuations during times of high, second-order sea level (Stemmerik 1997, Stemmerik et al. 1998). Siliciclastic provenance areas were now drowned and deposition on the platforms took place in a variety of shallow-marine carbonate environments. Locally extensive sabkhas developed up-dip and thick units of dolomitic mudstone with anhydrite nodules belonging to the lower part of the Ørn Formation occur on the Finnmark Platform. Large carbonate mounds developed more distally on the platforms as a result of stacking of smaller buildups; the internal composition of these large mounds is still unknown. Interbedded subtidal, highstand carbonates and lowstand anhydrite characterise the deepest parts of the platform, whereas halite deposition in the basin centres is suggested to have taken place during major lowstands when platforms were subaerially exposed and the basins were partly or totally separated from the open sea.

A major flooding event near the Asselian–Sakmarian boundary changed depositional conditions on the platforms and the upper part of the formation is characterised by rhythms dominated by outer shelf marls and wackestones that pass up into packstones.

Correlation

The formation correlates generally to the Kapp Dunér Formation on Bjørnøya, although deposition of that unit apparently terminated in the Asselian and was followed by appreciable uplift and tilting through the Sakmarian (Worsley et al. 2001). The Palaeoaplysina buildups typical of the Kapp Dunér Formation provide excellent analogues for those of the Ørn Formation (Worsley & Edwards 1976, Lønøy 1988, Stemmerik & Larssen 1993, Stemmerik et al. 1994), while inter-buildup deposits on Bjørnøya suggest highly variable hypersaline to normal marine conditions (Siedlecka 1972, 1975, Folk & Siedlecka 1974). Tectonic activity continued in Hornsund, as witnessed by spectacular intraformational conglomerates of the upper Treskelodden Formation with large reworked coral clasts (cf. Fedorowski 1982). In contrast, the remainder of the Svalbard Platform was relatively stable at the time and most of Spitsbergen and the northern Barents Shelf was covered by deposits of the Wordiekammen and Gipsdalen formations (Dallmann et al. 1999); Palaeoaplysinid buildups also occur on Spitsbergen, especially along the margins of the still subsiding Billefjorden Trough (Skaug et al. 1982).

Bjarmeland Group (Bjarmelandsgruppa) Name

Bjarmeland was used by the Vikings to describe the area immediately south of the Barents Sea. The area was visited and described by the Norwegian Viking, Ottar, in the 9th century. The name was more recently used to name a structural element on the Barents Shelf: the Bjarmeland Platform (Gabrielsen et al. 1990). The group was introduced and briefly reviewed by Dallmann et al. (1999) in the knowledge of the ongoing more detailed work presented herein.

Type area

The Bjarmeland Platform in the southern Norwegian Barents Sea is here defined as type area for the group since the offshore successions are best displayed in wells from this area, including the eastern flanks of the Loppa High (Fig. 19). Three wells show typical developments of the group: 7124/3-1 (4271 m to 3900 m), 7226/11-1 (4334 m to 4103 m) and 7121/1-1 (3990 m to 3502 m): the base of the group is defined by the basal stratotype of the biohermal Polarrev

Formation at 4282 m in well 7229/11-1 on the northern Finnmark Platform (Fig. 19).

Reference areas

Well 7228/9-1S (4361 m to 4065 m) (Fig. 19) located on the

Finnmark Platform's northern margins towards the Nordkapp Basin illustrates the group's development in a deeper water basinal setting. The Finnmark Platform itself is an important reference area since the group has been drilled in a variety of settings from the northern outer platGEIR B. LARSSEN, GEIR ELVEBAKK, LEIF B. HENRIKSEN, STEIN-E. KRISTENSEN, INGER NILSSON, TOMMY J. SAMUELSBERG, TORE A. SVÅNÅ, LARS STEMMERIK & DAVID WORSLEY

form areas (7229/11-1, 4282 m to 3970 m) across the central platform (7128/4-1, 1820 m to 1704 m and 7128/6-1, 1834.7 m to 1745.4 m) to the southern updip areas represented by core 7128/12-U-01 (569.2 m to 557.5 m). The succession

assigned to the group in 7128/4-1 and 7128/6-1 corresponds to lithological unit L-8 of Ehrenberg et al. (1998a).

Hambergfjellet on the southern mountain massif of Bjørnøya is designated as an onshore reference area. Hambergfjellet is the type area of the Hambergfjellet Formation, the only onshore unit to be assigned to the Bjarmeland Group at the present time.

Thickness

The group attains a maximum thickness of 488 m in well 7121/1-1 at the eastern flank of the Loppa High. It is thinner, 233–371 m, in wells 7226/11-1 and 7124/3-1 on the Bjarmeland Platform (Fig. 19). On the Finnmark Platform, the group thins from 312 m in well 7229/11-1 to 116 m and 89 m in wells 7128/4-1 and 7128/6-1 central on the platform, and less than 50 m in the IKU cores further up-dip. The Hambergfjellet Formation on the southern cliffs of Bjørnøya shows a similar thickness of up to 60 m, but this unit wedges out and disappears northwards on the island.

Lithology

The group is dominated by white to light grey bioclastic limestones containing a typical cool-water fauna of crinoids, bryozoans, brachiopods and siliceous sponges. Silty, dark grey to black, locally bituminous limestones characterise the deeper-water succession. Minor cherts occur, especially in the uppermost part. Siliciclastics are rare, except on the Polheim Subplatform where the group is unusually developed and dominated by fine-grained siliciclastics and marls (well 7120/1-1). The Hambergfjellet Formation on Bjørnøya consists of basal sandstones which onlap all older units from basement to Gipsdalen Group, passing up into sandy bioclastic limestones with a fauna dominated by crinoids, bryozoans and brachiopods (Worsley et al. 2001).

Lateral extent and variation

The group is most thickly developed at the eastern flanks of the Loppa High and eastward across the Bjarmeland Platform. The thickest development is in outer platform settings north and south of the Nordkapp Basin where thick bryozoan-dominated buildups occur as isolated mounds or merge to form elongated complexes (Gerard & Buhrig 1990, Nilsen et al. 1993, Samuelsberg et al. 2003). Intermound and basinal areas are dominated by more fine-grained and thinly bedded limestones, which in well 7120/1-1 are interbedded with siliciclastic shales. The platform areas of the eastern Finnmark Platform are characterised by relatively uniform successions of bedded crinoid- and bryozoan-dominated packstones and grainstones.

The group is seen to onlap palaeohighs and the margins of the depositional basin such as the eastern flank and crestal areas of the Loppa High and the southern parts of the Finnmark Platform. It is missing in wells 7120/12-2 and 7120/12-4 from the southern Hammerfest Basin – western Finnmark Platform, and onshore it is only known from the Hambergfjellet Formation on Bjørnøya, – although future work may well demonstrate that the uppermost Gipshuken Formation of the Gipsdalen Group and the basal Vøringen Member (Kapp Starostin Formation) of the Tempelfjorden Group both age- and facies-wise represent lateral equivalents of parts of the group on Spitsbergen.

Age

Fusulinids suggest a Mid Sakmarian to Late Artinskian age in 7128/6-1 (Ehrenberg et al. 2000). The base of the group is thought to be highly diachronous, oldest in the more distal settings and youngest on the platforms (Fig. 4). The Hambergfjellet Formation on Bjørnøya is dated as Late Artinskian based on fusulinids and conodonts (Nakrem 1991, Nakrem et al. 1992). Fusulinids indicate a similar age in cores 7128/12-U-01 and 7129/10-U-01 (Bugge et al. 1995, Ehrenberg et al. 2000).

Correlation

The lower, Sakmarian to Early Artinskian part of the group may correlate to the uppermost Gipshuken Formation of Spitsbergen. The upper, Late Artinskian part – including the Hambergfjellet Formation of Bjørnøya – perhaps should be correlated to the transgressive Vøringen Member of the Kapp Starostin Formation on Spitsbergen (Dallmann et al. 1999, Worsley et al. 2001).

Depositional environments

The group is characterised by deposition of carbonates dominated by crinoids, bryozoans, brachiopods and siliceous sponges. The fauna is markedly different from the foraminifer-dominated warm-water fauna of the underlying Gipsdalen Group and is believed to reflect deposition in more temperate cool-water environments (Stemmerik 1997). Deposition took place in a variety of cool-water carbonate environments and deposits range from shallow, inner shelf, bioclastic grainstones to outer shelf, bryozoandominated buildups and thinly bedded bioclastic wackestones and packstones. Siliciclastic input to the basin was limited, except locally in the west where deeper water shales are interbedded with resedimented carbonates in 7120/1-1; sand input was also significant on Bjørnøya, immediately adjacent to the subaerially exposed parts of the Stappen High. The bryozoan-dominated carbonate buildups formed along the margins of the Nordkapp Basin on the outer part of the platforms. They are generally located above older buildups. Distally to the trend of buildups more marly sediments have been recorded in well 7228/9-1S.

Formations assigned to the group

The Bjarmeland Group is represented by three formations in the offshore areas of the southern Norwegian Barents Sea. The formations are formally described herein and named after predators common to Arctic Norway. The Polarrev and Ulv formations show an interfingering of the carbonate buildups of the former and the inter-buildup lithofacies of the latter formation. The Ulv Formation was also developed in the outer platform and basinal areas throughout deposition of the group, while the uppermost Isbjørn Formation in inner shelf areas overlies earlier buildups but does not extend into deeper waters characteristic of the Ulv Formation.

The Hambergfjellet Formation of Bjørnøya, defined by Worsley & Edwards (1976), is included in the group, as it appears to represent a lithologically similar but highly condensed (<60 m-thick) development of the Isbjørn Formation.

Polarrev Formation (Polarrevformasjonen)

Name

From the Norwegian name for the Arctic Fox (*Alopex lagopus*).

Definition

The type section is defined as the interval from 4282 m to 4046 m in well 7229/11-1 on the northern margin of the Finnmark Platform (Figs. 2, 19; Larssen et al. 2002, fig. 39). Eight cores with a total recovery of approximately 180 m, including the base, exist (Fig. 20). The base of the formation is defined by an abrupt and sharp decrease in gamma ray log response and an accompanying decrease in interval transit time and neutron porosity log response, giving only a slight separation between the neutron and bulk density logs (Fig. 19). The cored base in the type well shows a sharp transition from underlying laminated silty to very fine-grained sandy carbonates to the overlying carbonate buildups typical of the Polarrev Formation (Fig. 20).

Reference sections

Reference sections have been defined in the intervals from 4334 m to 4182 m in well 7226/11-1 and 4271 m to 4000 m in 7124/3-1, both located on the southern Bjarmeland Platform, and the interval from 3990 m to 3700 m in 7121/1-1 on the eastern flanks of the Loppa High (Fig. 19; Larssen et al. 2002, figs. 41-43). No cores exist from the reference wells.

Thickness

The formation is very locally developed and is absent from most areas as it represents isolated carbonate buildups and carbonate buildup complexes. It attains a maximum thickness of 290 m in well 7121/1-1 on the eastern flank of the Loppa High and thins eastward along the margin of the Bjarmeland Platform, ranging from 271 m in well 7124/3-1 to 152 m in 7226/11-1 (Fig. 19). The formation is 236 m thick in the type well on the northern Finnmark Platform.

Lithology

The formation consists of a variety of facies that characterise carbonate buildups. The bulk of the formation consists of bryozoan- and bryozoan/*Tubiphytes*-dominated wacke-stones and cementstones with abundant early marine cement. Wackestones dominate the bioherm encountered in the type well, where a sparse assemblage of fenestrate bryozoans, brachiopods and crinoids formed a loose framework that trapped the carbonate mud. The wackestones also display *Stromatactis*-like cavities, which form a complex interconnected pore system. The cavities are commonly partly supported by fenestrate bryozoans and brachiopods, and are often filled by geopetal internal sediments with a grainstone or packstone fabric. The geopetal fabrics indicate

that deposition occurred on primary slopes of up to 45° (Blendinger et al. 1997).

The limestone is massive to thickly bedded, white to light grey, locally pinkish-grey and light brownish-grey in colour. In the lower part of the formation, more thin-bedded and silty limestones are locally present. The formation has a characteristic (very) low gamma ray response throughout, except for the thin units of silty limestones in the lower part (Fig. 19).

Lateral extent and variation

Seismic data indicate that carbonate buildups belonging to the Polarrev Formation rim the shelf along the Loppa High and around the margins of the Nordkapp Basin (Gerard & Buhrig 1990, Nilsen et al. 1993, Samuelsberg et al. 2003). The buildups also form linear trends across central parts of the Finnmark Platform and across northern areas of the Bjarmeland Platform. Isolated buildup complexes occur in the Norvarg Dome-Mercurius High area and on a structural high on the northeastern Finnmark Platform. The distribution of the laterally extensive buildup complexes seems to be controlled by underlying tectonic elements and they are preferably localised to areas that experienced relatively high rates of subsidence. Therefore, the best-developed buildup trends generally coincide with pinch-out of salt in the underlying Gipsdalen Group. Isolated buildups have been seen to occur in the proximal parts of the basins where they form isolated patch reefs, apparently located on local palaeotopographic highs. Well data suggest that all drilled buildups have a very uniform composition although the buildups vary significantly in thickness.

The base of the formation may represent a subaerial exposure surface on structural highs, while it is a correlative conformity on the outer part of the platforms and along the margins of the depositional basin.

Age

Fusulinids suggest a Mid Sakmarian age for the basal part of the formation in wells 7229/11-1 and 7121/1-1 and a Late Sakmarian age near the top of the formation in the same wells (Davydov 1998, 2000). Comparisons with overlying units suggest that the formational top is of ?earliest Artinskian age.

Depositional environments

The formation represents deposition in a variety of subenvironments within a bryozoan-dominated bioherm complex. The bulk of the bioherm is composed of repeated graded units of mud-dominated to cement-dominated bryozoan facies believed to represent individual banks. Deposition started in relatively deep water, well below storm wave base. The presence of reworked bioclastic grainstone and packstone with fragmented and abraded bioclasts and reworked early marine cement indicates periods of reworking as the bioherm grew upwards into shallower water, possibly near storm wave base. The fine-grained bioclastic limestones in the lower part of the type section (between 4257.5 m and 4264.5 m) and other units with higher gamma ray readings were deposited on the distal part of a carbonate ramp below normal wave base.

Correlation

The formation is not known from the onshore areas.

Ulv Formation (Ulveformasjonen)

Name

From the Norwegian name for the wolf (Canis lupus).

Definition

The type section is defined as the interval from 4361 m to 4150 m in well 7228/9-15 on the margin of the Finnmark Platform towards the Nordkapp Basin (Figs. 2, 19; Larssen et al. 2002, fig. 45). One core exists from the lower part, between 4300 m and 4319 m. The base is taken at the first significant and relatively sharp decrease in gamma ray response above the higher gamma ray readings of the underlying Gipsdalen Group (Fig. 19). This is associated with a marked decrease in the neutron porosity log, resulting in a very low separation between the neutron and the bulk density logs. There is also an accompanying decrease in interval transit time.

Well reference sections

Reference sections are found in the intervals from 3220 m to 2997 m in well 7120/1-1 on the Loppa High and from 4182 m to 4103 m in well 7226/11-1 on the Bjarmeland Platform (Figs. 2, 19; Larssen et al. 2002, figs. 41, 46). One core exists from the lower part of the formation in 7120/1-1, between 3185 and 3195.5 m (Fig. 21).

In wells 7121/1-1, 7124/3-1 and 7226/11-1, the lower boundary is marked by an increase in gamma ray values reflecting the transition from cleaner limestones (of the underlying lsbjørn Formation in the first two of these wells and of the Polarrev Formation in the third) up into more silty limestones (Fig. 19).

Thickness

The formation is more than 210 m thick in wells 7120/1-1 and 7228/9-1, thinning to 80 m in 7226/11-1 and to less than 60 m in 7121/1-1 and 7124/3-1. The formation is not developed in wells 7128/4-1, 7128/6-1 and 7229/11-1 on the Finnmark Platform.

Lithology

Dark, fine-grained, bioclastic limestones dominate the formation. The dominant microfacies are bryozoan-crinoidal wackestones and more rarely packstones. Additional faunal elements include siliceous sponges, brachiopods and rare fusulinids. The limestone is thinly bedded and in places contains thin silt laminae. Shales and silty limestones are locally abundant and chert nodules occur locally. The formation includes thin (less than 15 m) units of coarser grained bioclastic limestones that lithologically resemble the overlying lsbjørn Formation's dominant lithologies.

Fig. 21. Sedimentological log of the cored interval of the Ulv Formation in reference well 7120/1-1, Loppa High. For explanation of symbols, see Fig. 3.

Lateral extent and variation

The formation represents deposition in relatively deep water and is not developed on most of the Finnmark Platform. It is believed to be widespread in the distal parts of the platforms, between the Polarrev Formation buildups, and in deeper basinal areas during deposition of the lower part of the Bjarmeland Group. Later in the group's development, the formation appears to have been more widespread, although mainly restricted to outer platform and basinal areas. Landward it interfingers with coarse-grained bioclastic grainstones typical of the Isbjørn Formation.

Age

Fusulinids suggest a Mid Sakmarian to Artinskian age (Davydov 2000).

Depositional environments

Deposition took place in relatively deep shelf environments below storm wave base. More clean limestone intervals reflect either reworking of material from the shallower, coolwater, carbonate platforms or from adjacent buildups. Siliciclastic input was limited in the eastern part of the region but seems to be more significant along the western margin of the Loppa High. This suggests syndepositional tectonic instability along the crestal part of the Loppa High.

Correlation

The formation is not known from the onshore areas of Spitsbergen or Bjørnøya, but lateral correlatives may be represented by the intertidal/supratidal dolomites of the Skansdalen, Templet and Sørfonna members uppermost in the Gipshuken Formation of Spitsbergen and Nordaust-landet.

Isbjørn Formation (Isbjørnformasjonen) Name

From the Norwegian name for the Polar Bear (*Ursus mari-timus*)

Definition

The type section is defined as the interval from 1834.7 m to 1745.4 m in well 7128/6-1 on the Finnmark Platform (Fig. 19; Larssen et al. 2002, fig. 48), apparently concurring with the informal unit L-8 of Ehrenberg et al. (1998a). Cores cover the entire section (Fig. 22). In this well, the base of the formation is marked by a decrease in gamma ray response, reflecting the transition from silty warm-water carbonates to clean cool-water carbonates.

Reference sections

A reference section is defined as the intervals from 3700 m to 3625 m and 3586 m to 3502 m in well 7121/1-1 on the Loppa High, these intervals interfingering with Ulv Formation lithofacies (Fig. 19; Larssen et al. 2002, fig. 43). A small core, 2.7 m long, exists from the uppermost part of the formation, between 3513.7 m and 3511.0 m. An additional reference section is designated in 7229/11-1 (4046 m to 3970 m), where the Isbjørn Formation rests directly on carbonate buildups of the Polarrev Formation. The uppermost part of the formation has been drilled in the southernmost part of the Finnmark Platform (cores 7128/12-U-01 from 569.2 m to 557.5 m and 7129/10-U-01 from 475.3 m to 464 m) (Bugge et al. 1995).

The base is not easy to detect on logs in areas where the formation rests directly on the Polarrev Formation (e.g., 7229/11-1), as the boundary there represents a limestone-limestone contact (Fig. 19). It is recognised by a slight decrease in interval transit time and neutron porosity log values accompanied by an increase in bulk density in wells 7121/1-1 and 7229/11-1. However, over the buildups, the base of the formation is easily detected on seismic data. In 7121/1-1 the transition from the interfingering Ulv Formation up into the lsbjørn Formation shows a marked decrease in gamma ray response, reflecting the transition from silty wackestones into cleaner packstones and grain-stones.

Thickness

The formation is approximately 75–90 m thick in the central and northern parts of the Finnmark Platform, thinning southwards to approximately 10 m in IKU cores 7128/12-U-01 and 7129/10-U-01. It is slightly thinner in 7124/3-1 and absent from the outer shelf environments represented by the Ulv Formation in 7226/11-1 on the Bjarmeland Platform (Fig. 19). The formation is thickest in 7121/1-1 on the southeastern flank of the Loppa High, where its two intercalations have a composite thickness of approximately 160 m.

Lithology

Bedded, white to light grey bioclastic limestones with a

fauna of mainly crinoids and bryozoans dominate the formation. The dominant facies are grainstones and packstones (see Larssen et al. 2002, fig. 50). The formation has a characteristic low gamma ray response throughout, except for thin intervals of dark grey, silty wackestone that represent temporary deeper water deposition related to flooding events. Chert nodules occur sporadically throughout the section. The dark grey silty limestone intervals are lithologically similar to the Ulv Formation but are regarded as part of the Isbjørn Formation if they are of subordinate importance and less than 15-20 m thick. Thicker intervals, such as that from 3625 m to 3586 m in well 7121/1-1, are included in the Ulv Formation.

Lateral extent and variation

The formation represents deposition in inner shelf environments. Following a major transgression in the Early Artinskian the formation developed over earlier carbonate build-ups and submerged structural highs and platforms. The formation is not known from either outer shelf regimes or from basinal areas.

Age

The base of the formation is apparently diachronous. In the type section in 7128/6-1 fusulinids suggest that the base is of Mid Sakmarian age and the top is Late Artinskian (Ehrenberg et al. 1998a). In well 7229/11-1, the top of the underlying Polarrev Formation is dated as Late Sakmarian, indicating a Late Sakmarian or younger age for the formation in this well (Davydov 1998). The formation is apparently of Late Artinskian age in IKU cores 7128/12-U-01 and 7129/10-U-01 (Bugge et al. 1995).

Depositional environments

The bioclastic crinoid- and bryozoan-dominated grainstones and packstones of the Isbjørn Formation represent deposition in inner shelf environments on cool-water carbonate platforms (Stemmerik 1997). The more silty wackestone facies represent temporary flooding and deposition in slightly deeper environments below storm wave base.

Correlation

The upper part of the Isbjørn Formation correlates age- and facies-wise with the Hambergfjellet Formation on Bjørnøya and with the Vøringen Member of the Kapp Starostin Formation on Spitsbergen.

Fig. 22. Sedimentological log of the Isbjørn Formation in the type section in well 7128/6-1, Finnmark Platform. The succession is composed of well-bedded, bryozoan–crinoid–brachiopod wackestones and packstones typical of Late Palaeozoic, cool-water, carbonate shelves. For explanation of symbols, see Fig. 3.

Tempelfjorden Group (Tempelfjordgruppen)

Name

Cutbill & Challinor (1965) introduced the term Tempelfjorden Group for a suite of spiculites, spiculitic chert, silicified limestones and fine-grained siliciclastics of Mid to Late Permian age. The type area is in the innermost part of Isfjorden in central Spitsbergen. The Tempelfjorden Group is a well-established lithostratigraphic unit; its overall facies development and depositional evolution have been described by Steel & Worsley (1984) and Ezaki et al. (1994).

Offshore reference areas

The southern Loppa High – Hammerfest Basin, the Bjarmeland Platform and the eastern Finnmark Platform illustrate the quite significant variations in the group's development offshore (Fig. 23). The group is thickly developed along the southern margins of the Loppa High where it has been penetrated by wells 7121/1-1 and 7120/1-1. The upper parts of the group were penetrated by 7120/9-2 (from 4956 m to TD at 5072.6 m, Fig. 24) in the central Hammerfest Basin, while thickest – but sedimentologically atypical - developments are seen in wells 7120/12-2 (4558–3657 m) and 7120/12-4 (2118–1366 m) on the basin's southern margins (Fig. 23).

Thickness

The group thickens from 509 m in well 7121/1-1 and 591 m in well 7120/1-1 on the southern Loppa High, to 752 m in well 7120/12-4 and 901 m in well 7120/12-2 along the southern margins of the Hammerfest Basin (Fig. 23). This is appreciably thicker than the maximum of 460 m observed on land areas of Svalbard. Thinner developments are seen eastwards on the Bjarmeland Platform, 425 m in well 7124/3-1 and 226 m in well 7226/11-1 along the southern margins of the platform. On the eastern Finnmark Platform it forms a distinctive wedge-shaped unit thinning from approximately 180 m in well 7228/9-1S on the northern platform margins to 135 m in wells 7128/4-1 and 7128/6-1 and to less than 30 m further up-dip in the subcrop areas demonstrated by IKU shallow cores 7128/12-U-01 and 7129/10-U-01 (Fig. 23).

The Tempelfjorden Group usually thins over local structural highs – exposures on Bjørnøya on the Stappen High show an extremely condensed (115 m thick) development of the group and highly condensed exposures on the margins of the Sørkapp-Hornsund High are only a few metres thick, thinning to zero over the crest of the structure (Hellem & Worsley 1978). It is not certain whether the group was initially deposited over the crest of the Loppa High, but the succession also thins and is then truncated up-flank there, reflecting repeated uplift in the Permian to Early Triassic; a roughly similar situation is seen in the inner parts of the Finnmark Platform, although thinning there reflects maximum onlap of the adjacent craton rather than active tectonism.

Lithology

The Tempelfjorden Group is characterised by dark to light grey spiculites, spiculitic cherts, silicified skeletal limestones and fine-grained siliciclastics including marls, calcareous claystones, shales and silt/sandstones in the offshore areas. In the southwestern Hammerfest Basin (7120/12-2) and on the southwestern margin of the Finnmark Platform (7120/12-4), the group contains a significant proportion of coarse siliciclastics. Elsewhere in the Norwegian Barents Sea, spiculites and silicified skeletal carbonates dominate. The carbonates contain a fauna dominated by brachiopods, sponges, bryozoans and crinoids. The anomalous condensed development of the 90-115 m thick Miseryfjellet Formation on the Bjørnøya contains herringbone cross-bedded sandstones and highly condensed, silicified, skeletal limestones.

Lateral extent and variation

The group is thickest in the western part of the study area. It forms distinctive wedge-shaped units with maximum thickness in the basins. On the eastern Finnmark Platform, the lower part of the group onlaps the inner Finnmark Platform and subcrops the Quaternary farther up-dip. Lithologies are uniform in the eastern part of the study area and are dominated by chert and chert-rich limestone, while coarse siliciclastic domination in the southern Hammerfest Basin suggests emergent local provenance areas.

Sediments assigned to the Tempelfjorden Group generally overlie the Bjarmeland Group (except in wells 7120/12-2 and 7120/12-4 where they directly overlie the Gipsdalen Group). There is a sharp contact between Artinskian light grey, skeletal limestones below and the overlying dark-grey to black, silicified and spiculitic, fine-grained deposits. The boundary represents a major drowning event in the Barents Sea region, and an ongoing change towards cooler climatic conditions (Stemmerik 1997).

Age

The Tempelfjorden Group is dated as Late Artinskian to ?Tatarian in the onshore areas (Nakrem 1991, Mangerud 1994). Palynological data from cores 7128/12-U-01 and 7129/10-U-01 indicate a ?Kungurian to Kazanian (-?Tatarian) age for the group updip on the Finnmark Platform (Mangerud 1994, Bugge et al. 1995). Palynomorphs from exploration wells indicate a general Mid to Late Permian age for the group without permitting a more detailed internal zonation.

Depositional environments

The Tempelfjorden Group represents deposition in coolwater, temperate shelf and basinal environments. The majority of the group was deposited in distal marine, low-energy (below wave base), moderate to deep shelf to basinal environments characterised by a rich siliceous sponge fauna. The group was deposited during an overall transgression accompanied by retrogradation of the coastline. The main accumulations of spiculites appear to be related to transgressive periods when favourable environmental conditions

Fig. 24. Well logs of the upper part of the Tempelfjorden Group in 7120/9-2, Hammerfest Basin, showing the boundary to the Triassic Havert Formation. For explanation of symbols, see Fig. 3.

for sponges prevailed over most of the shelf. Cool-water, bryozoan carbonates formed along the margins and formed low-relief platforms during sea-level highstand.

Wells in the southernmost Hammerfest Basin are characterised by a significant coarse siliciclastic influx from the nearby Baltic Shield.

Formations assigned to the group

Two new formations are assigned to the Tempelfjorden

Group herein: their names are selected from fish common to the Barents region. The generally underlying Røye Formation is characterised by generally fine-grained, highly silicified mudstones and limestones, while the generally overlying Ørret Formation comprises mudstones and some coarser siliciclastics, all of which show much less silicification than the sediments of the Røye Formation. Some wells, especially on the southern margins of the Loppa High and the Hammerfest Basin, are interpreted to display either only Røye Formation (7121/1-1) or intercalations of both units (7120/1-1, 7120/12-2 and -4, Fig. 23).

Røye Formation (Røyeformasjonen) Name

From the Norwegian name for the Arctic Char (*Salvelinus alpinus*).

Definition

The type section is defined as the interval from 1745.4 m to 1623.5 m in well 7128/6-1 located on the Finnmark Platform (Fig. 23; Larssen et al. 2002, fig. 53). The base of the formation is there characterised by a marked increase in the gamma ray log response, and a corresponding decrease in both density and interval transit time based on the density and sonic logs. This represents the transition from tight limestones of the underlying Isbjørn Formation to silicified deposits in the basal part of the Røye Formation (see Larssen et al. 2002, fig. 54).

Reference sections

The Loppa High well 7120/1-1, with formational base at 2997 m on the Ulv Formation, shows an interfingering of the Røye and Ørret formations, with typical Røye lithofacies occurring from 2997 m to 2604 m and from 2458 m to 2430 m (Fig. 23). In Loppa High well 7121/1-1, the formational base on the Isbjørn Formation is at 3502 m and the formation is directly overlain by Triassic shales at 2993 m; and in 7228/9-1S on the northern margin of the Finnmark Platform, the reference section is from 4065 m to 3966 m, also resting on the Isbjørn Formation (Fig. 23).

In well 7120/1-1, the formational base at 2997 m is characterised by a slight increase in both gamma ray and sonic log response (Fig. 23). This well's interfingering of the Røye and Ørret formations shows that the transition from the Ørret back into the Røye Formation at 2458 m displays a marked decrease in both gamma ray response and density, reflecting the transition back from silicified, fine-grained siliciclastics to limestone.

Thickness

The formation is 122 m thick in the type well 7128/6-1 on the central Finnmark Platform. It thins to 32 m in core 7128/12-U-01 farther to the south. Along the northern margins of the platform, the formation is 99 m thick in well 7228/9-1S and less than 70 m thick in 7229/11-1. It thickens north of the Nordkapp Basin to 230 m in 7124/3-1 on the Bjarmeland Platform and to its thickest development of 509 m in reference well 7121/1-1 on the southeastern Loppa High; 421 m of Røye Formation occur in the interfingering development found in 7120/1-1 farther west on the high. Our tentative interpretations of wells 7120/12-2 on the southern margins of the Hammerfest Basin and 7120/12-4 on the southwestern Finnmark Platform suggest a very complex interfingering of possible Røye and Ørret formation representatives, the former showing a total of up to about 150 m in several intercalations (Fig. 23); more data are however needed from this area to confirm this interpretation.

Lithology

Silicified sediments dominate the Røye Formation as the result of early silicification processes that were sourced by abundant silica sponge spicules. On the eastern Finnmark Platform, the lower part of the Røye Formation consists of dark grey to black, silicified, calcareous claystone with minor pyrite and traces of organic material (e.g., 1745.4 m to 1728 m in well 7128/6-1; see Larssen et al. 2002, fig. 54). The lithology of the lower part of the formation changes somewhat toward the Loppa High where it is characterised by interbedded silicified marls, silty carbonate mudstone and calcareous claystone with some thin beds of spiculitic cherts (e.g., 3177 m to 2860 m in well 7120/1-1). The relative proportion of these facies varies laterally and spiculitic chert dominates well 7228/9-1 (4064 m to 4014 m), whereas the basal part of the formation in well 7121/1-1 (3502 m to 3367 m) is dominated by silicified silty carbonate mudstone.

The upper part of the formation consists of interbedded spiculite, spiculitic chert, silicified bioclastic, bryozoan-dominated limestone (wackestone to grainstone), silicified carbonate mudstone, silicified marl and calcareous claystone (e.g., 3367 m to 2993 m in 7121/1-1, 3800 m to 3671 m in 7124/3-1 and 1688 m to 1569 m in 7128/4-1). The silicified limestone is best developed on the Loppa High (reference wells 7120/1-1 and 7121/1-1) and on the eastern Finnmark Platform (7128/4-1, 7128/12-U-01 and 7129/10-U-01; Larssen et al. 2002, fig. 59). The spiculitic deposits show a variable clay and dolomitic lime mud content. These rocks are mainly tight, with no apparent porosity; however, on inner parts of the Finnmark Platform, white to light grey, porous spiculites are present in wells 7128/4-1,7128/6-1 and 7128/12-U-01 (Larssen et al. 2002, figs 60, 61) - the porosities apparently reflecting secondary solution processes.

Lateral extent and variation

The formation forms a laterally continuous unit at the base of the Tempelfjorden Group from the eastern Finnmark Platform and westward to the Loppa High. In the southern Hammerfest Basin the formation is less clearly developed, but as mentioned above, our interpretation suggests several units, each 30 to 100 m thick, interbedded with sediments herein assigned to the Ørret Formation. The Røye Formation thins toward the east and up-dip on the Finnmark Platform. Local thinning is also seen above carbonate buildups of the underlying Bjarmeland Group (see e.g., well 7229/11-1, Fig. 23). *Age* Cores from 7128/12-U-01 and 7129/10-U-01 suggest a ?Kungurian to Kazanian – (?Tatarian) age (Mangerud 1994, Bugge et al. 1995).

Depositional environments

The lower part of the formation represents distal marine, low-energy, deep shelf to basinal conditions established during and after major initial transgression. On the Loppa High and inner parts of the Finnmark Platform, bryozoandominated, low-relief carbonate platforms prevailed. The middle to upper parts of the formation represent distal marine, moderate to deep shelf conditions affected by periodic high-energy storm episodes which reworked the sediments, but with a normal depositional environment characterised by a very rich siliceous sponge fauna. Carbonate ramps were still situated on the Loppa High and inner parts of the Finnmark Platform.

On the Loppa High in well 7121/1-1, the upper part of the formation reflects initial transgression with deposition of deep shelf spiculites succeeded by carbonate platform deposits. Towards the crest of the Loppa High the formation was truncated by Late Permian uplift and erosion.

Correlation

In the absence of more sophisticated datings it is difficult to suggest any detailed correlation to onshore exposures of Bjørnøya and Spitsbergen. However, it is noteworthy that this formation is characterised by the pervasive silicification similar to that observed throughout the condensed sequence of the Miseryfjellet Formation on Bjørnøya and through most of the Tempelfjorden Group on Spitsbergen

Ørret Formation (Ørretformasjonen)

Name

From the Norwegian name for the Brown Trout (*Salmo trutta*).

Definition

The type section is defined as the interval from 3670 m to 3475 m in 7124/3-1 on the Bjarmeland Platform (Figs. 2, 23; Larssen et al. 2002, fig. 62). The base of the formation is characterised by a sharp increase in gamma ray log response accompanied by increasing neutron and sonic log readings in the type section where the formation overlies silicified limestones of the Røye Formation (Fig. 23).

Reference sections

In Loppa High well 7120/1-1, the base is at 2604 m, and the formation is interfingering with a typical Røye development from 2458 m to 2430 m and again overlain by the Ørret Formation until the contact with overlying Triassic shales at 2403 m (Fig. 23). The reference section is from 3966 m to 3884 m in 7228/9-1S on the northern margins of the Finnmark Platform. In this well and in 7229/11-1, the base of the formation is defined by a sharp increase in gamma ray log response accompanied by increasing neutron and sonic log readings similar to that seen in the type section. On the

northern Finnmark Platform, the formation overlies silicified sediments of the Røye Formation (Fig. 23).

Thickness

The formation is 195 m thick in the type well and has an aggregate thickness of 173 m in 7120/1-1 on the Loppa High, whereas it is interpreted as not being developed in the nearby well 7121/1-1. On the northern Finnmark Platform it is 82 m thick in well 7228/9-1S, only 22 m in 7229/11-1 and disappears southwards so that wells 7128/4-1 and 7128/6-1 and cores 7128/12-U-01 and 7129/10-U-01 on the central and southern Finnmark Platform show only the Røye Formation directly overlain by Triassic shales (Fig. 23). Tentative interpretations on the southern margins of the Hammerfest Basin in wells 7120/12-2 and 7120/12-4 suggest cumulative thicknesses of 656–901 m.

Lithology

The formation is dominated by siliciclastic sediments and includes sandstones, siltstones and shales. The more finegrained lithologies dominate. The sandstones appear as isolated thin beds, or as up to 35 m-thick sandy units, or in intervals with numerous thin sandstone beds separated by shales. The sandstones are particularly common in the upper part of the Ørret Formation in 7120/12-2 and 7120/12-4. On the Loppa High and farther eastward, organic-rich shales become progressively more important. Coal fragments are reported from some levels in association with sandstones. The siliciclastics are, in contrast to those of the Røye Formation, not silicified. Thin limestone beds are rare in the formation.

Lateral extent and variation

The formation is thickest in the deeper basinal and outer ramp areas of the Hammerfest Basin and the Finnmark and Bjarmeland platforms. Up-dip on the Finnmark Platform and the Loppa High it passes into the shallow-marine carbonates of the Røye Formation. The transition from thin and organic-rich shales with rare thin sandstone and limestone beds in the east (7124/3-1, 7226/11-1, 7228/9-1 and 7229/11-1) to thicker, more silty and sandy and less organicrich lithofacies in wells 7120/12-2 and 7120/12-4 in the southwestern Hammerfest Basin and Finnmark Platform, suggests a southwesterly-located siliciclastic provenance area. In these southwestern wells, where the formation is thought to interfinger with the Røye Formation, the basal transition is always characterised by a sharp increase in gamma ray log response reflecting the transition from silicified carbonates to fine-grained, non-silicified siliciclastics.

Age

A ?Kungurian to ?Tatarian age is suggested by correlation with lateral equivalents.

Depositional environments

Deposition took place in a variety of siliciclastic-dominated environments ranging from deltaic and lower coastal plain environments in the southwestern Hammerfest Basin to deep shelf environments on the southern Bjarmeland Platform and the northern Finnmark Platform. Dysoxic to anoxic conditions occurred locally in the deeper shelf settings to the east.

Correlation

As with the underlying Røye Formation, a detailed correlation to onshore areas is not possible on present information. It is noteworthy, though, that some localities in northwestern Spitsbergen show an uppermost development of nonsilicified glauconitic sandstones and some shales, perhaps correlative of this uppermost Ørret Formation. Note also that the Tokrossøya Formation of southernmost Spitsbergen (Siedlecka 1970) displays a coarsening-upward sequence, passing from spiculitic siltstones into less silicified sandstones, interpreted as beach sands or peritidal sands.

Late Palaeozoic depositional evolution

The Upper Palaeozoic in the entire Arctic region, from the Sverdrup Basin of Arctic Canada in the west to Arctic Russia in the east, reflects deposition along an east-west oriented shelf, defining the northern margin of Pangea. During Carboniferous–Permian time, Pangea moved approximately 25 degrees northwards, shifting the position of the southern Barents Sea from approximately 20°N to approximately 45°N palaeolatitude (e.g., Golonka & Ford 2000). As a consequence, the region passed from the humid tropical zone in the Early Carboniferous through the northern arid zone in the Mid Carboniferous to Early Permian, before entering more temperate conditions in the Mid Permian (Steel & Worsley 1984, Worsley et al. 1986, Stemmerik & Worsley 1989, Beauchamp 1993, 1994, Beauchamp & Desrochers, 1997, Stemmerik 1997, 2000). The latitudinal shift in position and the associated climatic changes clearly affected the depositional conditions along the entity of the shelf, and is accordingly reflected in the Upper Palaeozoic lithostratigraphy from the Norwegian Barents Sea and westwards to the Sverdrup Basin (Fig. 25). Each of the four Upper Palaeozoic groups in the Barents Sea corresponds to a major, secondorder, depositional sequence, the boundaries between which reflect significant changes in climate, sea-level and tectonic regime (Stemmerik 1997).

The Early Carboniferous was characterised by nonmarine, fluvial and lacustrine, siliciclastic sediments deposited in tropical–subtropical, humid environments. The Billefjorden Group onshore Bjørnøya shows a stratigraphically extended development, starting in the latest Devonian; fluvial sediments of a similar age are also known from central East Greenland (Vigran et al. 1999). However, widespread fluvial and lacustrine deposition did not start until the Viséan. In North Greenland, more than 1000 m of fluvial sediments are included in the Viséan Sortebakker Formation and in the Sverdrup Basin lacustrine sediments of Viséan age are included in the Emma Fiord Formation (Fig. 25; Goodarzi GEIR B. LARSSEN, GEIR ELVEBAKK, LEIF B. HENRIKSEN, STEIN-E. KRISTENSEN, INGER NILSSON, TOMMY J. SAMUELSBERG, TORE A. SVÅNÅ, LARS STEMMERIK & DAVID WORSLEY

Fig. 25. Correlation of Upper Palaeozoic lithostratigraphic units between Norwegian onshore and offshore areas, North Greenland and Arctic Canada. Based on Dallmann et al. (1999), Stemmerik (2000), Dalhoff et al. (2000) and Beauchamp et al. (2001). A: Antoniette, D: Degerböls, T: Tettegras, BC: Belcher Canyon, CF: Canyon Fiord, MB: Mount Bayley, Ta: Tanquary, GBC: Great Bear Cape.

et al. 1987, Dalhoff et al. 2000). Marine incursions, corresponding to the Blærerot Formation on the Finnmark Platform, have also been reported from the Sverdrup Basin (Beauchamp et al. 1998); the successions in North Greenland, Spitsbergen and Bjørnøya are fully continental.

From the Mid Carboniferous to the Mid Permian, sediments deposited under warm and dry conditions characterised the shelf. Deposition took place in a wide range of environments, and the successions include alluvial siliciclastics, shallow-shelf siliciclastics, carbonates and evaporites and deep marine carbonates, siliciclastics, chert and evaporites (Fig. 25). The depositional evolution is characterised by considerable variability along strike due to timing of local tectonic movements; overall, however, the shelf was characterised by widespread carbonate deposition from the Moscovian to the Sakmarian (Fig. 25). Sediments correlateable to the Gipsdalen Group are included in the Kap Jungersen and Foldedal formations in North Greenland, and to the Borup Fiord, Otto Fiord, Canyon Fiord, Nansen, Antoniette, Tanquary, Belcher Fiord and Hare Fiord formations in the Sverdrup Basin (Stemmerik et al. 1996, Beauchamp et al. 2001). The North Greenland succession is stratigraphically incomplete compared to Norwegian onshore and offshore areas, only recording the Moscovian–Gzelian development on a carbonate-dominated shelf. The Sverdrup Basin succession is stratigraphically complete and lithologically complex (see Beauchamp 1993, 1994, Beauchamp et al. 1998, 2001).

Depositional conditions changed over wide areas of the northern Pangean shelf during the latest Sakmarian, and from the Finnmark Platform and westwards to the Sverdrup Basin sedimentation reflects deposition in temperate and more humid conditions. Large parts of the shelf, including Spitsbergen, Bjørnøya, North Greenland and the marginal parts of the Sverdrup Basin, were subjected to uplift and erosion and have a fragmentary sedimentary record (Fig. 25). Continuous deposition characterised only the deep basins and outer platform area on the Barents Shelf and the deeper parts of the Sverdrup Basin. The cool-water carbonates of the Bjarmeland Group can be correlated to the lower Kim Fjelde Formation in North Greenland, and the Raanes, Great Bear Cape and Trappers Cove formations of the Sverdrup Basin (Stemmerik et al. 1996, Beauchamp et al. 2001).

Near the Artinskian–Kungurian boundary, depositional conditions changed on the shelf and cool-temperate environments prevailed during the rest of the Permian. The siliciclastics and spiculites of the Tempelfjorden Group can be correlated to the Sabine Bay, Assistance, Trold Fiord, Degerböls and van Hauen formations of the Sverdrup Basin and the upper Kim Fjelde and Midnatfjeld formations in North Greenland (Fig. 25; Stemmerik et al. 1996, Beauchamp et al. 2001).

Acknowledgements

We appreciate especially the contributions of the chairmen of NSK, Johan-Petter Nystuen and Atle Mørk, who supported this project over many years, and Leteteknologisamarbeidet (Exploration technology cooperation between Norwegian Petroleum Directorate, Statoil, Norsk Hydro ASA and (now defunct) Saga Petroleum ASA) with its previous leader Bente Nyland and present leader Tove Thorsnes, Norwegian Petroleum Directorate, Stavanger. We are grateful to the following oil companies and institutions for allowing their employees to work on this project: Norwegian Petroleum Directorate, Harstad and Stavanger, Statoil ASA, Harstad, Saga Petroleum ASA, Harstad, Norsk Hydro ASA, Harstad and the Geological Survey of Denmark and Greenland, Copenhagen; and for financial support from the Norwegian Petroleum Directorate, Statoil ASA, Norsk Hydro ASA and Saga Petroleum ASA. We like to acknowledge the following companies for allowing us to publish their geological data: Statoil ASA, Norsk Hydro ASA, Saga Petroleum ASA, Conoco Norway Inc, A/S Norske Shell, Norsk Agip AS, Elf Petroleum Norge AS, Fortum Petroleum AS, Amoco Norge AS, Amerada Hess Norge AS, Total Norge AS and Enterprise Norge AS. We also like to thank Rune Goa, NPD, Stavanger, Jan Sigurd Ervik, Statoil, Harstad, Else Marie Olsen, Norsk Hydro ASA, Harstad and Jette Halskov, GEUS for their expert drafting of the figures and Børre Munch-Ellingsen, NPD, Harstad for extensive technical IT-support. LS acknowledges support from the Carlsberg Foundation and publishes with approval from the Geological Survey of Denmark and Greenland. The paper benefited from constructive reviews by Atle Mørk, Johan-Petter Nystuen, Winfried Dallmann and Neil A. H. Pickard.

References

- Alsgaard, C. 1993: Eastern Barents Sea Late Palaeozoic setting and potential source rocks. *In* Vorren, T.O., Bergsager, E., Dahl-Stamnes, Ø.A., Holter, E., Johansen, B., Lie, E. & Lund, T.B. (eds.). *Arctic Geology and Petroleum Potential*. Norwegian Petroleum Society Special Publication 2, Elsevier, Amsterdam, 405-418.
- Beauchamp, B. 1993: Carboniferous and Permian reefs of the Sverdrup Basin, Canadian Arctic Islands. *In* Vorren, T.O., Bergsager, E., Dahl-Stamnes, Ø.A., Holter, E., Johansen, B., Lie, E. & Lund, T.B. (eds.). *Arctic Geology and Petroleum Potential*. Norwegian Petroleum Society Special Publication 2, Elsevier, Amsterdam, 217-241.
- Beauchamp, B. 1994: Permian climatic cooling in the Canadian Arctic. In Klein, G. D. (ed). Pangea: Paleoclimate, Tectonics and Sedimentation During Accretion, Zenith and Breakup of a Supercontinent. Geological Society of America Special Paper 288, 229-246.

- Beauchamp, B. & Desrochers, A. 1997: Permian warm- to very cold-water carbonates and chert in the Sverdrup Basin-Barents Sea area, northwestern Pangea. *In* James, N.P. & Clarke, J.A.D. (eds.). *Cool-water Carbonates*. Society of Economic Paleontologists and Mineralogists Special Publication 56, 349-364.
- Beauchamp, B., Thériault, P., Henderson, C.H., Pinard, S. & Lin, R. 1998: Carboniferous to Triassic formations of the Sverdrup Basin. *In* Mayr, U., de Freitas, T., Beauchamp, B. & Eisbacher, G. (eds.). *The geology of Devon Island north of 76°, Canadian Arctic Archipelago*. Geological Survey of Canada Bulletin 526, 195-233.
- Beauchamp, B., Harrison, J.C. & Henderson, C.M. 1989: Upper Paleozoic stratigraphy and basin analysis of the Sverdrup Basin, Canadian Arctic Archipelago: 1 - time frame and tectonic evolution. *Geological Survey of Canada Paper 89-1G*, 115-124.
- Beauchamp, B., Harrison, J.C., Utting, J., Brent, T.A. & Pinard, S. 2001: Carboniferous and Permian subsurface stratigraphy, Prince Patrick Island, Northwest Territories, Canadian Arctic. *Geological Survey of Canada Bulletin 565*, 93 pp.
- Blendinger, W., Bowlin, B., Zijp, F.R., Darke, G & Ekroll, M. 1997: Carbonate production on buildup flanks: an example from the Permian, Barents Sea, northern Norway. *Sedimentary Geology* 112, 89-103.
- Bruce, J.R. & Toomey, D.F. 1993: Late Paleozoic bioherm occurrences of the Finnmark Shelf, Norwegian Barents Sea: analogues and regional significance. *In* Vorren, T.O., Bergsager, E., Dahl-Stamnes, Ø.A., Holter, E., Johansen, B., Lie, E. & Lund, T.B. (eds.). *Arctic Geology and Petroleum Potential*. Norwegian Petroleum Society Special Publication 2, Elsevier, Amsterdam, 377-392.
- Bugge, T., Mangerud, G., Elvebakk, G., Mørk, A., Nilsson, I., Fanavoll, S. & Vigran, J.O. 1995: The Upper Palaeozoic succession on the Finnmark Platform, Barents Sea. *Norsk Geologisk Tidsskrift 75*, 3-30.
- Cecchi, M. 1993: Carbonate sequence stratigraphy: application to the determination of play models in the Upper Palaeozoic of the Barents Sea, offshore northern Norway. *In* Vorren, T.O., Bergsager, E., Dahl-Stamnes, Ø.A., Holter, E., Johansen, B., Lie, E. & Lund, T.B. (eds.). *Arctic Geology and Petroleum Potential*. Norwegian Petroleum Society Special Publication 2, Elsevier, Amsterdam, 419-438.
- Clayton, G., Coquel, R., Doubinger, J., Gueinn, K.J., Loboziak, S., Owens, B. & Steel, M. 1977: Carboniferous miospores of western Europe: Illustration and zonation. *Medelingen Rijks Geologische Dienst 29*, 1-71.
- Cutbill, J.L. & Challinor, A. 1965: Revision of the stratigraphical scheme for the Carboniferous and Permian rocks of Spitsbergen and Bjørnøya. *Geological Magazine 102*, 418-439.
- Dalhoff, F., Vigran, J.O.& Stemmerik, L. 2000: Stratigraphy and palynology of the Lower Carboniferous Sortebakker Formation, Wandel Sea Basin, eastern North Greenland. *Geology of Greenland Survey Bulletin* 187, 51-63.
- Dallmann, W.K., Gjelberg, J.G., Harland, W.B., Johannessen, E.P., Keilen, H.B., Lønøy, A., Nilsson, I. & Worsley, D. 1999: Upper Palaeozoic lithostratigraphy. *In* Dallmann, W.K. (ed.). *Lithostratigraphic lexicon of Svalbard. Review and recommendations for nomenclature use. Upper Palaeozoic to Quaternary bedrock.* Norsk Polarinstitutt, Tromsø, 25-126.
- Davydov, V.I. 1998: Fusulinid biostratigraphic dating of Upper Paleozoic succession Barents Sea Shelf. Wells 7128/6-1 and 7229/11-1. Final Report. Commisioned by Seismic Area C (Saga Petroleum ASA, Norsk Hydro, Statoil, Agip and Fortum). Internal report used with permission from Licensees in Seismic Area C.
- Davydov, V.I. 2000: Fusulinid biostratigraphic dating of Upper Paleozoic succession in wells 7226/11-1, Nordsel High and 7229/11-1, Finnmark Platform, Barents Sea. Commissioned by Seismic Area G (Statoil, Norsk Hydro, Saga Petroleum and Agip). Internal report used with permission from Licensees in Seismic Area G.
- Davies, G.R. & Nassichuk, W.W. 1988: An Early Carboniferous (Viséan) lacustrine oil shale in the Canadian Arctic Archipelago. *American* Association of Petroleum Geologists Bulletin 72, 8-20.
- Doré, A.G. 1991: The structural foundation and evolution of Mesozoic seaways between Europe and the Arctic Sea. *Palaeogeography, Palaeoclimatology, Palaeoecology 87*, 441-492.

- Ehrenberg, S.N., Nielsen, E.B., Svånå, T.A. & Stemmerik L. 1998a: Depositional evolution of the Finnmark carbonate platform, Barents Sea: results from wells 7128/6-1 and 7128/4-1. *Norsk Geologisk Tidsskrift 78*, 185-224.
- Ehrenberg, S.N., Nielsen, E.B., Svånå, T.A. & Stemmerik L. 1998b: Diagenesis and reservoir quality of the Finnmark carbonate platform, Barents Sea: results from wells 7128/6-1 and 7128/4-1. *Norsk Geologisk Tidsskrift 78*, 225-252.
- Ehrenberg, S.N., Pickard, N.A.H., Svånå, T.A., Nilsson, I. & Davydov, V.I. 2000: Sequence stratigraphy of the inner Finnmark carbonate platform (Carboniferous-Permian), Barents Sea – correlation between well 7128/6-1 and the shallow IKU cores. *Norsk Geologisk Tidsskrift 80*, 129-162.
- Ehrenberg, S.N., Pickard, N.A.H., Henriksen, L.B., Svånå, T.A., Gutteridge, P. & McDonald, D. 2001: A depositional and sequence stratigraphic model for cold-water, spiculitic strata based on the Kapp Starostin Formation (Permian) of Spitsbergen and equivalent deposits from the Barents Sea. *American Association of Petroleum Geologists Bulletin 85*, 2061-2087.
- Ehrenberg, S.N., Pickard, N.A.H., Svånå, T.A. & Oxtoby, N.H. 2002: Cement geochemistry of photozoan carbonate strata (Upper Carboniferous-Lower Permian), Finnmark carbonate platform, Barents Sea. *Journal of Sedimentary Research 72*, 95-115.
- Elliot, T. 1975: The sedimentary history of a delta lobe from a Yoredale (Carboniferous) cyclothem. *Proceedings of the Yorkshire Geological Society 40*, 505-536.
- Elvebakk, G., Hunt, D.W. & Stemmerik, L. 2002: From isolated buildups to buildup mosaics: 3D seismic sheds new light on Upper Carboniferous – Permian fault controlled carbonate buildups, Norwegian Barents Sea. *Sedimentary Geology* 152, 7-17.
- Embry, A.F. 1989: Correlation of Upper Paleozoic and Mesozoic sequences between Svalbard, Canadian Arctic Archipelago, and northern Alaska. *In* Collinson, J.D. (ed.). *Correlation in Hydrocarbon Exploration*. Norwegian Petroleum Society, Graham & Trotman, London, 89-98.
- Embry, A.F. 1993: Crockerland the northwest source area for the Sverdrup Basin, Canadian Arctic Islands. *In* Vorren, T.O., Bergsager, E., Dahl-Stamnes, Ø.A., Holter, E., Johansen, B., Lie, E. & Lund, T.B. (eds.). *Arctic Geology and Petroleum Potential*. Norwegian Petroleum Society Special Publication 2, Elsevier, Amsterdam, 205-216.
- Ezaki, Y., Kawamura, T. & Nakamura, K. 1994: Kapp Starostin Formation in Spitsbergen: A sedimentary and faunal record of late Permian palaeoenvironments in an Arctic region. *Canadian Society of Petroleum Geologists Memoir 17*, 647-656.
- Faleide, J.I., Gudlaugsson, S.T. & Jacquart, G. 1984: Evolution of the western Barents Sea. *Marine and Petroleum Geology 1*, 123-150.
- Fedorowski, J. 1982: Coral *thanatocoenoses* and depositional environment in the upper Treskelodden beds of the Hornsund area, Spitsbergen. *Palaeontologica Polonica 43*, 17-68.
- Folk, R.L. & Siedlecka, A. 1974: The «schizohaline» environment: its sedimentary and diagenetic fabrics as exemplified by late Paleozoic rocks of Bear Island, Svalbard. *Sedimentary Geology 11*, 1-15.
- Gabrielsen, R.H., Færseth, R.B., Jensen, L.N., Kalheim, J.E. & Riis, F. 1990: Structural elements of the Norwegian Continental Shelf. Part 1: The Barents Sea region. *Norwegian Petroleum Directorate Bulletin 6*, 33 p.
- Geochem Group 1994: *A biostratigraphical study of the Statoil well 7128/4-1*.Internal report Statoil.
- Gerard, J. & Buhrig, C. 1990: Seismic facies of the Permian section of the Barents Shelf: analysis and interpretation. *Marine and Petroleum Geology* 7,234-252.
- Gjelberg, J.G. 1981: Upper Devonian (Famennian) Middle Carboniferous succession of Bjørnøya, a study of ancient alluvial and coastal marine sedimentation. *Norsk Polarinstitutt Skrifter 174*, 67 pp.
- Gjelberg, J.G. & Steel, R.J. 1981: An outline of Lower-Middle Carboniferous sedimentation on Svalbard. Effects of tectonic, climatic and sea level changes in rift basin sequences. *In* Kerr, J.W. (ed.). *Geology of the North Atlantic Borderlands*. Canadian Society of Petroleum Geology Memoir 7, 543-561.

- Gjelberg, J.G. & Steel, R.J. 1983: Middle Carboniferous marine trangression, Bjørnøya, Svalbard: facies sequences from an interplay of sea level changes and tectonics. *Geological Journal 18*, 1-19.
- Golonka, J. & Ford, D. 2000: Pangean (Late Carboniferous–Middle Jurassic paleoenvironment and lithofacies. *Palaeogeography, Palaeoclimatology, Palaeoecology 161*, 1-34.
- Goodarzi, F., Davies, G.R., Nassichuk, W.W. & Snowdon, L.R. 1987: Organic petrology and Rock-Eval analysis of Lower Carboniferous Emma Fiord Formation in Sverdrup Basin, Canadian Arctic Archipelago. *Marine and Petroleum Geology 4*, 132-145.
- Gradstein, F.M. & Ogg, J.G. 1996: A Phanerozoic Time Scale. *Episodes 19, nos 1 & 2.*
- Grogan, P., Østvedt-Ghazi, A.-M., Larssen, G.B., Fotland, B., Nyberg, K., Dahlgren, S. & Eidvin, T. 1999: Structural elements and petroleum geology of the Norwegian sector of the northern Barents Sea. *In* Fleet, A.J. & Boldy, S.A.R. (eds.). *Petroleum Geology of Northwest Europe.* Proceedings of the 5th Conference. Petroleum Geology '86 Ltd., Geological Society, London, 247-259.
- Groves, J. R. & Wahlman, G. P. 1997: Biostratigraphy and evolution of Late Carboniferous and Early Permian smaller foraminifers from the Barents Sea (offshore Arctic Norway). *Journal of Paleontology 71*, 758-779.
- Grønlie, G., Elverhøi, A. & Kristoffersen, Y. 1980: A seismic velocity inversion on Bjørnøya - the western Barents Shelf. *Marine Geology 35*, M17-M26.
- Gudlaugsson S.T., Faleide, J.I., Johansen, S.E. & Breivik, A.J. 1998: Late Palaeozoic structural development of the southwestern Barents Sea. *Marine and Petroleum Geology 15*, 73-102.
- Harland, W. B. 1997: The Geology of Svalbard. *Geological Society, London, Memoir 17*, 521 p.
- Harland, W.B., Gaskell, B.A., Heafford, A.P., Lind, E.K. & Perkins, P.S. 1984: Outline of Arctic post-Silurian continental displacements. *In* Spencer, A.M., Holter, E., Johnsen, S.O., Mørk, A., Nysæther, E., Songstad, P. & Spinnangr, Å. (eds.). *Petroleum Geology of the North European Margin.* Norwegian Petroleum Society, Graham and Trotman, London, 137-148.
- Hellem, T. & Worsley, D. 1978: An outcrop of the Kapp Starostin Formation at Austjøkeltinden, Sørkapplandet. Norsk Polarinsitutt Årbok 1977, 340-343.
- Holliday, D.W. & Cutbill, J.L. 1972. The Ebbadalen Formation (Carboniferous), Spitsbergen. *Proceedings of the Yorkshire Geological Society 39*, 1-32.
- Johannessen, E.P. & Steel, R.J. 1992. Mid-Carboniferous extension and rift-infill sequence in the Billefjorden Trough, Svalbard. *Norsk Geologisk Tidsskrift 72*, 35-48.
- Johansen, S.E., Ostisty, B.K., Birkeland, Ø., Fedorovski, Y.F., Martirosjan, V.N., Christensen, O.B., Cheredeev, S.I., Ignatenko, E.A. & Margulis, L.S. 1993. Hydrocarbon potential in the Barents Sea region: play distribution and potential. *In* Vorren, T.O., Bergsager, E., Dahl-Stamnes, Ø.A., Holter, E., Johansen, B., Lie, E. & Lund, T.B. (eds.). *Arctic Geology and Petroleum Potential*. Norwegian Petroleum Society Special Publication 2, Elsevier, Amsterdam, 273-320.
- Knutsen, S.-M., Augustson, J.H. & Haremo, P. 2000: Exploring the Norwegian part of the Barents Sea - Norsk Hydro's lessons from nearly 20 years of experience. *In* Ofstad, K., Kittilsen, J.E. & Alexander-Marrack, P. (eds.). *Improving the exploration process by learning from the past*. Norwegian Petroleum Society Special Publication 9, Elsevier, Amsterdam, 99-112.
- Larssen, G.B., Elvebakk, G., Henriksen, L.B., Kristensen, S.-E., Nilsson, I., Samuelsberg, T.J., Svånå, T.A., Stemmerik, L. & Worsley, D. 2002: Upper Palaeozoic lithostratigraphy of the Southern Norwegian Barents Sea. *Norwegian Petroleum Directorate Bulletin 9*, www.npd.no
- Lees, A. & Buller, A. T. 1972: Modern temperate-water and warm-water shelf carbonate sediments contrasted. *Marine Geology 13*, 1367-1373.
- Lindström, S. 2003: Carboniferous palynology of the Loppa High, Barents Sea, Norway. *Norwegian Journal of Geology 83*, 333-349.

- Lippard, S.T. & Prestvik, T. 1997: Carboniferous dolerite dykes on Magerøy: new age determination and tectonic significance. *Norsk Geologisk Tidskrift 77*, 159-163.
- Lønøy, A. 1988: Environmental setting and diagenesis of lower Permian palaeoaplysinid buildups and associated sediments from Bjørnøya: implications for exploration of the Barents Shelf. *Journal of Petroleum Geology 11*, 141-156.
- Mangerud, G. 1994: Palynostratigraphy of the Permian and lowermost Triassic succession, Finnmark Platform, Barents Sea. *Review of Palaeobotany and Palynology 82*, 317-349.
- Nakrem, H. A. 1991: Conodonts from the Permian succession of Bjørnøya (Svalbard). *Norsk Geologisk Tidsskrift 71*, 235-248.
- Nakrem, H.A., Nilsson, I. & Mangerud, G. 1992: Permian biostratigraphy of Svalbard (Arctic Norway) – a review. *International Geological Review 34*, 933-959.
- Nilsen, K.T., Henriksen, E. & Larssen, G.B. 1993: Exploration of the Late Palaeozoic carbonates in the southern Barents Sea - a seismic stratigraphic study. *In* Vorren, T.O., Bergsager, E., Dahl-Stamnes, Ø.A., Holter, E., Johansen, B., Lie, E. & Lund, T.B. (eds.). *Arctic Geology and Petroleum Potential*. Norwegian Petroleum Society Special Publication 2, Elsevier, Amsterdam, 393-402.
- Nilsson, I. 1993: *Upper Palaeozoic fusulinid stratigraphy of the Barents Shelf and surrounding areas.* Unpublished Dr. Scient thesis, University of Tromsø, 9 papers.
- Nilsson, I., Mangerud, G. & Mørk, A. 1996: Permian stratigraphy of the Svalis Dome, south- western Barents Sea. *Norsk Geologisk Tidsskrift* 76, 127-146.
- Norwegian Petroleum Directorate 1996: *Geology and petroleum resources in the Barents Sea*. Norwegian Petroleum Directorate, Stavanger, 55 pp.
- Nyland, B., Jensen, L.N., Skagen, J., Skarpnes, O. & Vorren, T.O. 1992: Tertiary uplift and erosion in the Barents Sea: magnitude, timing and consequences. *In* Larsen, R.M., Brekke, H., Larsen, B.T. & Tallerås, E. (eds.). *Structural and tectonic modelling and its application to petroleum geology.* Norwegian Petroleum Society Special Publication 1, Elsevier, Amsterdam, 153-162.
- Nystuen, J.P. (ed.) 1986: Regler og råd for navnsetting av geologiske enheter i Norge. Norsk Stratigrafisk Komité. *Norsk Geologisk Tidsskrift 66, supplement 1*, 96 pp.
- Nøttvedt, A., Cecchi, M., Gjelberg, J.G., Kristensen, S.E., Lønøy, A., Rasmussen, E., Skott, P.H. & Van Veen, P.M. 1993: Svalbard - Barents Sea correlation: a short review. *In* Vorren, T.O., Bergsager, E., Dahl-Stamnes, Ø.A., Holter, E., Johansen, B., Lie, E. & Lund, T.B. (eds.). *Arctic Geology and Petroleum Potential*. Norwegian Petroleum Society Special Publication 2, Elsevier, Amsterdam, 363-375.
- Pickard, N.A.H., Eilertsen, F., Hanken, N.-M., Johansen, T.A., Lønøy, A., Nakrem, H.A., Nilsson, I., Samuelsberg, T.J. & Somerville, I.D. 1996: Stratigraphic framework of Upper Carboniferous (Moscovian-Kasimovian) strata in Bünsow Land, central Spitsbergen: palaeogeographic implications. *Norsk Geologisk Tidsskrift 76*, 169-185.
- Røe, S.-L. & Roberts, D. 1992: Basement core sandstones in well 7128/6-1, southern Barents Sea, and correlation with onshore upper Proterozoic sequences of northeastern Finnmark. Unpublished report, University of Bergen, Geological Institute, Bergen, Norway. 33 pp.
- Rønnevik, H.C., Beskow, B.& Jacobsen, H.P. 1982: Evolution of the Barents Sea. *In* Embry, A.F. & Balkwill, H.R. (eds.). *Arctic Geology and Geophysics*. Canadian Society of Petroleum Geologists Memoir 8, 432-440.
- Rønnevik, H.C. & Jacobsen, H.P. 1984: Structural highs and basins in the western Barents Sea. *In* Spencer, A.M., Holter, E., Johnsen, S.O., Mørk, A., Nysæther, E., Songstad, P. & Spinnangr, Å. (eds.). *Petroleum Geology of the North European Margin*. Norwegian Petroleum Socety, Graham and Trotman, London, 19-32.
- Sættem, J., Bugge, T., Fanavoll, S., Goll, R.M., Mørk, A., Mørk, M.B.E., Smelror, M. & Verdenius, J.G. 1994: Cenozoic margin development and erosion of the Barents Sea: Core evidence from southwest of Bjørnøya. *Marine Geology 118*, 257-281.

- Samuelsberg, T., Elvebakk, G. & Stemmerik, L. 2003: Late Palaeozoic evolution of the Finnmark Platform, southern Norwegian Barents Sea. *Norwegian Journal of Geology 83*, 351-362.
- Samuelsberg, T.J. & Pickard, N.A.H. 1999: Upper Carboniferous to Lower Permian transgressive-regressive sequences on central Spitsbergen. *Geological Journal 34*, 393-411.
- Siedlecka, A. 1970: Investigations of Permian cherts and associated rocks in Southern Spitsbergen. *Norsk Polarinstitutt Skrifter 147*, 70 pp.
- Siedlecka, A. 1972: Length slow chalcedony and relics of sulphates: evidence of evaporitic environments in the Upper Carboniferous and Permian beds of Bear Island, Svalbard. *Journal of Sedimentary Petrology* 42, 812-816.
- Siedlecka, A. 1975: The petrology of some Carboniferous and Permian rocks from Bjørnøya, Svalbard. *Norsk Polarinstitutt Årbok 1973*, 53-72.
- Simon-Robertson 1992: *Biostratigraphy of the interval 459 m (swc) 2543 m TD well 7128/6-1.* Internal report Statoil.
- Skaug, M., Dons, C.E., Lauritzen, Ø. & Worsley, D. 1982: Lower Permian palaeoaplysinid bioherms and associated sediments from central Spitsbergen. *Polar Research* 2, 57-75.
- Steel, R.J. & Worsley, D. 1984: Svalbard's post-Caledonian strata an atlas of sedimentational patterns and palaeogeographic evolution. *In* Spencer, A.M., Holter, E., Johnsen, S.O., Mørk, A., Nysæther, E., Songstad, P. & Spinnangr, Å. (eds.). *Petroleum Geology of the North European Margin.* Norwegian Petroleum Society, Graham and Trotman, London, 109-135.
- Stemmerik, L. 1997: Permian (Artinskian–Kazanian) cool-water carbonates in North Greenland, Svalbard and the western Barents Sea. *In* James, N.P.& Clarke, J.A.D. (eds). *Cool-water Carbonates*. Society of Economic Paleontologists and Mineralogists Special Publication 56, 349-364.
- Stemmerik, L. 2000: Late Palaeozoic evolution of the North Atlantic margin of Pangea. *Palaeogeography, Palaeoclimatology, Palaeoecology 161,* 95-126.
- Stemmerik, L. & Larssen, G.B. 1993: Diagenesis and porosity evolution of Lower Permian Palaeoaplysina buildups, Bjørnøya, Barents Sea: an example of diagenetic response to high frequency sea level fluctuations in an arid climate. *In* Horbury, A.D. & Robinson, A.G. (eds.). *Diagenesis and Basin Development*. American Association of Petroleum Geologists Studies in Geology 36, 199-211.
- Stemmerik, L. & Worsley, D. 1989: Late Palaeozoic sequence correlations, North Greenland, Svalbard and the Barents Shelf. *In* Collinson, J.D. (ed.). *Correlation in Hydrocarbon Exploration*. Norwegian Petroleum Society, Graham & Trotman, London, 99-111.
- Stemmerik, L. & Worsley, D. 1995: Permian history of the Barents Shelf area. *In* Scholle, P.A., Peryt, T.M. & Ulmer-Scholle, D.S. (eds.). *Permian of northern Pangaea 2*. Springer Verlag, Berlin, 81-97.
- Stemmerik, L. & Worsley, D. 2000: Upper Carboniferous cyclic shelf deposits, Kapp Kåre Formation, Bjørnøya – response to high frequency, high amplitude sea level fluctuations and local tectonism. *Polar Research 19*, 227-249.
- Stemmerik, L., Christiansen, F.G., Piasecki, F., Jordt, B., Marcussen, C. & Nøhr-Hansen, H. 1993: Depositional history and petroleum geology of the Carboniferous to Cretaceous sediments in the northern part of East Greenland. *In* Vorren, T.O., Bergsager, E., Dahl-Stamnes, Ø.A., Holter, E., Johansen, B., Lie, E. & Lund, T.B. (eds.). *Arctic Geology and Petroleum Potential.* Norwegian Petroleum Society Special Publication 2, Elsevier, Amsterdam, 67-87.
- Stemmerik, L., Elvebakk, G., Nilsson, I. & Olaussen, S. 1998: Comparison of upper Bashkirian - upper Moscovian high frequency sequences between Bjørnøya and the Loppa High, western Barents Sea. *In* Gradstein, F.M., Sandvik, K.O. & Milton, N.J. (eds.). Sequence Stratigraphy – concepts and applications. Norwegian Petroleum Society Special Publication 8, Elsevier, Amsterdam, 215-227.
- Stemmerik, L., Elvebakk, G. & Worsley, D. 1999: Potential Upper Palaeozoic carbonate reservoirs on the Norwegian Arctic Shelf – application to exploration of the Loppa High. *Petroleum Geoscience 5*, 173-187.

- Stemmerik, L., Håkansson, E., Madsen, L., Nilsson, I., Piasecki, S., Pinard, S. & Rasmussen, J.A. 1996: Stratigraphy and depositional evolution of the Upper Palaeozoic sedimentary succession in eastern Peary Land, North Greenland. *Bulletin Grønlands Geologiske Undersøgelse* 171, 45-71.
- Stemmerik, L., Larson, P., Larssen, G.B., Mørk, A. & Simonsen, B.T. 1994: Depositional evolution of Lower Permian Palaeoaplysina build-ups, Kapp Dunér Formation, Bjørnøya, Arctic Norway. *Sedimentary Geology 92*, 161-174.
- Stemmerik, L., Nilsson, I. & Elvebakk, G. 1995: Gzelian-Asselian depositional sequences in the western Barents Sea and North Greenland. In Steel, R.J., Felt, V.L., Johannesen, P. & Mathieu, C. (eds.). Sequence Stratigraphy on the Northwest European Margin. Norwegian Petroleum Society Special Publication 5, Elsevier, Amsterdam, 529-544.
- Ulmishek, G. 1982: Petroleum geology and resource assessment of the Timan-Pechora Basin, USSR, and the adjacent Barents-Northern Kara Shelf. Argonne National Laboratory, ANL/EES-TM-99, 197 pp.
- Vigran, J. O., Stemmerik, L. & Piasecki, S. 1999 Stratigraphy and depositional evolution of the uppermost Devonian-Carboniferous (Tournaisian-Westphalian) non-marine deposits in North-East Greenland. *Palynology 23*, 115-152.
- Worsley, D. & Edwards, M.B. 1976: The Upper Palaeozoic succession of Bjørnøya. Norsk Polarinstitutt Årbok 1974, 17-34.
- Worsley, D., Aga, O.J., Dalland, A., Elverhøi, A. & Thon, A. 1986: *The geo-logical history of Svalbard, evolution of an arctic archipelago.* Statoil, Aske Trykkeri, Stavanger, 121 pp.
- Worsley, D., Agdestein, T., Gjelberg, J.G., Kirkemo, K., Mørk, A., Nilsson, I., Olaussen, S., Steel, R.J. & Stemmerik, L. 2001: The geological evolution of Bjørnøya, Arctic Norway: Implications for the Barents Shelf. *Norsk Geologisk Tidsskrift 81*, 195-234.