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Two crustal-scale cross-sections of the Mid-Norwegian Atlantic passive margin are discussed. Large W- and E-dip-
ping normal faults relate to extension of the continental crust following the Caledonian orogeny and the subse-
quent opening of the Atlantic Ocean. The passive margin extends from the ocean-continent boundary west of the
Vering Marginal High to the innermost extensional normal faults 90 km west of the Caledonian thrust front. Based
on earthquake data and published results of geophysical modelling and seismic interpretation, the average depth
to which the normal faults extend in the offshore domain is estimated to 20+5 km. This depth corresponds to the
brittle-ductile transition in the crust of the stretched Mid-Norwegian continental margin. Above this transition the

crust extended by brittle faulting (tilted blocks); below this limit the crust extended in a ductile manner.

Jon Mosar, Norges geologiske undersokelse, N-7491 Trondheim, Norway. (e-mail- Jon.Mosar@ngu.no)

Introduction

Knowledge of the present-day structure at crustal and
lithospheric scale and of the depth to the major extensional
faults helps us to understand the large-scale tectonic pro-
cesses involved in the development of the Mid-Norwegian
passive margin. Two crustal-scale cross-sections, one in the
Lofoten area and the other along the Storlien-Trondheim-
Vering transect are discussed (Figs. 1 and 2). The depth to
the detachment and/or the depth to which the extensional
faults extend, has been investigated by analysis of earthqua-
ke depths (Fig. 3) in combination with interpretations of
existing seismic surveys and geophysical modelling.

The Mid-Norway passive margin developed in continen-
tal crust and reaches from the innermost extensional normal
faults, near Are some 90 km west of the Caledonian thrust
front close to Ostersund (Sweden), to the western terminati-
on of the Vering Marginal High and the transition to oceanic
crust (Figs. 1 and 2).The structure and geology in the central
part of the Mid-Norway Atlantic margin is the result of a po-
lyphase deformation, including the development of an acti-
ve margin (Caledonides), followed by multiple extensional
events leading to the development of a new passive margin.
The Caledonian structures comprise a succession of stacked
nappes, resulting from the closure of the lapetus Ocean and
the convergence of Baltica and Laurentia during Early
Palaeozoic time, forming the Caledonian (Scandian) orogen.
A succession of extensional events eventually culminated
with the opening of the North Atlantic Ocean (Vagnes et al.
1998, Doré et al. 1999, Gabrielsen et al. 1999, Brekke 2000).
The Late Palaeozoic-Mesozoic sedimentary cover sequences
were deposited in this extensional environment. Continued
extension and deposition since the latest Cretaceous in this
proto-NE Atlantic eventually led to the opening of the
Atlantic Ocean. Such sedimentary sequences are found in

the offshore realm where the structural style is dominated
by graben development and locally inverted dome structu-
res of Tertiary age. For a detailed discussion of the regional
geology onshore and offshore the reader is referred to pa-
pers by Gee et al. (1985), Roberts & Gee (1985), Stephens &
Gee (1985) and Stephens et al.(1985); and the structural ele-
ments maps of the Norwegian continental shelf (Blystad et
al. 1995); the metamorphic, structural and isotope age map,
and the bedrock map of Central Fennoscandinavia
(Lundqvist et al. 1996, 1997).

The cross-sections discussed are simplified regional sec-
tions linking the onland with the offshore structures. They
are based on existing and available data, combined with
new interpretation at depth, and show simplified, viable,
structural solutions. The emphasis is on the post-Late
Permian extensional structures, and on the location and
depth of the major, normal fault systems affecting the crust.
A distinction is made between basement sensu lato (s.l.) and
sedimentary cover. Included in the basement s.l. are the
Caledonian nappes, the autochthonous substratum (base-
ment sensu stricto (s.s.)), and the Devonian and Early Permo-
Carboniferous grabens with their variably metamorphosed
sedimentary rocks. The sedimentary cover comprises all
post-Late Permian deposits. The detailed geology and struc-
tures of the different tectonic units are not represented on
the sections for reasons of readability.

Thermo-mechanical and rheological modelling is beyond
the scope of this paper, as is the detailed discussion of the
possible relationship of the extensional structures and the
Caledonian compressional (thrust)/extensional structures.

Onshore/offshore cross-section
Seismic investigations, both onshore and offshore, have
imaged structures at depth in different areas between the
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Fig. 1. Simplified tectonostratigraphic map of the Atlantic Norwegian passive margin. Bold black lines show location of crustal-scale cross-sections
in Fig. 2.In red, blue and black are shown the post-Late Permian normal faults onshore, as well as faults with undetermined movement/age. H = Hitra;

R = Reragen; Trondh.=Trondheim.

oceanic crust to the west of the Vering Marginal High, and
the overthickened, extended continental crust to the east
(Storlien-Ostersund, Sweden). It appears that the onshore
portion is affected by extensional, crustal-scale faulting and
development of small basins (Fig. 2; see also Hurich et al.
1988, Sjostrom & Bergman 1989, Sjostrom et al. 1991, Wilks &
Cuthbert 1994, Andersen 1996, Hartz & Andresen 1997,

Andersen et al. 1999). These structures are similar to those
described in western and southern Norway (Fossen &
Rykkelid 1992, Andersen 1996, Hurich 1996, Dunlap & Fossen
1998, Fossen & Dunlap 1998, Osmundsen et al. 1998, Fossen
et al. 1999, Gabrielsen et al. 1999, Christiansson et al. 2000).
Normal faulting also occurred in the continental crust in the
Ofoten-Lofoten area further north (Rykkelid & Andresen
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1994, Coker et al. 1995, Hames & Andresen 1996, Klein et al.
1999). Similar faults are also present in the offshore substra-
tum of the Trendelag Platform, in the Vering Basin, as well as
beneath the Lofoten and Utrest Ridges (Blystad et al. 1995,
Doré et al. 1999, Gabrielsen et al. 1999).

Two E-W cross-sections are discussed (Figs. 1 and 2):one
from east of Are (Sweden), through Trondheim and the
Fosen Peninsula, and across the Trgndelag Platform into the
Vering Basin; and a second across the Lofoten area, through
the Utrest High into oceanic crust. Interpretations of the
offshore setting of both sections are based on: 1) published
geoseismic profiles after seismic reflection data (Blystad et
al. 1995), 2) seismic refraction data (Planke et al. 1991, Mjelde
et al. 1993, 1996, 1997, 1998, Planke & Eldholm 1994), and 3)
geophysical modelling (Goldschmidt-Rokita et al. 1988,
Skogseid et al. 1992, Skogseid 1994, Skogseid & Eldholm
1995, Olesen et al. 1997, Digranes et al. 1998).

Interpretations of the different published data, while lar-
gely in agreement, are not necessarily identical. The cross-
sections discussed herein try to satisfy the most relevant ob-
servations and attempt to highlight the most important
changes in basin structure, fault geometry, and base-
ment/Moho depth.

In the southern Vering-Are section, four main domains
are recognised (Fig. 2): [I] the Are-Trondheim-Fosen area, [Il]
the Trendelag Platform, [Ill] the Vering Basin, [IV] and the
Vegring Marginal High that forms the transition to oceanic
lithosphere to the west.These four domains are underlain by
continental crust. Along the Vering-Are section, the passive
margin is rather wide (500 km offshore + 220 km onshore)
compared with the Lofoten margin (250 km) or many other
segments of the Atlantic Ocean. However, equally wide mar-
gins exist, for example, off Newfoundland (Tankard &
Welsink 1989, Welsink et al. 1989, Driscoll et al. 1995) or along
the northeast margin of Greenland.

In the Are-Trandelag portion of the section, it is possible
to utilise deep seismic reflection data (Hurich et al. 1988,
1989, Gee 1991, Palm 1991, Palm et al. 1991, Hurich 1996,
Hurich & Roberts 1997 and in prep.) to constrain the structu-
res at depth. This profile shows a 10-15 km-thick stack of
Caledonian nappes (Fig. 2), which resulted from thrusting of
the exotic terranes from Laurentia/lapetus and the imbrica-
tion of the W-subducting margin of Baltica (Gee et al. 1985,
Stephens et al. 1985, Stephens & Gee 1989, Rey et al. 1997).
Post-dating the Caledonian structures, a series of at least
four, mainly west-dipping, normal faults cut the fold-and-
thrust belt (Norton 1986, 1987, Gee 1988, Sjostrom &
Bergman 1989, Sjostrom et al. 1991, Gee et al. 1994, Wilks &
Cuthbert 1994, Andersen 1996, Hurich & Roberts 1997,
Andersen et al. 1999) (Figs. 1 and 2).

The innermost normal faults, including the Reragen
detachment (Sjostrom & Bergman 1989, Gee et al. 1994), are
located west of the frontal thrust of the Caledonian orogenic
wedge. The fault with the largest normal offset is located
within the Merdker Nappe, and has been termed the
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Koppera fault (Hurich & Roberts, in prep., D. Roberts, pers.
comm. 2000). Farther east is the Rgragen detachment, loca-
ted close to the Norwegian-Swedish border and there over-
printing a major thrust; and the innermost normal fault —
here called provisionally the Are fault - located 1 km west of
Are (Sweden) (Figs. 1 and 2).

Along the coast, the polyphase Mgre-Trondelag Fault
Complex forms a major high-strain shear zone cutting
through the Central Norwegian Caledonides (Gabrielsen
1989, Gronlie & Roberts 1989, Séranne 1992, Roberts 1998).
Multiple reactivation recorded along this fault complex
ranges from sinistral ductile movement in the Devonian
period (Grenlie & Roberts 1989) to brittle offsets in Late
Cretaceous-Early Tertiary time (Grgnlie et al. 1990, 1991).
From the distribution of earthquakes (Fig. 3) it appears that
the present-day seismic activity along this fault is very low or
non-existent (NFR/NORSAR 1998).The Mare-Trgndelag Fault
Complex appears to be an upper crustal feature that termi-
nates against a major extensional fault at depth (Fig. 2), as
has been interpreted from deep seismic profiling (Hurich &
Roberts 1997). A similar conclusion has been reached from
recent investigations on the Great Glen Fault (McBride
1995), which bears analogies with the Moare-Trendelag Fault
Complex (Coward 1993, Chauvet & Séranne 1994).

Offshore, the southern cross-section shows a strongly
variable thickness of the crust.This is related to rifting, partly
in Permo-Jurassic time, but mainly during the Cretaceous
period (Doré et al. 1997, 1999, Swiecicki et al. 1998, Brekke et
al. 1999, Brekke 2000). The Trendelag Platform is affected by
few, major, normal fault systems and the crust appears to
have been only moderately stretched. Mesozoic basins and
stretching were possibly superimposed on important
Palaeozoic (Devono-Carboniferous?) basins. Normal faults
with large throws were active mainly in the Vering Basin
(Brekke et al. 1999, Brekke 2000). In the central Vering Basin,
the crust is very thin (Fig. 2) and lithospheric mantle is pre-
sent quite close to the floor of the sedimentary basin
(Skogseid 1994, Skogseid & Eldholm 1995). Conversely, the
sedimentary basins are very deep with up to 8-12 km of
sediments.

The cross-section in the Lofoten area shows a typical,
tilted block, margin geometry with major, west- and east-
dipping, normal faults. The section shows four different
structural highs: [I] onshore area, [ll] Lofoten Ridge, [Il]
Marmaele Spur, and [IV] Rest High. The most important
thinning of the crust is observed to the west of the
Vestfjorden Basin, beneath the Lofoten Ridge (Mjelde 1992,
Mokhtari & Pegrum 1992, Mjelde et al. 1993, Goldschmidt-
Rokita et al. 1994, Laseth & Tveten 1996). Unlike the Are-
Trondheim-Varing section, the Lofoten cross-section shows
a width of only some 250 km for the passive margin realm.
The strong thinning of the lower crust beneath the Lofoten
Ridge - from 11.5 to 2 km - appears to be due mainly to
ductile stretching in the lower crust.

Underplated magmatic material occurs in both sections
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along the ocean-continent (passive margin) boundary, at
the crust-mantle transition (Skogseid et al. 1992, Mjelde et al.
1997, 1998). This underplated material has been interpreted
from high-velocity bodies below the crust,and is thought to
have resulted from adiabatic decompressional melting of
the mantle, followed by preferential melt migration along
the crust-mantle boundary (Skogseid et al. 1992). There
appears to be a smaller volume of underplated material
along the Lofoten section than along the Varing-Are profile.
In general, the amount of underplated material (high-velo-
city intrusions in the lower crust) decreases landwards.Some
magma underplating may be of Cretaceous age, in view of
the stronger extension that affected the Vering Basin during
this period. Similar magmatic underplating has been recor-
ded along many profiles along the European Atlantic margin
(Faeroe, Rockall, Greenland, North Sea, More).

Polyphase extensional faulting and
tilted block margin
Both orogenic and post-orogenic (post-Late Permian),
polyphase, extensional deformation dissected the Caledo-
nides. Extensional faulting was active at different periods
and at different depths,and has been documented from iso-
tope ages, mineral assemblages and sedimentation history
(Boundy et al. 1996, Torsvik et al. 1997, Andersen 1998, Klein
etal.1999).

Extension is known to have started in Early Devonian
(c. 405 Ma) at depths of c. 10 km, following the Scandian
collisional climax. Simultaneously and continuing into the
Middle Devonian, sediments were deposited in actively
extending half-grabens in the hangingwalls to the Caledo-

nian nappes (Steel 1976, Boe et al. 1989, Osmundsen &
Andersen 1994, Osmundsen et al. 1998, Andersen et al.
1999).These sediments were folded and metamorphosed at
sub-greenschist to lower greenschist facies (Boe et al. 1989)
and subsequently brought to the surface, most likely due to
normal faulting and extension (Fossen 1992, 2000).

Important detachment and high-angle faults affected
both the present-day onshore section and the concealed
offshore parts of the Caledonides. These extensional faults
are linked to rifting associated with the breakup of Pangea
which started in Permo-Triassic time and continued into the
Mesozoic (Eide et al. 1997, 1999, Torsvik et al. 1997, Andersen
et al. 1999, Braathen 1999). Thus, by way of example, during
Jurassic-Cretaceous time, a small spoon-shaped sedimen-
tary half-graben developed in Beitstadfjorden, in the inner-
most Trondheimsfjord, along the Verran Fault branch of the
Meore-Trondelag Fault Complex (Boe & Bjerkli 1989). Further
inland to the east, the Rgragen detachment appears to be
genetically linked with the Leerdal-Gjende Fault farther
south. Recent investigations have shown that movement on
this latter fault system occurred in the Permian and the
Jurassic (Eide et al. 1997, Andersen et al. 1999). By analogy it
is suggested that movements on the Are-Rgragen detach-
ment system were also occurring during Permo-Jurassic
time.

During Permo-Triassic times, basin development was
most likely concentrated in the Trendelag Platform region
(but also along the present-day Greenland coast), while
during the Mesozoic, the major deeper basins developed
farther west (Brekke et al. 1999, Brekke 2000, Reemst &
Cloetingh 2000, Skogseid et al. 2000). Associated with the
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general extension of the passive margin, smaller basins also
developed farther east and west (west of the Nordland
Ridge). Basin development continued throughout the
Cretaceous, particularly in the Vering Basin, and finally cul-
minated in the opening of the North Atlantic Ocean - east of
the Vering Marginal High - and the separation of Greenland
and Norway (Blystad et al. 1995, Doré et al. 1997, Lundin &
Doré 1997).The Norwegian Atlantic margin developed from
there on as a passive margin.

NW-SE directed compressional (thrusting) and extensio-
nal (normal) faulting and strike-slip faulting is still active at
the present-day as seen from earthquake data (Bungum et
al. 1991 for location and detailed discussion). The most acti-
ve regions lie along the western and eastern borders of the
Trondelag Platform, as well as in the Lofoten area.

Depth of the faults/detachment -
rheology/earthquake data

Geological, geophysical and laboratory experiments sug-
gest that the mechanical lithosphere is rheologically stratifi-
ed. This layering reflects changes in the mechanical behavi-
our and flow processes of lithospheric rocks, as determined
by depth-dependent physical (P, T) and chemical (mineral
composition, %water) environments.

From seismic profiles onshore, as well as offshore, it can
be seen that the faults which limit the major half-grabens
extend into the upper crust (Fig. 2). Depending on their age
of formation (from Devonian through to Cretaceous) and
location, onshore vs. offshore, these grabens have been filled
with sediments.Their depth in the brittle portion of the crust
can be estimated from geophysical methods and by conside-
ring the strength profile of the continental crust and the
depth of the present-day earthquakes. The present-day
strength profile in the Central Baltic Shield (Cloetingh &
Banda 1992) indicates that the mechanically strong crust
extends down to a depth of 21 km (Fig.3 - MSC = base of the
mechanically strong crust).The brittle-ductile transition zone
forms the lower boundary to the seismic activity. Therefore,
the earthquake depth is controlled by the thickness of the
brittle part of the crust. In extensional domains, as well as in
compressional orogens, faults frequently root in this zone.

The depth distribution of earthquakes in Norway, the
Norwegian shelf (including Svalbard) and the oceanic
domain east of the mid-oceanic ridge has been analysed to
determine the depth to the base of the present-day brittle
crust (Fig. 3). These data include documented NW-SE exten-
sional faulting and local NW-SE compressive events
(Bungum et al. 1991, Atakan et al. 1994, NFR/NORSAR 1998).

In this oceanic-continental domain, the majority of the
earthquakes are located between 0 and 25 km depth (Fig.3).
A mean depth of 14.2 km was calculated for the whole data
set (ocean and continent; number of earthquakes = 5308,
standard deviation = 11 km). The depth distribution of the
earthquakes shows a strongly skewed distribution with a
majority of earthquakes above the mean value and a rapidly
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diminishing number of earthquakes below the mean value.
Domains underlain exclusively by continental crust (Vering
Basin, Trendelag Platform and onshore) show a mean depth
of 12.9 km (number of earthquakes analysed = 3006; stan-
dard deviation = 10.4 km). The earthquake frequency dimi-
nishes markedly below this depth and becomes very weak
below 25-30 km. The data analyses suggest that the brittle-
ductile transition is located at around 15-25 km depth. Thus,
the depth to a possible major detachment, or the depth
where the extensional faults root, ranges from 15 to 25 km.
This is consistent with more detailed work from the
Norwegian Atlantic margin reported by Gabrielsen (1989),
Gregersen & Basham (1989), Bungum et al. (1991) and
NFR/NORSAR (1998).

The overthickened crust of the Baltic Shield is further
stretched beneath the base level of these faults, mainly in
the Vering Basin (where interpretation of refraction data
suggests that the lower crust almost completely disappears)
and the Lofoten Ridge areas. This extension occurs below
the ductile-brittle transition zone in the lower crust, where
the crust deforms in a ductile fashion and may sustain
substantial stretching, while the upper crust is extended
largely by brittle normal faulting. Permo-Triassic, Jurassic
and Cretaceous (Eide et al. 1997, Andersen et al. 1999) to
Tertiary extension acted upon the continental lithosphere
created after the Caledonian orogeny (following the orogenic
collapse, the subducting slab-breakoff/removal of the gravi-
tationally unstable crustal root; Andersen & Jamtveit 1990,
Koyi et al. 1999). This is in accordance with the results of
analogue modelling, where the upper and lower crust
decouple and develop strong boudinage (necking) in the
lower ductile crust, eventually juxtaposing upper crust with
asthenospheric mantle (Brun & Beslier 1996, Gartrell 1997).
This ductile extension is considered to be related to the
stretching of the lithosphere associated with the progressi-
ve development of the North Atlantic oceanic realm.

Though its thermo-mechanical structure may have
changed throughout the evolution of the margin, it has
been shown that the brittle-ductile structure of the crustis a
permanent feature.The position of the brittle-ductile transi-
tion, together with the zones of weakness created by the
development of successive normal faults, have determined
the evolution of the deformation in the crust. It has, how-
ever, been shown that for successive rift episodes the
necking level remains at a rather constant depth with a best-
fit solution at around 20 km for the Vering Basin (Reemst &
Cloetingh 2000).The necking level represents a zone of con-
centrated brittle deformation associated with a detachment
zone, which gives way to a more distributed deformation in
the lower crust. This level largely controls the kinematics of
extension in passive margins (Kooi & Cloetingh 1992, Kooi et
al. 1992, van der Beek et al. 1994, Reemst & Cloetingh 2000).
In a simplified first-order approach it is suggested here that
it is therefore realistic to admit that since the Early Mesozoic,
the position of the ductile-brittle transition has remained
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within the same depth range, even though the geometry of
the crust has changed substantially in localised zones.

Conclusions

Crustal-scale cross-sections of the Mid-Norwegian Atlantic
passive margin illustrate the overall geometry of the margin
and the main structural features. The Mid-Norway passive
margin reaches from the innermost normal faults near Are
(Sweden), some 90 km west of the Caledonian thrust front
near Ostersund (Sweden), to the western termination of the
Vering Marginal High and the transition to oceanic crust.

Polyphase extensional events between the Late Permian
and the Palaeocene led to break-up and development of the
North Atlantic Ocean in the Early Eocene (magnetic anomaly
24). Caledonian structures and nappes were cut by Late
Palaeozoic to Mesozoic normal faults, and the continental
crust was stretched repeatedly, leading to the development
of deep sedimentary basins. The possible reactivation, as
normal faults, of Caledonian thrusts or Palaeozoic extensio-
nal faults in the Trondelag Platform-Vering Basin area can-
not be excluded, but is difficult to demonstrate with the data
available to date. The same structures observed onland are
expected to occur offshore, beneath the Mesozoic and
Cenozoic sedimentary successions. The normal faults define
a series of tilted blocks forming important half-grabens with
associated structures such as roll-overs, hangingwall gra-
bens and antithetic faults (mainly observed in the sedimen-
tary cover sequences).The normal faults bounding the diffe-
rent tilted blocks do not necessarily merge into one single
décollement horizon.

During the successive extensional events, the upper-
middle crust behaved in a brittle manner and is characteri-
sed by normal faults.The roots of these faults are interpreted
to coincide with the brittle-ductile transition zone. From
earthquake depths this transition zone has been determi-
ned to lie at around 15-25 km depth.
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