Multiple methods, maps, and management applications: purpose made maps in support of Ocean Management

Craig J. Brown McGregor GeoScience Ltd.

THE UP DICT OF

McGregor GeoScience Limited

International workshop on seabed mapping methods and technology, Trondheim 17-18 October, 2012

Outline

- Introduction
 - Review of benthic habitat mapping: Brown et al (2011)
 - Strategies for map production
- Case study area and data sets
 - Study Area: German Bank and SFA 29
 - Multibeam and derived data layers
- Methods, maps and applications (examples)
 - "Benthoscape" map
 - Scallop habitat suitability map
- Summary

Benthic habitat mapping: Review

predict biological patterns on the seafloor (in a continuous or discontinuous manner)".

Brown et al. (2011) Benthic Habitat Mapping: A review of progress towards improved understanding of the spatial ecology of the seafloor using acoustic techniques. *Estuarine Coastal and Shelf Science* 92 (3): 502-520

Introduction

Brown et al. (2011) Benthic Habitat Mapping: A review of progress towards improved understanding of the spatial ecology of the seafloor using acoustic techniques. *Estuarine Coastal and Shelf Science* 92 (3): 502-520

Introduction

Published Habitat Mapping Studies: Acoustic technique

Brown et al. (2011) Benthic Habitat Mapping: A review of progress towards improved understanding of the spatial ecology of the seafloor using acoustic techniques. *Estuarine Coastal and Shelf Science* 92 (3): 502-520

Technological developments:

Bathymetry and backscatter – the advantage of multibeam sonar

Strategy 2: Assemble first, predict later TOP DOWN (unsupervised)

Strategy 3: Predict first, assemble later BOTTOM UP (supervised)

Brown et al. (2011) Benthic Habitat Mapping: A review of progress towards improved understanding of the spatial ecology of the seafloor using acoustic techniques. *Estuarine Coastal and Shelf Science* 92 (3): 502-520

Introduction

Published Habitat Mapping Studies: Strategies

Brown et al. (2011) Benthic Habitat Mapping: A review of progress towards improved understanding of the spatial ecology of the seafloor using acoustic techniques. *Estuarine Coastal and Shelf Science* 92 (3): 502-520

The Benthoscape Approach

Working definition of the term "<u>Benthoscape</u>": "The minimum mapping unit (grain) at which distinctive bio-physical characteristics can be identified and objectively delineated based on continuous, remotely sensed environmental data sets from a study area".

Case Study Area

Multibeam data

Data collection:

- MBES data collected 1997-2003 over 5320 km² of German Bank
- Simrad EM1000 and Simrad EM1002
- Bathymetry and backscatter processed
- Sub-bottom, sidescan, grab, core and seafloor video/stills (for geological interpretation)

Strategy 2: Application of multispectral (objective) segmentation methods

Methods:

CLUSTER (unsupervised method) based on 6 layers:

- Bathymetry
- Slope
- Curvature
- Q1
- Q2
- Q3

Multidimensional segmentation based on standard techniques used to classify multi-spectral satellite imagery.

Strategy 2: Application of multispectral (objective) segmentation methods

Brown et al. (2012) Multiple methods, maps, and management applications: Purpose made seafloor maps in support of ocean management. *Journal of Sea Resaerch* (72): 1-13. doi:10.1016/j.seares.2012.04.009

Strategy 2: Application of multispectral (objective) segmentation methods

Brown et al. (2012) Multiple methods, maps, and management applications: Purpose made seafloor maps in support of ocean management. *Journal of Sea Resaerch* (72): 1-13. doi:10.1016/j.seares.2012.04.009

Ground-truthing

Towcam survey 9-21 September 2010

Strategy 2: Application of multispectral (objective) segmentation methods

Total of 3190 geo-referenced seafloor photographs classified into 5 "benthoscape" classes:

- Reef
- Glacial Till
- Silt/Mud
- Silt with bed forms
- Sand with bed forms

Strategy 2: Application of multispectral (objective) segmentation methods

Brown et al. (2012) Multiple methods, maps, and management applications: Purpose made seafloor maps in support of ocean management. *Journal of Sea Resaerch* (72): 1-13. doi:10.1016/j.seares.2012.04.009

Strategy 2: Application of multispectral (objective) segmentation methods

	Segmented class							
	5+6	1+3+9+13	2+4+7+8+ 15	10+11+14	12	Row total (no. images)	Producer accuracy (%)	Errors Omission(%)
Reef	304	275	26	9	12	626	48.6	51.4
Glacial Till	196	980	268	7	13	1464	66.9	33.1
Silt/Mud	13	84	726	18	0	841	86.3	13.7
Silt/bed forms	0	0	16	194	0	210	92.4	7.6
Sand/bed forms	3	3	2	17	24	49	49	51
Grand Total (No. of pixels)	516	1342	1038	245	49	3190		
User accuracy (%)	58.9	73	69.9	79.2	49	Overall Accuracy = 70%		

Scallop Habitat Map

Strategy 3: Species-specific habitat maps. Application of SDM methods

SPECIES DISTRIBUTIONS

Environmental (physical) data layers Continuous coverage (geomorphological and/or oceanographic)

Methods:

Species Distribution Modelling: Maximum Entropy

- Bathymetry
- Backscatter
- Slope
- Aspect
- Curvature
- Q1
- Q2
- Q3
- BPI (3 scales)

Training data = 3813 scallop records from 55 stations

Validation data = 1003 scallop records from 20 survey

Scallop Habitat Map

Strategy 3: Species-specific habitat maps. Application of SDM methods

Brown et al. (2012) Multiple methods, maps, and management applications: Purpose made seafloor maps in support of ocean management. *Journal of Sea Resaerch* (72): 1-13. doi:10.1016/j.seares.2012.04.009

Scallop Habitat Map

Strategy 3: Species-specific habitat maps. Application of SDM methods

Summary

- The same primary data set (MBES bathymetry and backscatter) can form the building blocks for production of a number of thematic maps to support a number of ocean management objectives
- Multiple-maps approach as opposed to a "one-map-fits-all" approach
- Objective segmentation methods are starting to show tremendous promise for map production – use of methods created for terrestrial applications
- SDM techniques appropriate for species-specific map production (but success likely limited to the life-history characteristics of the target species)
- Move toward incorporation of spatial information in ocean management – Commercial application of the "Benthoscape" approach...

McGregor GeoScience

- Established in 1973
- New Ownership April 2007
- Seafloor mapping specialists -Hydrographic, Geophysics, Geotechnical Services and Environmental Surveys
- Multidisciplinary team of surveyors, geologists, oceanographers and biologists
- Provide marine survey, mapping and science services to a wide range of clients

Acknowledgements

We thank:

- DFO colleagues (Stephen Smith, Jessica Sameoto, Peter Lawton)
- CHS staff involved in the collection and processing of the MBES data set
- Colleagues at NRCan for producing the backscatter mosaic
- The crew and scientific staff of the CCGS Frederick G. Creed, MV Anne S Pierce and CCGS Hudson for their efforts at sea
- Pierre Clement, Kelly Bentham, Shawn Roach, Kirk Phelan, Len DiPenta and the crew of the *MV Dominion Victory* for collection of the 2010 ground-truthing data sets
- Robert Benjamin and Pierre Clement for correction of Towcam positional data
- Gillian Forbes for processing of underwater video and still images
- Chris Elliott at Quester Tangent for provision of support for processing of the backscatter data through *QTC Multiview*

Thank You!