AIRBORNE MAGNETIC AND RADIOMETRIC SURVEY NORGES GEOLOGISKE UNDERSØKELSE (NGU)

CALIBRATION REPORT

FRAS Campaigns
NORWAY 2011-2012

TABLE OF CONTENTS
ABSTRACT 3
A. BASE STATIONS SYNCHRONISATION AND AIRCRAFTS CONSISTENCY 4
CALIBRATION TESTS - C-FWNG 5
B. Magnetometers noise 5
C. COMPENSATION BASED ON A PHYSICAL MODEL 6
D. Heading and absolute accuracy test 8
E. Test line and QC tests 12
FRAS WEST 12
FRAS EAST 12
F. COSMIC AND AIRCRAFT BACKGROUND CORRECTION 14
G. UPWARD LOOKING DETECTOR CORRECTION COEFFICIENTS 15
H. Pads calibration 19
l. Height attenuation \& Sensitivity 22
J. LAG TEST 24
K. Laser and Radar calibration 26
CALIBRATION TESTS - C-GJDD 28
B. MaGnetometers noise 28
C. COMPENSATION BASED ON A PHYSICAL MODEL 29
D. Heading and absolute accuracy test 31
E. Test line and QC tests 32
FRAS WEST 32
FRAS EAST 32
F. COSMIC AND AIRCRAFT BACKGROUND CORRECTION 34
G. UpWARD LOOKING DETECTOR CORRECTION COEFFICIENTS 37
H. Pads calibration 40
l. Height attenuation \& Sensitivity 43
J. LAG TEST 45
K. Laser and Radar calibration 47

LIST OF FIGURES

Figure 1: Magnetic base stations (MB) and aircrafts (C-GJDD, C-FWNG) SYnchronisation 4
Figure 2: Magnetometers $4{ }^{\text {TH }}$ Difference 5
Figure 3 : Figure of merit over regional magnetic first vertical derivative 7
Figure 4 : Background correction 15
Figure 5 : Exponential height attenuation for all four windows 23
Figure 6 : LASER CALIbRAtion 27
Figure 7 : Radar calibration 27
Figure 8: Magnetometers $4^{\text {th }}$ Difference (Aircraft GJDD) 28
Figure 9 : Figure of merit over regional magnetic first vertical derivative 30
FIGURE 10 : BACKGROUND CORRECTION 36
Figure 11 : Exponential height attenuation for all four windows 44
Figure 12 : LASER CALIBRATION 48
Figure 13 : Radar calibration 48

LIST OF TABLES

Table 1 : FOM LINE DIRECTIONS 7
Table 2 : Steps averaged data 14
Table 3 : Cosmic \& Aircraft background coefficients 14
Table 4 : TESt Data (CPS) 22
Table 5 : Background Data (CPs) 22
TABLE 6 : STRIPPING RATIOS 22
Table 7 : Background-Corrected \& Stripped Counts (CPS)) 22
Table 8 : Attenuation coefficients \& Sensitivity (60m) 23
Table 9: Radar calibration 26
Table 10 : FOM LINE DIRECTIONS 30
Table 11 : Steps averaged data (Aircraft GJDD) 34
Table 12 : Cosmic \& Aircraft background coefficients (Aircraft GJDD) 34
Table 13 : Test Data (cPs) 43
Table 14 : Background Data (CPS) 43
Table 15 : Stripping ratios 43
Table 16 : Background-Corrected \& Stripped Counts (CPS)) 44
Table 17 : Attenuation coefficients \& Sensitivity (60m) 44
Table 18: Radar calibration 47

Abstract

This calibration report compiled the test and calibration results performed during the operations. Results were digitally recorded and could be sent upon request from the client. All the results were GPS processed prior to calculation.

Part A and B contain calibration results obtain for PA31 C-FWNG and PA31 C-GJDD respectively. No equipment have been changes, modified or swapped during the whole survey period. The calibration tests involved the following instruments.

- Three Geometrics G-822A Cesium optical vapour pumping magnetometers of the last generation, installed inside the stinger and inside the extensions of the wing-tip pods of the aircraft;
- Three Radiation Solutions Inc. (RSI) RS-500 Digital Airborne Gamma-Ray Spectrometers for the detection and measurement of low level radiation from naturally occurring sources. Each spectrometer includes 5 crystals RSX- 5 detector: 16.72 litres (1024 in ${ }^{3}$) Nal detector downward looking, plus a 4.18 litres (256 in 3) upward looking.
- A Novatem data-acquisition and compensator system unit, especially developed by Novatem for the Very High Resolution, based on the use of an inertial measurement unit and very robust inversion algorithms for the calculation of coefficients.
- An Inertial Measurement Unit (IMU) manufactured by Honeywell, providing the attitude angles of the aircraft (roll, pitch, yaw) in real time for both the compensation and the correction of the gradients.
- An orientation sensor (3DM) manufactured by MicroStrain , which incorporates 3 accelerometers and 3 magnetometers together, providing the attitude angles of the aircraft (roll, pitch, yaw) in real time for both the compensation and the correction of the gradients.
- A very high-resolution laser altimeter manufactured by Optech, integrated inside the rear of the aircraft. It measures the height of the aircraft above the ground with a precision of one centimetre, without calibration;
- A TRA 4000 radar altimeter manufactured by Free Flight Systems, integrated below the aircraft, to measure the height of the aircraft above the ground when the clearance is too high for the laser (sharp valley);
- A double frequency Novatel Propack-V3 GPS providing a in real-time positioning with an accuracy of about one meter. The differential corrections are recomputed after the flights using the Waypoint GrafNav software to provide centimetre accuracy;
- A very efficient draping navigation system jointly developed by Softnav and Novatem to minimize the differences at the intersections of the flight lines and the control lines;
- Due to the large scale of the survey and restraint access to islands, the installation of several base stations was problematic. However, , two permanent base stations managed by the Tromsø Geophysical Observatory at University of Tromsø and three permanent base stations managed by IMAGE (International Monitor for Auroral Geomagnetism Effects) surrounding the survey area were also used to cover the entire survey area during all the survey operation.

Data compilation and results analysis were done by Pierrick Chasseriau, PhD. for Novatem Inc.

A. Base stations synchronisation and Aircrafts consistency

Date: 2012.02.07-2011.07.08
Location: Western NORWAY
Aircraft: PA31 C-FWNG, C-GJDD
Instrument: Magnetometer stations: GSM-19 Overhauser, 1 Hz Magnetometers onboard: G-823 Cesium magnetometer, $\mathbf{1 0 H z}$
Locations: NOVATEM station: Vigra, NORWAY; 6.075574362 .5661829 TGO station: Solund, NORWAY; 4.840061 .0870

TGO station: Dombas, NORWAY; 9.110062 .0700 TGO station: Rorvik, NORWAY; 10.987264 .9469

C-FWNG: MAGR1, 2, 3: Vigra Airport, NORWAY; 6.1102262 .55769
C-GJDD: MAGR1, 2, 3: Vigra Airport, NORWAY; 6.1098862 .55766

Concurrent measurements of magnetic base station and aircraft magnetometer were done during the night of the $7^{\text {th }}$ of February thru the $8^{\text {th }}$ of February 2012. 500000 readings have been recorded. For processing, the magnetic base stations were interpolated in two dimensions in order to get the best estimation at the position of the aircraft. Preliminary results have been given only with the diurnal correction from the station 1.

According to the specification of the contract, maximum allowed diurnal variation is $100 \mathrm{nT} / \mathrm{h}$, $35 \mathrm{nT} / 10 \mathrm{~min}$ and $15 \mathrm{nT} / 2 \mathrm{~min}$. Nevertheless, since there are only few weeks available to fly the whole project, and taking into account that the base stations installed cover a large area, making the diurnal correction very accurate, days with little activity have been considered valid. Note that the base stations on the following graphics have the same dynamic range, centred for each profiles. Thus, the axis scale on the left represents only Novatem station at Vigra.

Figure 1: Magnetic base stations (MB) and aircrafts (C-GJDD, C-FWNG) synchronisation

CALIBRATION TESTS - C-FWNG

B. Magnetometers noise

Date: 2011.07.07
Location: Alta airport, NORWAY
Instruments: Magnetometers: G-823 Cesium magnetometer, $\mathbf{1 0 H z}$

Temperature: $16.0^{\circ} \mathrm{C}$ at sea level
Pressure: 101.4 kPa at sea level
Flying Height: 60 m

Noise level is evaluated on a test line over a distance greater than 4 km . For convenience, the 10 km test line used during the survey was then analysed for the purpose.

The graphic below shows the normalized fourth difference for each of the three magnetometers installed in the aircrafts. Requirement for the Finnmark campaign is 0.1 units fourth difference, which is clearly above the three mounted magnetometers evaluated.

MAGR1, 2 and 3 represents left, right and tail total raw magnetic field respectively.

Figure 2: Magnetometers $4^{\text {th }}$ difference

C. COMPENSATION BASED ON A PHYSICAL MODEL

Date: 2011.07.07
Location: North West of Alta, Norwegian Sea, NORWAY

Instruments: - Magnetometers onboard: G823 Cesium magnetometer, 10 Hz

- Inertial measurement unit (IMU), Honeywell HG 1700
AG62, 10Hz
Temperature: $16.0^{\circ} \mathrm{C}$ at sea level
Pressure: 101.4 kPa at sea level
Flying Height: 3000 m

Calibration flight (FOM)

In practice, the calibration flight follows a precise and reproducible geometry, called Figure of Merit (FOM) during which the aircraft describes successively three pitch oscillations ($\pm 5^{\circ}$), three roll oscillations $\left(\pm 10^{\circ}\right)$ and three yaw oscillations $\left(\pm 5^{\circ}\right)$ with a period of a few seconds. The four principal directions are described this way. The turns between each line are not taken into account for the calculation of the coefficients.

Estimation OF The CoEfficients

The calculation of the coefficients is to determine the mathematical solution which minimizes the differences between the measured signals and those generated by the model. The disturbance field being described as a linear combination of the direction cosine and terrestrial field, the least square algorithm is particularly designated. The problems caused by the correlations between the columns of the matrix to inverse are easy to diagnose using the eigenvalues of the matrix. To do so, we calculate an index by submitting the ratio of the largest on the smallest eigenvalue. In practice, it is considered that this index should not exceed 10^{3}. In certain cases, we will be able to observe strong colinearities when certain variables are not used, such as the absence of eddy currents. An effective manner to solve this problem of multicollinearity consists in using the method known as regression ridge. In the case where the matrix is badly conditioned, then the coefficients have a variance much little than when a least square algorithm is used. The general idea is to shift the eigenvalues of the matrix by a small constant. Thus the largest eigenvalues, which have a real significance, are slightly modified, whereas the lowest eigenvalues - which cause problem at the inversion - are significantly modified. The implementation of the regression ridge thus allowed us to avoid the problems of numerical instability and to improve our algorithm.

Results

The following figures show the results obtained by the calibration flights carried out at 3000 m of altitude North West of Alta in the Norwegian Sea, NORWAY. As the blocks have different flight line orientations, two Figures of Merit were respectively flown according to the course:

Branch	FRASW -SAS	FRASE
Line 1	N 0	N 350
Line 2	N 270	N 260
Line 3	N 180	N 170
Line 4	N 90	N 80

Table 1 : FOM line directions
Flying the calibration figures in the same directions as the survey flight lines, we optimize the coefficients for these directions, as they are the one we will use.

Figure 3 : Figure of merit over regional magnetic first vertical derivative
Each figure of merit includes 4 lines (L1, L2, L3 and L4) flown at high altitude, in an area with a low vertical gradient, and following a figure in a clover shape. Each line is thus flown in the two directions in respect with the direction of the lines and tie-lines.
D. Heading and absolute accuracy test

Date: 2011.06.06
Location: Bourget, Quebec, CANADA
Instruments: Magnetometers: G-823
Cesium magnetometer, $\mathbf{1 0 H z}$
Temperature: $20.0^{\circ} \mathrm{C}$ at sea level
Pressure: 100.2 kPa at sea level
Flying Height: 305 m

This test is performed over an easily recognised point on the ground. The purpose is to ensure that aeromagnetic survey system measures the total field values with an absolute accuracy of 10 nT or less after the aircraft has been compensated. The result from the test together with the FOM is also used to remove aircraft influence on magnetic data (heading error).

The following tables resume the values measured at the intersection of the lines, for the four directions and for the three magnetometers.

AEROMAGNETIC SURVEY SYSTEM CALIBRATION TEST RANGES AT BOURGET，ONTARIO AND MEANOOK，ALBERTA

AIRCRAFT TYPE AND REGISTRATION：PIPER PA31 C－FWNG
ORGANIZATION（COMPANY）：NOVATEM INC．
MAGNETOMETER TYPE：GEOMETRICS，LEFT WING
MAGNETOMETER SERIAL NUMBER：
COMPILED BY：OLIVIER SAVIGNET，ENG

DATE：2011．06．06
HEIGHT FLOWN：1000＿FEET
SAMPLING RATE： 10 ／SECOND
DATA ACQUISITION SYSTEM：NOVATEM INC．

Direction of flight across the Crossroads	Time that Survey Aircraft was over the Crossroads （HH／MM／SS） Greenwich Mean Time	Total Field Value（ nT ） Recorded in Survey Aircraft over Crossroads （T1）	Observatory Diurnal Reading at Previous Minute i．e． Hours＋Minutes （T2）from Printout	Observatory Diurnal Reading at Subsequent Minute i．e． H hours $+(M+1)$ mins．（T3） from Printout	Interpolated Observatory Diurnal Reading at Time H hours +M mins＋S sec $\mathrm{T} 4=\mathrm{T} 2+\mathrm{S}(\mathrm{T} 3-\mathrm{T} 2)$ －ーーー－ 60	Calculated Observatory Value $\mathrm{T} 5=\mathrm{T} 4-\mathrm{C}^{*}$	Error Value T6＝T1 T5
NORTH	14：34：23．4	54315.92	54903.45	54904.47	54903.49	54353.49	－37．57
SOUTH	14：16：02．9	54315.55	54906.90	54907.15	54906.98	54356.98	－41．43
EAST	14：26：04．9	54310.94	54905.21	54903.13	54904.79	54354.79	－43．85
WEST	14：08：22．1	54328.48	54907.43	54907.42	54907.43	54357.43	－28．95
NORTH							
SOUTH							
EAST							
WEST							

＊ C is the difference in the total field between the Blackburn or Meanook Observatory value（ O ）and the value（ B ）at the point above the crossroads at a given height．Blackburn Observatory： 1000 Feet，$C=(O-B)=550 n T ; 500$ Feet，$C=556 n T$

Meanook Observatory： 1000 Feet，$C=(O-B)=0 n T ; 500$ Feet，$C=0 n T$
Total $=$ \qquad nT

Average North－South Heading Error（T6 North－T6 South）＝ \qquad nT Average East－West Heading Error（T6 East－T6 West）＝ nT \qquad nT

AEROMAGNETIC SURVEY SYSTEM CALIBRATION TEST RANGES AT BOURGET, ONTARIO AND MEANOOK, ALBERTA

AIRCRAFT TYPE AND REGISTRATION: PIPER PA31 C-FWNG
ORGANIZATION (COMPANY): NOVATEM INC.
MAGNETOMETER TYPE: GEOMETRICS, RIGHT WING
MAGNETOMETER SERIAL NUMBER:
COMPILED BY: OLIVIER SAVIGNET, ENG

DATE: 2011.06.06
HEIGHT FLOWN: 1000 FEET
SAMPLING RATE: 10 / SECOND
DATA ACQUISITION SYSTEM: NOVATEM INC.

Direction of flight across the Crossroads	Time that Survey Aircraft was over the Crossroads (HH/MM/SS) Greenwich Mean Time	Total Field Value (nT) Recorded in Survey Aircraft over Crossroads (T1)	Observatory Diurnal Reading at Previous Minute i.e. Hours + Minutes (T2) from Printout	Observatory Diurnal Reading at Subsequent Minute i.e. H hours + $(M+1)$ mins. (T3) from Printout	Interpolated Observatory Diurnal Reading at Time H hours +M mins + S sec $\begin{gathered} \mathrm{T} 4=\mathrm{T} 2+\mathrm{S}(\mathrm{~T} 3-\mathrm{T} 2) \\ ---\mathrm{C} \\ 60 \end{gathered}$	Calculated Observatory Value $\mathrm{T} 5=\mathrm{T} 4-\mathrm{C}^{*}$	Error Value T6 = T1 T5
NORTH	14:34:23.4	54341.16	54903.45	54904.47	54903.49	54353.49	-12.33
SOUTH	14:16:02.9	54345.89	54906.90	54907.15	54906.98	54356.98	-11.09
EAST	14:26:04.9	54350.27	54905.21	54903.13	54904.79	54354.79	-4.52
WEST	14:08:22.1	54342.58	54907.43	54907.42	54907.43	54357.43	-14.85
NORTH							
SOUTH							
EAST							
WEST							

* C is the difference in the total field between the Blackburn or Meanook Observatory value (O) and the value (B) at the point above the crossroads at a given height. Blackburn Observatory: 1000 Feet, $C=(O-B)=550 n T ; 500$ Feet, $C=556 n T$

Meanook Observatory: 1000 Feet, $C=(O-B)=0 n T ; 500$ Feet, $C=0 n T$
Total $=$ \qquad $n T$

Average North-South Heading Error (T6 North - T6 South) = \qquad nT Average East-West Heading Error (T6 East - T6 West) = nT \qquad nT

AEROMAGNETIC SURVEY SYSTEM CALIBRATION TEST RANGES AT BOURGET, ONTARIO AND MEANOOK, ALBERTA

AIRCRAFT TYPE AND REGISTRATION: PIPER PA31 C-FWNG
ORGANIZATION (COMPANY): NOVATEM INC.
MAGNETOMETER TYPE: GEOMETRICS, TAIL BOOM
MAGNETOMETER SERIAL NUMBER:
COMPILED BY: OLIVIER SAVIGNET, ENG

DATE: 2011.06.06
HEIGHT FLOWN: 1000_FEET
SAMPLING RATE: 10 / SECOND
DATA ACQUISITION SYSTEM: NOVATEM INC.

Direction of flight across the Crossroads	Time that Survey Aircraft was over the Crossroads (HH/MM/SS) Greenwich Mean Time	Total Field Value (nT) Recorded in Survey Aircraft over Crossroads (T1)	Observatory Diurnal Reading at Previous Minute i.e. Hours + Minutes (T2) from Printout	Observatory Diurnal Reading at Subsequent Minute i.e. H hours + $(M+1)$ mins. (T3) from Printout	Interpolated Observatory Diurnal Reading at Time H hours +M mins +S sec $\mathrm{T} 4=\mathrm{T} 2+\mathrm{S}(\mathrm{T} 3-\mathrm{T} 2)$ -ーー- - 60	Calculated Observatory Value $\mathrm{T} 5=\mathrm{T} 4-\mathrm{C}^{*}$	Error Value T6 = T1 T5
NORTH	14:34:23.4	54348.75	54903.45	54904.47	54903.49	54353.49	-4.74
SOUTH	14:16:02.9	54349.64	54906.90	54907.15	54906.98	54356.98	-7.34
EAST	14:26:04.9	54346.29	54905.21	54903.13	54904.79	54354.79	-8.5
WEST	14:08:22.1	54350.99	54907.43	54907.42	54907.43	54357.43	-6.44
NORTH							
SOUTH							
EAST							
WEST							

* C is the difference in the total field between the Blackburn or Meanook Observatory value (O) and the value (B) at the point above the crossroads at a given height. Blackburn Observatory: 1000 Feet, $\mathrm{C}=(\mathrm{O}-\mathrm{B})=550 \mathrm{nT}$; 500 Feet, $\mathrm{C}=556 \mathrm{nT}$

$$
\text { Meanook Observatory: } 1000 \text { Feet, } C=(O-B)=0 n T ; 500 \text { Feet, } C=0 n T
$$

\qquad nT

Average North-South Heading Error (T6 North - T6 South) = \qquad nT Average East-West Heading Error (T6 East - T6 West) = nT \qquad nT

E. Test line and QC tests

FRAS WEST

Date: 2011.06 - 2011.08
Location: Alta airport, NORWAY
Instrument: Spectrometer, RSI RSX500, 50.16L down, 12.54L up, 2Hz
Flying Heights: 60 m

FRAS EAST

Date: 2012.06-2012.10
Location: Kirkenesairport, NORWAY
Instrument: Spectrometer, RSI RSX500, 50.16L down, 12.54 L up, $\mathbf{2 H z}$

Flying Heights: 60m

During the survey, quality control is carried out by the project manager on site. Controls on the quality are integrated in the normal process of acquisition and start as soon as the flight path is established and end at the delivery of the final products.

A survey test lines will be flown at the beginning of each flight as a check on system sensitivity, the stability of the magnetometers and spectrometers, and finally to monitor the effect of soil moisture in the area, (Variation of thorium concentration less than 10\% after corrections on every flight).

Results will be presented in the Weekly Report as mean values difference over the average value measured within the duration of the project. The extension of the test line is about 10 km . The measurement over the water will be used for the calibration of the gamma ray upward looking detector.

After each flight, the raw data are inspected to make sure that there are no missing data or corrupted data. Data are then saved on an independent and secure location. For each flight, the following controls are then carried out in priority, to ensure:

- The deviations on both sides of the flight lines ($\pm 50 \mathrm{~m}$ over 5000 m)
- \quad The altitude deviations of the flight lines (60 m above the drape surface over 3000 m)
- \quad Spacing between each measurement ($225 \mathrm{~km} / \mathrm{h} \pm 25 \mathrm{~km} / \mathrm{h}$ over 5000 m)
- The diurnal drifts ($100 \mathrm{nT} / \mathrm{h}, 35 \mathrm{nT} / 10 \mathrm{~min}, 15 \mathrm{nT} / 2 \mathrm{~min}$)
- The noise level of the data (Mean $4^{\text {th }}$ difference over 4000 m less than 1.6)

Quality control maps are then issued in the Weekly Report and sent to the NGU representative every weekend of the project duration.

Finally, the following radiometric checks are performed every morning to ensure spectra constancy and are included in the Weekly Report:

- Stabilisation better than $\pm 25 \mathrm{keV}$ measured on the $2.62 \mathrm{MeV}{ }^{208} \mathrm{TI}$ peak
- FWHM better than 200 keV measured on the $2.62 \mathrm{MeV}^{208} \mathrm{TI}$ peak
- Careful verification of each profile (and spectra) to spot spikes, jumps or interruptions in the readings
- Statistical calculation of the mean spectra for each line to insure potassium and thorium peak stability (drift less than 4 channels on the thorium peak)
- Correction and gridding of preliminary grids to evaluate data coherence and consistency.

F. COSMIC AND AIRCRAFT BACKGROUND CORRECTION

Date: 2011.07.07
Location: North West of Alta, Norwegian Sea, NORWAY

Instrument: Spectrometer, RSI RSX500, 50.16L down, 12.54 L up, $\mathbf{2 H z}$

Temperature: $16.0^{\circ} \mathrm{C}$ at sea level
Pressure: 101.4 kPa at sea level
Flying Heights: $1500 \mathrm{~m}-3000 \mathrm{~m}$

To determine the cosmic and aircraft background, the spectrometer used records all incident particles above 3 MeV in the Cosmic channel. Steps are flown at 6 equidistant heights, from 1500 m to 3000 m and over the sea to reduce the presence of radon. Furthermore, in order to minimize statistical errors, each step is 18 km long and lasts around 8 minutes.

It was established that no radon contamination is notably apparent for which it would result in a breakdown of the linear relationship. Mean counts and linear relations of the cosmic radiations in the various spectral windows are represented below.

Altimeter (\mathbf{m})	Cosmic Dn	Cosmic Up	Total Count	Potassium	Uranium	Thorium	Up Uranium
1504.37	186.66	51.05	260.16	23.64	10.50	10.74	2.44
1803.73	214.62	58.67	277.09	24.90	11.04	12.62	2.75
2102.91	246.73	68.12	308.78	26.68	12.42	14.40	3.32
2400.89	283.39	78.02	353.45	29.01	14.67	16.90	3.82
2700.43	329.82	89.93	406.47	32.00	16.84	20.31	4.41
2998.63	380.02	105.18	470.56	35.28	20.16	23.85	5.35

Table 2 : Steps averaged data

Background	Total Count	Potassium	Uranium	Thorium	Up Uranium
Aircraft	42.3	11.9	0.3	-2.0	-0.4
Cosmic	1.110	0.061	0.051	0.068	0.054

Table 3 : Cosmic \& Aircraft background coefficients
Notice that the coefficient of determination is remarkably high for every window. Lower coefficients would have been characteristic of the radon concentration variation in the air during the flight as the thorium window is less affected and the uranium and total count are closely correlated. However, the only effect of varying radon during the cosmic-ray calibration flights will be an unknown radon component which will be removed during radon processing, as it is demonstrated in Grasty and Minty, AGSO 1995/60.

G. UPWARD DETECTOR COEFFICIENTS

Location: Alta 2011
Instrument:

Figure 4 : Background correction

LOOKING CORRECTION

Bay, NORWAY,

Spectrometer: RSI RSX500, 50.16L down, 12.54L up, 2Hz
Flying Height: 60 m

In order to determine the relationship between the upward and downward detector count rates for radon in the air, series of flights over water, where there is no contribution from the ground, will be done as a part of the test line. Due to the scale of the survey, a considerable amount of data is recorded close to the area. Location of the water surface is shown on the test line's map.

Prior to the analysis, aircraft background and cosmic component are removed and the dead time correction done. Since the cosmic and aircraft background calibration test leaded to highly reliable results, shown by the coefficients of determination R_{2} in each window, we expect linear constants b_{n} to be close to zero. In addition, in order to minimize the statistical noise, only series over 20 valid counts are used. The results are presented in the following graphs.

Coefficients determined can have sometime a negative value. That can be explained by a variation of radon concentration during the calibration of the cosmic radiation. This unknown radon component is precisely removed by considering the given residual components at the time of the radon correction; results described in Grasty and Minty, AGSO 1995/60.

The constants above water for the four windows are:

$$
\begin{aligned}
& a_{u}, b_{u}=0.280,0.33 \\
& a_{K}, b_{K}=0.95,3.18 \\
& a_{T h}, b_{T h}=0.05,0.52 \\
& a_{T C}, b_{T C}=14.49,12.22
\end{aligned}
$$

The component of the upward detector count rate originating from the ground, u_{g}, will depend on the concentration of U an $T h$ in the ground, as will the components of U and Th downward window count rates, U_{g} and $T h_{g}$, that originate from the ground. In order to minimize the statistical errors, the three components were calculated by subtracting flights above water present on Stad at the values adjacent on the firm ground. Numerous sites have thus been evaluated on the block. Finally, from the series of calculated values of U_{g}, U_{g} and $T h_{g}$, the calibration factors, a_{1} and a_{2}, are determined by the least squares method described in IAEA Technical reports series No.323.

\mathbf{a}_{1}	\mathbf{a}_{2}
0.035	0.045

H. Pads calibration

RADIATION SOLUTIONS INC

CALIBRATION SHEET

Instrument: RSX-5

Stripping Constant	"this system"	"normal"
Alpha	$\mathbf{0 . 2 6 7}$	0.250
Beta	$\mathbf{0 . 4 0 1}$	0.400
Gamma	$\mathbf{0 . 7 6 4}$	0.810
a	$\mathbf{0 . 0 4 7}$	0.060
b	$\mathbf{- 0 . 0 0 1}$	0.000
g	$\mathbf{0 . 0 0 1}$	0.003

ROI\#	Channel	IAEA Specification [keV]	Label
$\mathbf{1}$	$137-937$	$410-2810$	Total Count
$\mathbf{2}$	$457-523$	$1370-1570$	Potassium K
$\mathbf{3}$	$553-620$	$1660-1860$	Uranium U
$\mathbf{4}$	$803-937$	$2410-2810$	Thorium Th
$\mathbf{5}$			
$\mathbf{6}$			
$\mathbf{7}$			Uranium Upper U
$\mathbf{8}$	$553-620$	$1660-1860$	

Det\#	Peak Cs	Cs FWHM		Peak Th	Th FWHM
A1	219.86	7.15		872.88	4.06
A2	219.38	7.44		871.70	4.15
A3	219.67	7.36		872.60	4.01
A4	219.87	7.29		872.54	4.28
Sum Dn	219.69	$\mathbf{7 . 3 3}$		$\mathbf{8 7 2 . 4 7}$	$\mathbf{4 . 1 3}$
Sum Up	$\mathbf{2 2 0 . 6 8}$	$\mathbf{7 . 9 6}$	$\mathbf{8 7 2 . 8 7}$	$\mathbf{4 . 7 5}$	

366 Watine Avenue Mississauga * Ontario Canada LAZ 1X2 * Tel (905) 8901111 * Fax (905) 8901964 * e-mail sales@radiationsolutions ce

RADIATION SOLUTIONS INC

CALIBRATION SHEET

		Instrument:	RSX-5
Customer:	Novatem		
Contact:	Pascal Mouge	Date:	May 4, 2011
Console :	N/A	Tech:	GP
Detector 1:	5577	Job Order:	SO¹947
Detector 2:	N/A	Customer PO	POFEmall
Channels:	1024	ADC Offset: N/A	

High Voltages

A1	A2	A3	A4	A5
683	680	680	701	704

Stripping Constant	"this system"	"normal"
Alpha	$\mathbf{0 . 2 7 2}$	0.250
Beta	$\mathbf{0 . 4 0 4}$	0.400
Gamma	$\mathbf{0 . 7 6 6}$	0.810
\mathbf{a}	$\mathbf{0 . 0 4 8}$	0.060
\mathbf{b}	$\mathbf{0 . 0 0 3}$	0.000
\mathbf{g}	$-\mathbf{0 . 0 0 2}$	0.003

ROif	Channel	IAEA Specification $[\mathrm{keV}]$	Label
$\mathbf{1}$	$137-937$	$410-2810$	Total Count
2	$457-523$	$1370-1570$	Potassium K
$\mathbf{3}$	$553-620$	$1660-1860$	Uranium U
4	$803-937$	$2410-2810$	Thorium Th
5			
6			
7			Uranium Upper U
8	$553-620$	$1660-1860$	

Det	Peak Cs	Cs FWHM		Peak Th	Th FWHM
A1	220.15	7.32		872.48	$\mathbf{4 . 1 5}$
A2	220.00	7.52		872.35	4.24
A3	219.93	7.54	871.56	4.31	
A4	219.00	7.40	872.06	$\mathbf{4 . 1 4}$	
Sum Dn	219.76	$\mathbf{7 . 4 8}$		872.13	$\mathbf{4 . 2 0}$
Sum Up	$\mathbf{2 1 8 . 8 8}$	$\mathbf{7 . 8 1}$	$\mathbf{8 7 1 . 3 2}$	$\mathbf{4 . 4 0}$	

306 Watine Avenue Mssissauga * Ontario Canada LAZ 1X2 + Tel (905) 800 1111 • Fax (905) 8901964 + email salesdradationsolutions ca

RADIATION SOLUTIONS INC

CALIBRATION SHEET

		Instrument:	RSX-5
Customer:	Novatem		
Contact:	Pascal Mouge	Date:	May 24, 2011
Console :	N/A	Tech::	GP
Detector 1: 5510	Job Order:	SO\#1947	
Detector 2:	N/A	Customer PO	PO\#Emall
Channels:	1024		

High Voltages

A1	A2	A3	A4	A5
635	675	649	640	704

Stripping Constant	"this system"	"normal"
Alpha	$\mathbf{0 . 2 7 3}$	0.250
Beta	$\mathbf{0 . 4 0 1}$	0.400
Gamma	$\mathbf{0 . 7 7 1}$	0.810
\mathbf{a}	$\mathbf{0 . 0 4 7}$	0.060
\mathbf{b}	$\mathbf{0 . 0 0 0}$	0.000
\mathbf{g}	$\mathbf{- 0 . 0 0 1}$	0.003

ROIII	Channel	IAEA Specification [keV	Label
1	$137-937$	$410-2810$	Total Count
2	$457-523$	$1370-1570$	Potassium K
3	$553-620$	$1660-1860$	Uranium U
4	$803-937$	$2410-2810$	Thorium Th
5			
6			
7			
8	$553-620$	$1660-1860$	Uranium Upper U

Det\#	Peak Cs	Cs FWHM		Peak Th	Th FWHM
A1	221.02	7.29		871.80	4.08
A2	221.07	7.32		871.65	$\mathbf{4 . 2 0}$
A3	220.71	7.48		871.72	4.23
A4	221.04	7.23		872.28	$\mathbf{4 . 0 8}$
Sum Dn	220.96	$\mathbf{7 . 3 3}$		$\mathbf{8 7 1 . 8 6}$	$\mathbf{4 . 1 4}$
Sum Up	$\mathbf{2 2 1 . 5 6}$	$\mathbf{7 . 4 6}$		$\mathbf{8 7 2 . 4 1}$	$\mathbf{4 . 2 6}$

306 Watine Avenue Mississauga * Ontario Canada LAZ 1X2 • Tel (905) 8901111 • Fax (905) 890 1964 * emal sales@radiationsolutions ca

I. Height attenuation \& Sensitivity

Date: 2011.06.06
Location: Breckenridge, Quebec, CANADA
Instruments: - Novatem Inc., RSX500, 50.16L down, 12.54L up, 2Hz

- Geological Survey of Canada, Portable spectrometer for ground measurements
Test Area: $\mathrm{TC}=54.94 \mathrm{nGy} / \mathrm{h}, \mathrm{K}=1.96 \%$, eU= $1.55 \mathrm{ppm}, \mathrm{e} \mathrm{e}=8.20 \mathrm{ppm}$

Temperature: $20^{\circ} \mathrm{C}$ at sea level
Pressure: 100.2 kPa at sea level
Flying Height: 50-230m

Altimeter (\mathbf{m})	STP Corrected	Total Count	Potassium	Uranium	Thorium
49.21	46.69	1704.62	215.03	32.9	45.89
79.98	75.75	1420.12	170.74	28.78	38.34
108.65	102.88	1207.29	139.5	24.94	32.29
138.35	130.6	1038.56	115.03	23.03	27.6
167.01	157.21	906.02	96.63	21.06	24.87

Table 4 : Test Data (cps)

Altimeter (\mathbf{m})	STP Corrected	Total Count	Potassium	Uranium	Thorium
56.29	50.6	206.23	22.74	8.43	6.28
86.83	78.94	206.74	21.54	8.37	6.11
118.26	106.93	208.69	22.28	9.08	5.9
146.52	133.03	209.99	22.23	8.76	7.02
174.34	159.15	209.25	22.14	9.01	6.92

Table 5 : Background Data (cps)

$\boldsymbol{\alpha}$	$\boldsymbol{\beta}$	$\boldsymbol{\gamma}$	\mathbf{a}	\mathbf{b}	\mathbf{g}
0.271	0.402	0.767	0.047	0.001	-0.001

Table 6 : Stripping ratios

Total Count	Potassium	Uranium	Thorium
1498.39	171.71	13.55	39.78
1213.38	131.74	11.07	32.38
998.6	103.29	7.82	26.59
828.57	80.51	7.79	20.66
696.77	63.84	6.14	18.06

Table 7 : Background-Corrected \& Stripped Counts (cps))
After dead time correction, mean count rates of all four windows are then corrected from the cosmic radiation, atmospheric radioactivity and aircraft background by subtracting adjacent values over water. STP corrected Compton stripping ratios are then applied to the count
rates. The stripped count rates at each altitude are finally fitted to the exponential function to give the height attenuation coefficients. Figure 1 shows the curves for all four windows, determined from the test strip.

Figure 5 : Exponential height attenuation for all four windows
Broad source sensitivity for each window was calculated using concentration of the radioelement measured at ground level on the strip and for a final STP height of 60 m . All the results are shown in table 17.

	Total Count	Potassium	Uranium	Thorium
ATTENUATION	$-0.00693 \mathrm{~m}^{-1}$	$-0.00895 \mathrm{~m}^{-1}$	$-0.00702 \mathrm{~m}^{-1}$	$-0.00735 \mathrm{~m}^{-1}$
SENSITIVITY	$24.7 \mathrm{cps} / \mathrm{nGy} / \mathrm{h}$	$77.5 \mathrm{cps} / \%$	$7.73 \mathrm{cps} / \mathrm{ppm}$	$4.4 \mathrm{cps} / \mathrm{ppm}$

Table 8 : Attenuation coefficients \& Sensitivity (60 m)

J. LAG TEST

Date:

2012.02.15

Location: Flyplasstunnelen, Fv137 Vigra Airport, NORWAY

Aircraft: PA31 C-FWNG

Instrument: Magnetometers: G-823 Cesium magnetometer, $\mathbf{1 0 H z}$
Heights: $\quad 60 \mathrm{~m}$

Taking into account the spatial difference between the GPS antenna and the different magnetometers, the following results show that there is almost no time lag in the data records. Note that the spatial lag will be taking into account in the processing in order to replace each magnetometer in the space for gradient enhancement.

MAG 1 (Left wing tip pod)

LINE	HEADING $\left({ }^{\circ}\right)$	YAW $\left({ }^{\circ}\right)$	ALTITUDE (\mathbf{m})	TIME (HHMMSS)	$\mathbf{X (m)}$	$\mathbf{Y (m)}$	SPEED $(\mathbf{m} / \mathbf{s})$	HIGH PASS PILTERED MAG ($\mathbf{n T}$)
L1:0	70	60.32	64.79	143856.7	352159.7	6940220.8	58.9	51657.510
L2:0	250	245.78	62.95	144054.2	352151.4	6940221.2	61.7	51673.150

LINE	HEADING $\left(^{\circ}\right)$	$\begin{gathered} \text { YAW } \\ \left({ }^{\circ}\right) \end{gathered}$	ALTITUDE (m)	TIME (HHMMSS)	X (m)	$Y(m)$	SPEED (m / s)	HIGH PASS FILTERED MAG (nT)
L3:0	70	61.64	60.47	144312.6	352164.6	6940221.7	56.1	51694.060
L4:0	250	244.80	62.90	144523.1	352149.6	6940221.0	58.9	51671.060
					MEAN SPEED $=57.5 \mathrm{~m} / \mathrm{s}$			
					DISTANCE $=14.996 \mathrm{~m}$			
					LAG $=0.130 \mathrm{sec}$			

LINE	HEADING $\left({ }^{\circ}\right)$	YAW $\left({ }^{\circ}\right)$	ALTITUDE (\mathbf{m})	TIME (HHMMSS)	$\mathbf{X (m)}$	$\mathbf{Y}(\mathbf{m})$	SPEED $(\mathbf{m} / \mathbf{s})$	HIGH PASS FILTERED MAG $(\mathbf{n T})$
L5:0	68	71.61	276.038	71259.3	609880.28	7825645.32	64.17	1.086
L6:0	248	249.12	271.848	71534.5	609891.43	7825659.32	68.62	1.567

$$
\begin{aligned}
\text { MEAN SPEED } & =57.6 \mathrm{~m} / \mathrm{s} \\
\text { DISTANCE } & =12.398 \mathrm{~m} \\
\text { LAG } & =0.108 \mathbf{~ s e c}
\end{aligned}
$$

MAG 2 (Right wing tip pod)

LINE	HEADING $\left({ }^{\circ}\right)$	YAW $\left({ }^{\circ}\right)$	ALTITUDE (\mathbf{m})	TIME (HHMMSS)	$\mathbf{X}(\mathbf{m})$	$\mathbf{Y}(\mathbf{m})$	SPEED $(\mathbf{m} / \mathbf{s})$	HIGH PASS PILTERED MAG ($\mathbf{n T}$)
L1:0	70	60.32	64.79	143856.7	352159.7	6940220.8	58.9	51682.470
L2:0	250	245.78	62.95	144054.2	352151.4	6940221.2	61.7	51699.550

MEAN SPEED	$=60.3 \mathrm{~m} / \mathrm{s}$	
DISTANCE	$=8.350$	m
LAG	$=\mathbf{0 . 0 6 9}$	$\mathbf{~ s e c}$

LINE	HEADING $\left({ }^{\circ}\right)$	YAW $\left({ }^{(}\right)$	ALTITUDE (\mathbf{m})	TIME (HHMMSS)	$\mathbf{X (m)}$	$\mathbf{Y}(\mathbf{m})$	SPEED $(\mathbf{m} / \mathbf{s})$	HIGH PASS FILTERED MAG ($\mathbf{n T}$)
L3:0	70	61.64	60.47	144312.6	352164.6	6940221.7	56.1	51710.720
L4:0	250	244.80	62.90	144523.1	352149.6	6940221.0	58.9	51697.300

MEAN SPEED $=\quad 57.5 \mathrm{~m} / \mathrm{s}$
DISTANCE $=14.996 \mathrm{~m}$
LAG $=0.130 \mathrm{sec}$

LINE	HEADING $\left(^{\circ}\right)$	YAW (${ }^{\circ}$)	ALtitude (m)	TIME (HHMMSS)	X (m)	Y (m)	$\begin{gathered} \text { SPEED } \\ (\mathrm{m} / \mathrm{s}) \end{gathered}$	$\begin{aligned} & \text { HIGH } \\ & \text { PASS } \\ & \text { FILTERED } \\ & \text { MAG (nT) } \end{aligned}$
L5:0	70	61.19	61.92	144742.0	352165.0	6940220.6	56.7	51697.450
L6:0	250	244.48	64.26	144954.7	352153.8	6940215.2	58.6	51699.840
					MEAN SPEED $=57.6 \mathrm{~m} / \mathrm{s}$			
					DISTANCE $=12.398 \mathrm{~m}$			
					LAG $=0.108 \mathrm{sec}$			

MAG 3 (Tail boom)

LINE	HEADING $\left({ }^{\circ}\right)$	YAW $\left({ }^{\circ}\right)$	ALTITUDE (\mathbf{m})	TIME (HHMMSS)	$\mathbf{X}(\mathbf{m})$	$\mathbf{Y}(\mathbf{m})$	SPEED $(\mathbf{m} / \mathbf{s})$	HIGH PASS PILTERED MAG ($\mathbf{n T}$)
L1:0	70	60.66	64.84	143856.9	352170.6	6940225.3	58.9	51687.020
L2:0	250	245.69	62.89	144054.3	352145.6	6940218.9	61.7	51700.870

MEAN SPEED $=\quad 60.3 \mathrm{~m} / \mathrm{s}$
LAG $=0.214 \mathrm{sec}$

LINE	HEADING $\left({ }^{\circ}\right)$	YAW $\left({ }^{\circ}\right)$	ALTITUDE (\mathbf{m})	TIME $($ HHMMSS $)$	$\mathbf{X (m)}$	$\mathbf{Y (m)}$	SPEED $(\mathbf{m} / \mathbf{s})$	HIGH PASS FILTERED MAG ($\mathbf{n T})$
L3:0	70	61.53	60.44	144312.7	352169.8	6940223.8	56.1	51718.830
L4:0	250	244.89	62.77	144523.2	352144.2	6940218.7	58.9	51701.230

LINE	HEADING $\left({ }^{\circ}\right)$	YAW $\left({ }^{\circ}\right)$	ALTITUDE (\mathbf{m})	TIME $($ HHMMSS $)$	$\mathbf{X (m)}$	$\mathbf{Y}(\mathbf{m})$	SPEED $(\mathbf{m} / \mathbf{s})$	HIGH PASS PILTERED MAG ($\mathbf{n T})$
L5:0	70	61.23	61.93	144742.1	352170.2	6940222.8	56.9	51708.410
L6:0	250	244.53	64.23	144954.8	352148.4	6940213.0	58.6	51689.800

MEAN SPEED $=57.8 \mathrm{~m} / \mathrm{s}$
DISTANCE $=23.920 \mathrm{~m}$
LAG $=0.207 \mathrm{sec}$

K. Laser and Radar calibration

Date: 2011.07.10
Location: Alta airport (alt: 2.74 m), NORWAY
Instrument: - GPS receiver: Novatel Propak $\mathrm{V} 3, \mathbf{1 0 H z}$

- Laser altimeter: Optech Sentinel $3100, \mathbf{1 0 H z}$
- Radar altimeter: Free Flight TRA 4000, 10Hz

Temperature: $21.1^{\circ} \mathrm{C}$ at sea level
Pressure: 101.1 kPa at sea level
Flying Heights: 40m-180m

To determine coefficients of calibration for the laser and radar altimeter, steps are flown at 5 different heights, from 40 m to 180 m and over the Alta airport strip in order to have a surface as flat as possible for the calibration. In order to minimize errors, each step is 2 km long.

The different altitudes recorded show a perfect linearity with the post processed GPS altitude. The airport altitude (2.75 m) was removed from the mean altitude recorded in order to evaluate the results. Finally, linear relations between the different altimeters are plotted below and calibration constants needed for processing are provided.

GPS altitude	Adjusted GPS altitude (m)	Laser altitude $\mathbf{(m)}$	Radar altitude (m)
40.55	37.80	37.38	37.66
89.80	87.05	86.73	88.14
119.92	117.17	116.93	119.02
149.39	146.64	146.35	149.26
179.79	177.04	176.80	180.60

Table 9: Radar calibration

Figure 6 : Laser calibration

Figure 7 : Radar calibration

CALIBRATION TESTS - C-GJDD

B. Magnetometers noise

Date: 2011.11.01
Location: Vigra airport, Ålesund NORWAY
Aircraft: PA31 C-GJDD
Instruments: Magnetometers: G-823 Cesium magnetometer, $\mathbf{1 0 H z}$

Temperature: $17.8^{\circ} \mathrm{C}$ at sea level
Pressure: $\quad 998.5 \mathrm{kPa}$ at sea level
Height: $\quad 60 \mathrm{~m}$

Noise level is evaluated on a test line over a distance greater than 4 km . For convenience, the 7 km test line used during the survey was then analysed for the purpose.

The graphic below shows the normalized fourth difference for each of the three magnetometers installed in the aircrafts. Requirement for the Stad campaign is 0.1 units fourth difference, which is clearly above the three mounted magnetometers evaluated.

MAGR1, 2 and 3 represents left, right and tail total raw magnetic field respectively.

Figure 8: Magnetometers $4^{\text {th }}$ difference (Aircraft GJDD)

C. COMPENSATION BASED ON A PHYSICAL MODEL

Date: 2012.10.02
Location: North West of Alta, Norwegian Sea, NORWAY

Aircraft: PA31 C-GJDD

Instrument: Magnetometers onboard: G823 Cesium magnetometer, 10 Hz
Inertial measurement unit
(IMU), Honeywell HG 1700 AG62, 10Hz

Temperature: $9.8^{\circ} \mathrm{C}$ at sea level
Pressure: $\quad 100.5 \mathrm{kPa}$ at sea level
Height: 3000 m

Calibration flight (FOM)

In practice, the calibration flight follows a precise and reproducible geometry, called Figure of Merit (FOM) during which the aircraft describes successively three pitch oscillations ($\pm 5^{\circ}$), three roll oscillations $\left(\pm 10^{\circ}\right)$ and three yaw oscillations $\left(\pm 5^{\circ}\right)$ with a period of a few seconds. The four principal directions are described this way. The turns between each line are not taken into account for the calculation of the coefficients.

Estimation of the coefficients

The calculation of the coefficients is to determine the mathematical solution which minimizes the differences between the measured signals and those generated by the model. The disturbance field being described as a linear combination of the direction cosine and terrestrial field, the least square algorithm is particularly designated. The problems caused by the correlations between the columns of the matrix to inverse are easy to diagnose using the eigenvalues of the matrix. To do so, we calculate an index by submitting the ratio of the largest on the smallest eigenvalue. In practice, it is considered that this index should not exceed 10^{3}. In certain cases, we will be able to observe strong colinearities when certain variables are not used, such as the absence of eddy currents. An effective manner to solve this problem of multicollinearity consists in using the method known as regression ridge. In the case where the matrix is badly conditioned, then the coefficients have a variance much little than when a least square algorithm is used. The general idea is to shift the eigenvalues of the matrix by a small constant. Thus the largest eigenvalues, which have a real significance, are slightly modified, whereas the lowest eigenvalues - which cause problem at the inversion - are significantly modified. The implementation of the regression ridge thus allowed us to avoid the problems of numerical instability and to improve our algorithm.

Results
The following figures show the results obtained by the calibration flights carried out at 3000 m of altitude North West of Vigra in the Norwegian Sea, NORWAY. As the blocks have different flight line orientations, two Figures of Merit were respectively flown according to the course:

Branch	SAS
Line 1	N 0
Line 2	N 270
Line 3	N 180
Line 4	N 90

Table 10 : FOM line directions
Flying the calibration figures in the same directions as the survey flight lines, we optimize the coefficients for these directions, as they are the one we will use.

Figure 9 : Figure of merit over regional magnetic first vertical derivative
Each figure of merit includes 4 lines (L1, L2, L3 and L4) flown at high altitude, in an area with a low vertical gradient, and following a figure in a clover shape. Each line is thus flown in the two directions in respect with the direction of the lines and tie-lines.

D. Heading and absolute accuracy test

Date:	N/A
Location:	Bourget, Quebec, CANADA
Aircraft:	PA31 C-GJDD
Instrument:	Magnetometers: G-823 Cesium magnetometer, 10Hz
Temperature:N/A	
Pressure:	N/A
Height:	N/A

This test is performed over an easily recognised point on the ground. The purpose is to ensure that aeromagnetic survey system measures the total field values with an absolute accuracy of 10 nT or less after the aircraft has been compensated. The result from the test together with the FOM is also used to remove aircraft influence on magnetic data (heading error).

Analysis of the synchronisation tests and noise level of the magnetometers, chapter A and B of the present report, compile for each aircraft and all the test lines, shows clearly that both aircrafts have an absolute difference of less than 10 nT .

Since the compensation also corrects the heading error, there is no need for an extra calibration on C-GJDD.

E. Test line and QC tests

FRAS WEST

Date: 2011.06-2011.08
Location: Alta airport, NORWAY
Instrument: Spectrometer, RSI RSX500, 50.16L down, 12.54 L up, $\mathbf{2 H z}$
Flying Heights: 60 m

FRAS EAST

Date: 2012.06-2012.10
Location: Kirkenesairport, NORWAY
Instrument: Spectrometer, RSI RSX500, 50.16L down, 12.54 L up, $\mathbf{2 H z}$

Flying Heights: 60m

During the survey, quality control is carried out by the project manager on site. Controls on the quality are integrated in the normal process of acquisition and start as soon as the flight path is established and end at the delivery of the final products.

A survey test lines will be flown at the beginning of each flight as a check on system sensitivity, the stability of the magnetometers and spectrometers, and finally to monitor the effect of soil moisture in the area, (Variation of thorium concentration less than 10% after corrections on every flight).

Results will be presented in the Weekly Report as mean values difference over the average value measured within the duration of the project. The extension of the test line is about 10 km . The measurement over the water will be used for the calibration of the gamma ray upward looking detector.

After each flight, the raw data are inspected to make sure that there are no missing data or corrupted data. Data are then saved on an independent and secure location. For each flight, the following controls are then carried out in priority, to ensure:

- The deviations on both sides of the flight lines ($\pm 50 \mathrm{~m}$ over 5000 m)
- The altitude deviations of the flight lines (60 m above the drape surface over 3000 m)
- \quad Spacing between each measurement ($225 \mathrm{~km} / \mathrm{h} \pm 25 \mathrm{~km} / \mathrm{h}$ over 5000 m)
- The diurnal drifts ($100 \mathrm{nT} / \mathrm{h}, 35 \mathrm{nT} / 10 \mathrm{~min}, 15 \mathrm{nT} / 2 \mathrm{~min}$)
- The noise level of the data (Mean $4^{\text {th }}$ difference over 4000 m less than 1.6)

Quality control maps are then issued in the Weekly Report and sent to the NGU representative every weekend of the project duration.

Finally, the following radiometric checks are performed every morning to ensure spectra constancy and are included in the Weekly Report:

- Stabilisation better than $\pm 25 \mathrm{keV}$ measured on the $2.62 \mathrm{MeV}{ }^{208} \mathrm{TI}$ peak
- FWHM better than 200 keV measured on the $2.62 \mathrm{MeV}^{208} \mathrm{TI}$ peak
- Careful verification of each profile (and spectra) to spot spikes, jumps or interruptions in the readings
- Statistical calculation of the mean spectra for each line to insure potassium and thorium peak stability (drift less than 4 channels on the thorium peak)
- Correction and gridding of preliminary grids to evaluate data coherence and consistency.

F. COSMIC AND AIRCRAFT BACKGROUND CORRECTION

Date: 2012.10.02
Location: North West of Alta, Norwegian Sea, NORWAY
Aircraft: PA31 C-GJDD
Instrument: Spectrometer, RSI RSX500, 50.16L down, 12.54 L up, $\mathbf{2 H z}$

Temperature: $9.8^{\circ} \mathrm{C}$ at sea level
Pressure: $\quad 100.5 \mathrm{kPa}$ at sea level

Height: $\quad 1500-3000 \mathrm{~m}$

To determine the cosmic and aircraft background, the spectrometer used records all incident particles above 3 MeV in the Cosmic channel. Steps are flown at 7 equidistant heights, from 1500 m to 3000 m and over the sea to reduce the presence of radon. Furthermore, in order to minimize statistical errors, each step is 18 km long and lasts around 8 minutes.

It was established that radon contamination is notably apparent and result in a breakdown of the linear relationship. Mean counts and linear relations of the cosmic radiations in the various spectral windows are represented below. The lower flight was then rejected.

Altimeter $\mathbf{(m)}$	Cosmic Dn	Cosmic Up	Total Count	Potassi $\mathbf{u m}$	Urani $\mathbf{u m}$	Thori um	Up Uranium
$\mathbf{3 0 0 0 , 1 3}$	414,69	111,29	528,24	35,04	24,18	27,18	6,05
$\mathbf{2 7 0 0 , 3 1}$	354,00	95,64	459,08	31,13	20,40	23,25	5,19
$\mathbf{2 3 9 9 , 9 2}$	305,03	81,83	400,58	27,89	17,70	19,92	4,41
$\mathbf{2 0 9 9 , 2 6}$	264,09	72,14	350,51	24,96	15,72	17,10	4,04
$\mathbf{1 7 9 9 , 8 6}$	228,93	61,59	308,91	23,01	13,37	14,84	3,29
$\mathbf{1 4 9 9 , 0 9}$	199,01	54,03	274,25	20,42	12,09	12,90	2,93

Table 11 : Steps averaged data (Aircraft GJDD)

Background	Total Count	Potassium	Uranium	Thorium	Up Uranium
Aircraft	38.5	7.35	0.056	0.067	0.055
Cosmic	1.184	0.067	0.74	-0.39	-0.01

Table 12 : Cosmic \& Aircraft background coefficients (Aircraft GJDD)

Notice that the coefficient of determination is remarkably high for every window. Lower coefficients would have been characteristic of the radon concentration variation in the air during the flight as the thorium window is less affected and the uranium and total count are closely correlated. However, the only effect of varying radon during the cosmic-ray calibration flights will be an unknown radon component which will be removed during radon processing, as it is demonstrated in Grasty and Minty, AGSO 1995/60.

Figure 10 : Background correction

G. UPWARD LOOKING DETECTOR CORRECTION COEFFICIENTS

Location: Coast line Western NORWAY, 2011-2012
Aircraft: PA31 C-GJDD
Instrument: \quad Spectrometer, RSI RSX500, 50.16L down, 12.54L up, 2Hz
Flying Height: 60 m

In order to determine the relationship between the upward and downward detector count rates for radon in the air, series of flights over water, where there is no contribution from the ground, will be done as a part of the test line.

Prior to the analysis, aircraft background and cosmic component are removed and the dead time correction done. Since the cosmic and aircraft background calibration test leaded to highly reliable results, shown by the coefficients of determination R_{2} in each window, we expect linear constants b_{n} to be close to zero. In addition, in order to minimize the statistical noise, only series over 20 valid counts are used. The results are presented in the following graphs.

Coefficients determined can have sometime a negative value. That can be explained by a variation of radon concentration during the calibration of the cosmic radiation. This unknown radon component is precisely removed by considering the given residual components at the time of the radon correction; results described in Grasty and Minty, AGSO 1995/60.

The constants above water for the four windows are:

$$
\begin{aligned}
& a_{u}, b_{u}=0.297,0.03 \\
& a_{K}, b_{K}=0.846,0.93 \\
& a_{T h}, b_{T h}=0.019,0.31 \\
& a_{T C}, b_{T C}=15.64,9.45
\end{aligned}
$$

The component of the upward detector count rate originating from the ground, u_{g}, will depend on the concentration of U an $T h$ in the ground, as will the components of U and $T h$ downward window count rates, U_{g} and $T h_{g}$, that originate from the ground. In order to minimize the statistical errors, the three components were calculated by subtracting flights above water present on Stad at the values adjacent on the firm ground. Numerous sites have thus been evaluated on the block. Finally, from the series of calculated values of U_{g}, U_{g} and $T h_{g}$, the calibration factors, a_{1} and a_{2}, are determined by the least squares method described in IAEA Technical reports series №. 323.

\mathbf{a}_{1}	$\mathbf{a}_{\mathbf{2}}$
0.030	0.030

H. Pads calibration

RADIATION SOLUTIONS INC

CALIBRATION SHEET

Customer:	Novatem
Contact:	Jeremie Largeaud
Console :	N/A
Detector 1:	5523
Detector 2:	N/A
Channels:	$1024 \quad$ ADC Offset: N/A

High Voltages

A1	A2	A3	A4	A5
714	705	725	704	693

Stripping Constant	"this system"	"normal"
Alpha	$\mathbf{0 . 2 8 8}$	0.250
Beta	$\mathbf{0 . 4 0 4}$	0.400
Gamma	$\mathbf{0 . 7 7 5}$	0.810
a	$\mathbf{0 . 0 5 1}$	0.060
b	$\mathbf{0 . 0 0 3}$	0.000
g	$\mathbf{0 . 0 0 2}$	0.003

ROI\#	Channel	IAEA Specification [keV]	Label
$\mathbf{1}$	$137-937$	$410-2810$	Total Count
$\mathbf{2}$	$457-523$	$1370-1570$	Potassium K
$\mathbf{3}$	$553-620$	$1660-1860$	Uranium U
$\mathbf{4}$	$803-937$	$2410-2810$	Thorium Th
$\mathbf{5}$			
$\mathbf{6}$			
$\mathbf{7}$			Uranium Upper U
$\mathbf{8}$	$553-620$	$1660-1860$	

Det\#	Peak Cs	Cs FWHM		Peak Th
A1	220.84	8.37		872.30
A2	220.76	8.66		872.35
A3	221.26	8.45	872.12	5.91
A4	220.89	7.82	871.95	5.22
Sum Dn	220.94	$\mathbf{8 . 3 0}$		$\mathbf{8 7 2 . 1 0}$
				$\mathbf{5 . 0 6}$
Sum Up	$\mathbf{2 2 1 . 1 9}$	$\mathbf{9 . 7 0}$		$\mathbf{8 7 1 . 1 2}$

386 Watline Avenue Mississauga • Ontario Canada L4Z 1X2 • Tel (905) $8901111 \bullet$ Fax (905) $8901964 \bullet$ e-mail sales@radiationsolutions.ca

RADIATION SOLUTIONS INC

CALIBRATION SHEET

		Instrument:	RSX-5
Customer:	Novatem	Date:	May 25, 2012
Contact:		Tech.:	GP
Console :	N/A	Job Order:	SO\#2166
Detector 1:	5629	Customer PO	PO\#103040
Detector 2:	N/A		
Channels:	1024	ADC Offset: N/A	

High Voltages

A1	A2	A3	A4
642	661	642	61
ant	"this system"	"normal"	
	$\mathbf{0 . 2 7 4}$	0.250	
	$\mathbf{0 . 4 0 0}$	0.400	
	$\mathbf{0 . 7 6 5}$	0.810	
	$\mathbf{0 . 0 5 3}$	0.060	
	$\mathbf{0 . 0 0 2}$	0.000	
	$\mathbf{0 . 0 0 1}$	0.003	

ROI\#	Channel	IAEA Specification $[\mathrm{keV}]$	Label
$\mathbf{1}$	$137-937$	$410-2810$	Total Count
$\mathbf{2}$	$457-523$	$1370-1570$	Potassium K
$\mathbf{3}$	$553-620$	$1660-1860$	Uranium U
$\mathbf{4}$	$803-937$	$2410-2810$	Thorium Th
$\mathbf{5}$			
$\mathbf{6}$			
$\mathbf{7}$			Uranium Upper U
$\mathbf{8}$	$553-620$	$1660-1860$	

Det\#	Peak Cs	Cs FWHM		Peak Th	Th FWHM
A1	220.13	7.46		872.90	4.54
A2	220.07	7.41		871.99	4.28
A3	219.77	7.45		872.98	4.53
A4	220.37	7.29		872.79	4.25
Sum Dn	$\mathbf{2 2 0 . 0 8}$	$\mathbf{7 . 4 0}$		$\mathbf{8 7 2 . 6 5}$	$\mathbf{4 . 3 9}$
					$\mathbf{4 . 9 4}$
Sum Up	$\mathbf{2 2 0 . 3 7}$	$\mathbf{7 . 9 4}$		$\mathbf{8 7 2 . 2 3}$	

\qquad

386 Watine Avenue Mississauga • Ontario Canada L4Z 1X2 • Tel (905) 8901111 • Fax (905) 8901964 • e-mail sales@radiationsolutions.ca

He RADIATION SOLUTIONS INC

CALIBRATION SHEET

		Instrument:	RSX-5
Customer:	Novatem	Date:	May 25, 2012
Contact:		Tech.:	GP
Console :	N/A	Job Order:	SO\#2166
Detector 1:	5630	Customer PO	PO\#103040
Detector 2:	N/A		
Channels:	1024	ADC Offset: N/A	

High Voltages

A1	A2	A3	A4	A5
633	635	635	645	640

Stripping Constant	"this system"	"normal"
Alpha	$\mathbf{0 . 2 7 5}$	0.250
Beta	$\mathbf{0 . 4 0 4}$	0.400
Gamma	$\mathbf{0 . 7 5 3}$	0.810
a	$\mathbf{0 . 0 4 7}$	0.060
\mathbf{b}	$\mathbf{- 0 . 0 0 1}$	0.000
\mathbf{g}	$\mathbf{0 . 0 0 0}$	0.003

ROI\#	Channel	IAEA Specification [keV]	Label
$\mathbf{1}$	$137-937$	$410-2810$	Total Count
$\mathbf{2}$	$457-523$	$1370-1570$	Potassium K
$\mathbf{3}$	$553-620$	$1660-1860$	Uranium U
$\mathbf{4}$	$803-937$	$2410-2810$	Thorium Th
$\mathbf{5}$			
$\mathbf{6}$			
$\mathbf{7}$			Uranium Upper U
$\mathbf{8}$	$553-620$	$1660-1860$	

Det\#	Peak Cs	Cs FWHM		Peak Th
A1	220.21	7.28		872.96
A2	220.28	7.48		872.58
A3	220.14	7.49		871.85
A4	219.72	7.31		872.74
Sum Dn	$\mathbf{2 2 0 . 0 7}$	$\mathbf{7 . 3 9}$		$\mathbf{8 7 2 . 5 7}$
				4.45
				4.23
Sum Up	$\mathbf{2 2 0 . 7 9}$	$\mathbf{7 . 7 3}$		$\mathbf{8 7 2 . 3 3}$

386 Watline Avenue Mississauga • Ontario Canada L4Z 1X2 • Tel (905) 8901111 • Fax (905) 8901964 • e-mail sales@radiationsolutions.ca

I. Height attenuation \& Sensitivity

Date: 2011.06.06
Location: Breckenridge, Quebec, CANADA

Aircraft: PA31 C-GJDD
Instruments: Spectrometer, RSI RSX500, 50.16L down, 12.54L up, 2Hz 5510, 5523
Geological Survey of Canada, Portable spectrometer for ground measurements
Test Area: $\quad \mathrm{TC}=54.94 \mathrm{nGy} / \mathrm{h}, \mathrm{K}=1.96 \%$, $\mathrm{eU}=1.55 \mathrm{ppm}, \mathrm{eTh}=8.20 \mathrm{ppm}$

Temperature: $20^{\circ} \mathrm{C}$ at sea level

Pressure: $\quad 100.2 \mathrm{kPa}$ at sea level
Height: 50-230m

STP Corrected	Total Count	Potassium	Uranium	Thorium
$\mathbf{3 6 , 8 2}$	1928,46	218,91	44,04	65,04
$\mathbf{5 6 , 7 6}$	1680,55	185,14	39,31	56,48
$\mathbf{8 2 , 9 1}$	1420,19	148,23	35,11	46,79
$\mathbf{1 1 1 , 1 5}$	1206,24	120,63	30,56	39,31

Table 13 : Test Data (cps)

STP Corrected	Total Count	Potassium	Uranium	Thorium
$\mathbf{3 6 , 8 2}$	202,4	13,75	9,5	7,1
$\mathbf{5 6 , 7 6}$	209,88	14,74	10,35	6,9
$\mathbf{8 2 , 9 1}$	218,01	14,7	10,51	7,02
$\mathbf{1 1 1 , 1 5}$	225,43	15,58	10,84	7,21

Table 14 : Background Data (cps)

$\boldsymbol{\alpha}$	$\boldsymbol{\beta}$	$\boldsymbol{\gamma}$	\mathbf{a}	\mathbf{b}	\mathbf{g}
0,297	0,427	0,789	0,050	0,001	0,001

Table 15 : Stripping ratios

Total Count	Potassium	Uranium	Thorium
$\mathbf{1 7 2 6 , 0 6}$	175,16	17,92	58,36
$\mathbf{1 4 7 0 , 6 7}$	144,80	14,22	50,01
$\mathbf{1 2 0 2 , 1 8}$	111,76	12,32	40,09
$\mathbf{9 8 0 , 8 1}$	87,35	9,35	32,40

Table 16 : Background-Corrected \& Stripped Counts (cps))
After dead time correction, mean count rates of all four windows are then corrected from the cosmic radiation, atmospheric radioactivity and aircraft background by subtracting adjacent values over water. STP corrected Compton stripping ratios are then applied to the count rates. The stripped count rates at each altitude are finally fitted to the exponential function to give the height attenuation coefficients. The following figure shows the curves for all four windows, determined from the test strip.

Figure 11 : Exponential height attenuation for all four windows
Broad source sensitivity for each window was calculated using concentration of the radioelement measured at ground level on the strip and for a final STP height of 60 m . All the results are shown in the following table.

	Total Count	Potassium	Uranium	Thorium
ATTENUATION	$-0.00760 \mathrm{~m}^{-1}$	$-0.00941 \mathrm{~m}^{-1}$	$-0.00837 \mathrm{~m}^{-1}$	$-0.00797 \mathrm{~m}^{-1}$
SENSITIVITY	$26,21 \mathrm{cps} / \mathrm{nGy} / \mathrm{h}$	$71,51 \mathrm{cps} / \%$	$9,31 \mathrm{cps} / \mathrm{ppm}$	$5,92 \mathrm{cps} / \mathrm{ppm}$

Table 17 : Attenuation coefficients \& Sensitivity (60 m)

J. LAG TEST

Date:
2012.02.15

Location: Flyplasstunnelen, Fv137 Vigra Airport, NORWAY
Aircraft: PA31 C-GJDD
Instrument: Magnetometers: G-823 Cesium magnetometer, $\mathbf{1 0 H z}$
Heights: 60 m

Taking into account the spatial difference between the GPS antenna and the different magnetometers, the following results show that there is almost no time lag in the data records. Note that the spatial lag will be taking into account in the processing in order to replace each magnetometer in the space for gradient enhancement.

MAG 1 (Left wing tip pod)

LINE	HEADING $\left({ }^{\circ}\right)$	YAW $\left({ }^{\circ}\right)$	ALTITUDE (\mathbf{m})	TIME (HHMMSS)	$\mathbf{X (m)}$	$\mathbf{Y (m)}$	SPEED $(\mathbf{m} / \mathbf{s})$	HIGH PASS PILTERED MAG ($\mathbf{n T}$)
L1:0	70	223.40	60.67	150022.5	352157.6	6940221.2	61.4	51689.810
L2:0	250	176.60	61.40	150230.8	352156.3	6940221.6	62.8	51676.240

LINE	HEADING $\left({ }^{\circ}\right)$	$\begin{gathered} \text { YAW } \\ \left({ }^{\circ}\right) \end{gathered}$	ALtitude (m)	TIME (HHMMSS)	X (m)	Y (m)	SPEED (m/s)	HIGH PASS FILTERED MAG (nT)
L3:0	70	210.70	63.36	150517.3	352157.1	6940217.2	61.4	51674.050
L4:0	250	176.80	67.47	150723.5	352157.9	6940221.5	62.8	51634.440
					MEAN SPEED $=66.1 \mathrm{~m} / \mathrm{s}$			
					DISTANCE =		4.368	m
					LAG =		0.035 sec	

LINE	HEADING $\left(^{\circ}\right)$	$\begin{gathered} \text { YAW } \\ \left({ }^{\circ}\right) \end{gathered}$	ALTITUDE (m)	TIME (HHMMSS)	X (m)	Y (m)	SPEED (m/s)	HIGH PASS FILTERED MAG (nT)
L5:0	70	212.70	65.61	150950.0	352159.1	6940216.8	63.3	51656.120
L6:0	250	172.30	64.98	151207.9	352155.1	6940221.4	60.6	51651.570
					MEAN SPEED $=661.9 \mathrm{~m} / \mathrm{s}$			
					DISTANCE =		6.083	
					LAG =		$0.049 \mathrm{sec}$	

MAG 2 (Right wing tip pod)

LINE	HEADING $\left({ }^{\circ}\right)$	YAW $\left({ }^{\circ}\right)$	ALTITUDE (\mathbf{m})	TIME (HHMMSS)	$\mathbf{X}(\mathbf{m})$	$\mathbf{Y}(\mathbf{m})$	SPEED $(\mathbf{m} / \mathbf{s})$	HIGH PASS PILTERED MAG (nT)
L1:0	70	223.40	60.67	150022.5	352157.6	6940221.2	61.4	51696.560
L2:0	250	176.60	61.40	150230.8	352156.3	6940221.6	62.8	51692.240

MEAN SPEED	$=62.1 \mathrm{~m} / \mathrm{s}$
DISTANCE	$=0.322 \mathrm{~m}$
LAG	$=0.011 \mathbf{~ s e c}$

LINE	HEADING $\left({ }^{\circ}\right)$	YAW $\left({ }^{\circ}\right)$	ALTITUDE (\mathbf{m})	TIME (HHMMSS)	$\mathbf{X (m)}$	$\mathbf{Y}(\mathbf{m})$	SPEED $(\mathbf{m} / \mathbf{s})$	HIGH PASS FITERED MAG ($\mathbf{n T}$)
L3:0	70	210.70	63.36	150517.3	352157.1	6940217.2	61.4	51666.260
L4:0	250	176.80	67.47	150723.5	352157.9	6940221.5	62.8	51655.930

MEAN SPEED $=62.1 \mathrm{~m} / \mathrm{s}$
DISTANCE $=4.368 \mathrm{~m}$
LAG $=0.035 \mathrm{sec}$

LINE	HEADING (${ }^{\circ}$)	$\begin{gathered} \text { YAW } \\ \left({ }^{\circ}\right) \end{gathered}$	ALTITUDE (m)	TIME (HHMMSS)	X (m)	Y (m)	$\begin{aligned} & \text { SPEED } \\ & (\mathbf{m} / \mathbf{s}) \end{aligned}$	HIGH PASS FILTERED MAG (nT)
L5:0	70	212.70	65.61	150950.0	352159.1	6940216.8	63.3	51649.860
L6:0	250	172.30	64.98	151207.9	352155.1	6940221.4	60.6	51665.630
					MEAN SPEED $=61.9 \mathrm{~m} / \mathrm{s}$			
					DISTANCE =		6.083 m	
					LAG =		0.049	sec

MAG 3 (Tail boom)

LINE	HEADING $\left({ }^{(}\right)$	YAW $\left({ }^{\circ}\right)$	ALTITUDE (\mathbf{m})	TIME $($ HHMMSS $)$	$\mathbf{X (m)}$	$\mathbf{Y}(\mathbf{m})$	SPEED $(\mathbf{m} / \mathbf{s})$	HIGH PASS FILTERED MAG ($\mathbf{n T}$)
L1:0	70	223.30	60.82	150022.7	352168.9	6940225.9	61.4	51718.670
L2:0	250	176.60	61.36	150230.9	352150.5	6940219.2	62.8	51710.760

MEAN SPEED $=62.1 \mathrm{~m} / \mathrm{s}$
DISTANCE $=19.582 \mathrm{~m}$
LAG $=0.158 \mathrm{sec}$

LINE	HEADING $\left({ }^{\circ}\right)$	YAW $\left({ }^{\circ}\right)$	ALTITUDE (\mathbf{m})	TIME $($ HHMMSS $)$	$\mathbf{X (m)}$	$\mathbf{Y}(\mathbf{m})$	SPEED $(\mathbf{m} / \mathbf{s})$	HIGH PASS PILTERED MAG ($\mathbf{n T})$
L3:0	70	210.60	63.32	150517.5	352168.4	6940221.9	61.4	51696.240
L4:0	250	176.80	67.55	150723.7	352146.3	6940216.7	62.8	51670.020

$$
\begin{aligned}
\text { MEAN SPEED } & =62.1 \mathrm{~m} / \mathrm{s} \\
\text { DISTANCE } & =22.772 \mathrm{~m} \\
\text { LAG } & =0.183 \mathrm{sec}
\end{aligned}
$$

LINE	HEADING $\left({ }^{\circ}\right)$	YAW $\left({ }^{\circ}\right)$	ALTITUDE (\mathbf{m})	TIME (HHMMSS)	$\mathbf{X (m)}$	$\mathbf{Y}(\mathbf{m})$	SPEED $(\mathbf{m} / \mathbf{s})$	HIGH PASS FILTRRED MAG (nT)
L5:0	70	212.80	65.54	150950.2	352170.7	6940221.7	63.3	51678.350
L6:0	250	172.30	64.93	151208.0	352149.5	6940219.1	60.8	51685.630

MEAN SPEED $=62.1 \mathrm{~m} / \mathrm{s}$
DISTANCE $=21.418 \mathrm{~m}$
LAG $=0.172 \mathrm{sec}$

K. Laser and Radar calibration

Date: 2012.02.15
Location: Vigra airport (alt: 2.74 m), NORWAY

Aircraft: PA31 C-GJDD
Instrument: GPS receiver: Novatel Propak - V3, 10Hz Laser altimeter: Optech Sentinel 3100, 10Hz Radar altimeter: Free Flight TRA 4000, 10Hz

Temperature: $9.0^{\circ} \mathrm{C}$ at sea level

Pressure: $\quad 100.8 \mathrm{kPa}$ at sea level
Heights: $\quad 40 \mathrm{~m}-180 \mathrm{~m}$

To determine coefficients of calibration for the laser and radar altimeter, steps are flown at 5 different heights, from 40 m to 180 m and over the Alta airport strip in order to have a surface as flat as possible for the calibration. In order to minimize errors, each step is 2 km long.

The different altitudes recorded show a perfect linearity with the post processed GPS altitude. The airport altitude (2.75 m) was removed from the mean altitude recorded in order to evaluate the results. Finally, linear relations between the different altimeters are plotted below and calibration constants needed for processing are provided.

GPS altitude	Adjusted GPS altitude (m)	Laser altitude $\mathbf{(m)}$	Radar altitude (m)
$\mathbf{6 1 . 5 7}$	58.82	44.51	43.27
$\mathbf{7 9 . 3 4}$	76.59	62.18	61.15
$\mathbf{1 1 0 . 8 8}$	108.13	94.05	93.47
$\mathbf{1 4 0 . 8 0}$	138.05	123.85	123.80
$\mathbf{1 7 1 . 7 3}$	168.98	155.36	155.69
$\mathbf{2 0 1 . 6 4}$	198.89	185.07	186.29

Table 18: Radar calibration

Figure 12 : Laser calibration

Figure 13 : Radar calibration

